(完整版)对勾函数详细分析

(完整版)对勾函数详细分析
(完整版)对勾函数详细分析

对勾函数的性质及应用

一、对勾函数b y ax x =+)0,0(>>b a 的图像与性质:

1. 定义域:),0()0,(+∞?-∞

2. 值域:),2[]2,(+∞?--∞ab ab

3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,

且函数图像关于原点呈中心对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,b

y ax x

=+

≥ab 2(当且仅当b x a ,即)(x f 在x=a b 时,取最小值ab 2

由奇函数性质知:当x<0时,)(x f 在x=a

b -时,取最大值ab 2-

5. 单调性:增区间为(∞+,a

b ),(a b -∞-,),减区间是(0,a b ),(a b -,0)

二、对勾函数的变形形式 类型一:函数b

y ax x

=+

)0,0(<

3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.

4.图像在二、四象限, 当x<0时,)(x f 在x=a

b 时,取

最小值ab 2;当0x >时,)(x f 在x=a

b -时,取最大值ab 2-

5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,a

b ),(a b -∞-,),

类型二:斜勾函数b

y ax x =+)0(

①0,0<>b a 作图如下

1.定义域:),0()0,(+∞?-∞

2.值域:R

3.奇偶性:奇函数

4.图像在二、四象限,无最大值也无最小值.

5.单调性:增区间为(-∞,0),(0,+∞).

②0,0>

1.定义域:),0()0,(+∞?-∞

2.值域:R

3.奇偶性:奇函数

4.图像在二、四象限,无最大值也无最小值.

5.单调性:减区间为(-∞,0),(0,+∞).

类型三:函数)0()(2>++=ac x

c

bx ax x f 。

此类函数可变形为b x

c ax x f ++=)(,可由对勾函数x

c

ax y +

=上下平移得到 练习1.函数x

x x x f 1

)(2++=的对称中心为

类型四:函数)0,0()(≠>++

=k a k

x a

x x f 此类函数可变形为k k

x a k x x f -+++=)()(,则)(x f 可由对勾函数x a

x y +=左右平移,上下平移得到

练习 1.作函数21

)(-+=x x x f 与x x x x f +++=2

3)(的草图 2.求函数421

)(-+

=x x x f 在),2(+∞上的最低点坐标 3. 求函数1

)(-+=x x

x x f 的单调区间及对称中心

类型五:函数)0,0()(2>≠+=b a b x ax x f 。此类函数定义域为R ,且可变形为x b x a x

b

x a x f +

=+=2)( a.若0>a ,图像如下:

1.定义域:),(+∞-∞ 2. 值域:]21,21[b

a b

a ?

?

-

3. 奇偶性:奇函数.

4. 图像在一、三象限.当0x >时,)(x f 在b x =时,取最大值b a 2,当x<0

时,)(x f 在x=b -时,取最小值b

a 2-

5. 单调性:减区间为(∞+,b ),(b -∞-,);增区间是

],[b b -

练习1.函数

1)(2+=

x x

x f 的在区间[)2,+∞上的值域为

b. 若0

1.定义域:),(+∞-∞ 2. 值域:]21

,21

[b

a b a ?

?

-

3. 奇偶性:奇函数.

4. 图像在一、三象限. 当0x >时,)(x f 在b x =时,取最小值b a 2-,

当x<0时,)(x f 在x=b -时,取最大值b

a

2

5. 单调性:增区间为(∞+,b ),(b -∞-,);减区间是],[b b -

练习1.如2

214

x

a x +=-

+()1,2x ∈-,则的取值范围是 类型六:函数)0()(2≠+++=

a m

x c

bx ax x f .可变形为)0()()()()(2>++++=+++++=at s m x t m x a m x t m x s m x a x f , 则)(x f 可由对勾函数x

t

ax y +

=左右平移,上下平移得到 练习1.函数11

)(2+++=x x x x f 由对勾函数x

x y 1+=向 (填“左”、“右”)平移 单位,向

(填“上”、“下”)平移 单位.

2.已知1->x ,求函数110

7)(2+++=x x x x f 的最小值;

3.已知1

9

9)(2--+=x x x x f 的最大值

类型七:函数)0()(2≠+++=a c

bx ax m x x f

练习1.求函数21

)(2

++-=

x x x x f 在区间),1(+∞上的最大值;若区间改为),4[+∞则)(x f 的最大值为 2.求函数2

3

2)(22++++=x x x x x f 在区间),0[+∞上的最大值

类型八:函数a

x b x x f ++=)(.此类函数可变形为标准形式:)0()(>-+-++=+-++=a b a x a

b a x a x a b a x x f

练习1.求函数1

3)(-+=x x x f 的最小值;

2.求函数15)(++=x x x f 的值域;

3.求函数32)(++=x x x f 的值域

类型九:函数)0()(2

2>++=

a a

x b x x f 。

此类函数可变形为标准形式:)()()(2

22

22o a b a

x a b a x a

x a

b a x x f >-+-+

+=+-++=

练习 1.求函数4

5)(22++=

x x x f 的最小值; 2. 求函数17

1

)(22++=x x x f 的值域

三、关于求函数()01>+=x x

x y 最小值的十种解法

1. 均值不等式

0>x ,∴21≥+

=x x y ,当且仅当x

x 1

=,即1=x 的时候不等式取到“=”

。∴当1=x 的时候,2min =y

2. ?法

011

2=+-?+

=yx x x

x y 若y 的最小值存在,则042

≥-=?y 必需存在,即2≥y 或2-≤y (舍) 找到使2=y 时,存在相应的x 即可。通过观察当1=x 的时候,2min =y 3. 单调性定义

设210x x << ()()()?

??

? ?

?--=-+-=-21212

1

21211111x x x x x x x x x f x f ()2

121211x x x x x x --= 当对于任意的21,x x ,只有21,x x (]1,0∈时,()()21x f x f -0>,∴此时()x f 单调递增; 当对于任意的21,x x ,只有21,x x ()+∞∈,1时,()()21x f x f -0<,∴此时()x f 单调递减。

∴当1=x 取到最小值,()21min ==f y

4. 复合函数的单调性

2112

+???

?

??-=+=x x x x y x

x t 1-

=在()+∞,0单调递增,22

+=t y 在()0,∞-单调递减;在[)+∞,0单调递增

又 ∈x ()1,0()0,∞-∈?t ∈x [)+∞,1[)+∞∈?,0t ∴原函数在()1,0上单调递减;在[)+∞,1上单调递增

即当1=x 取到最小值,()21min ==f y

5. 求一阶导

2'1

11x

y x x y -=?+= 当()1,0∈x 时,0'y ,函

数单调递增。

∴当1=x 取到最小值,()21min ==f y

6. 三角代换

令αtan =x ,?

?

? ?

?∈2,0πα,则αcot 1=x

α

αα2sin 2

cot tan 1=+=+

=x x y

??

?

?

?∈2,0πα()πα,02∈?

∴当4

π

α=

,即2

α=

时,()12sin max =α,2min =y ,显然此时1=x

7. 向量

b a x x x x y ?=?+?=+

=1111, ()1,1,1,=??

?

??=b x x a b a ?θ

cos b a ?=θcos 2a

根据图象,a 为起点在原点,终点在x

y 1

=()0>x 图象上的一个向量,θcos a 的几何意义为a 在b 上的投影,

显然当b a =时,θcos a 取得最小值。此时,1=x ,222min =?=

y

8.图象相减

??

?

??--=+

=x x x x y 11,即y 表示函数x y =和x y 1-=两者之间的距离 求min y ,即为求两曲线竖直距离的最小值

平移直线x y =,显然当x y =与x

y 1

-=相切时,两曲线竖直距离最小。 x y 1-=关于直线x y -=轴对称,

若x y =与x

y 1

-=在1>x 处有一交点,根据对称性,在10<

y 1

-=相交。显然不是距离最小的情

况。

所以,切点一定为()1,1-点。 此时,1=x ,2min =y

9.平面几何

依据直角三角形射影定理,设x EB x AE 1,==,则x

x AD AB 1+== 显然,x

x 1

+

为菱形的一条边,只用当AD AB ⊥,即AD 为直线AB 和CD 之间的距离时,x x 1

+取得最小值。即四边形ABCD 为矩形。

此时,x

x 1

=,即1=x ,2min =y

10. 对应法则

设()[]t x f =min ()=2

x

f 2

2

1x x

+

()+∞∈,0x ,()+∞∈,02x ,对应法则也相同 ∴()[]

t x f =min

2

()()21

1222++=?+

=x

x x f x x x f 左边的最小值=右边的最小值 ∴122-=?+=t t t (舍)或2=t 当2x P x ==,即1=x 时取到最小值,且2min =y

对勾函数练习:

1.若 x>1.求11-+=x x y 的最小值. 11.若2229t

t a t t +≤≤+在(]2,0∈t 上恒成立,则a 的取值范围是

2. 若 x>1. 求1222-+-=x x x y 的最小值 12. 求函数()()111612

>+++=x x x

x x x f 的最值。 3. 若 x>1. 求112-+-=x x x y 的最小值 13. 的值域时,求,

当1

42)()10(+=∈x x

x f x 4. 若 x>0. 求x x y 23+

=的最小值 14. 的值域求3

1)(22

++++=x x x x x f 5.已知函数)),1[(22+∞∈++=

x x

a

x x y (1) 求的最小值时,求)(2

1

x f a =

(2)若对任意x ∈[1,+∞],f(x)>0恒成立,求a 范围

6.: 方程sin 2

x -asinx+4=0在[ 0 ,

]内有解 ,则a 的取值范围是__________

7. 函数()1027y x x x =+≤≤的最小值为____________;函数()10

27y x x x =-≤≤的最大值为_________。

8.函数x

x y 4

32-

-=的最大值为 。 9、若14<<-x ,则2

22

22-+-=x x x y 的最值是 。

对勾函数的几点分析

对勾函数的几点分析 对勾函数是一种类似于反比例函数的一般函数,又被称为“双勾函数”、"勾函数"等。也被形象称为“耐克函数” 奇偶性与单调性 当x>0时,f(x)= x b ax + 有最小值(这里为了研究方便,规定a>0,b>0),即当a b x =的时候 奇函数。 令a b k = ,那么: 增区间:{x|x≤-k}和{x|x≥k}; 减区间:{x|-k≤x<0}和{x|00,那么该函数在 (0,√a] 上是减函数,在 , [√a,+∞ )上是增函数. (1)如果函数 y=x+(2^b)/x (x>0)的值域为 [6,+∞),求b 的值; (2)研究函数 y=x^2+c/x^2 (常数c >0)在定义域内的单调性,并说明理由; (3)对函数y =x+a/x 和y =x^2+a/x^2(常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x) =(x^2+1/x)^n+(1/x^2+x)^n (x 是正整数)在区间[½ ,2]上的最大值和最小值(可利用你的研究结论) 当x>0时,f(x)=ax+b/x 有最小值;当x<0时,f(x)=ax+b/x 有最大值 f(x)=x+1/x 首先你要知道他的定义域是x 不等于0

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

基本不等式—最值—对勾函数耐克函数(学案 附答案)

基本不等式——形式一:a b +≥(a>0,b>0) ____a b +( ) ——形式二: 2 a b +≥ (a__0,b__0) __ (a >0,b >0) 2 a b + ——形式三:2 2a b ab +?? ≤ ??? ( ) (a>0,b>0)2 a b +≤ 2 a b +? 用分析法证明:要证 2 a b + (1) 只要证 a b +≥ (2) 要证(2),只要证____0a b +-≥ (3) 要证(3),只 要证2(__________)0-≥ (4) 显然(4)是成立的. 当且仅当a=b 时,(4)中的等号成立. 探究3:使用基本不等式的三个条件:一正二定三相等 思考:(1)已知y=x+x 1 ( x>0 ) ,求y 的范围. (2)已知y=x+x 1 ( x≠0 ) ,求y 的范围.

例题拓展 【例1 】已知0x >,则x x 4 32+ +的最小值是________。 【 例2 】下列不等式一定成立的是 ( ) A .xy y x 2≥+ B .21 ≥+x x C .xy y x 222≥+ D . xy xy y x 1 2≥ + 【 例3 】下列结论中,错用基本不等式做依据的是( ) 基础回顾 1、对于____ _ ,a b ,有22____2a b ab +,当且仅当____ _ 时,等号成立.

2、基本不等式:对于____ _ ,a b ,则2 a b +___ _时,不等式取等号. 注意:使用基本不等式时,应具备三个条件:____ _ ____ _ 【例1 】(1)已知x >0,且y = x + 81 x ,x =_________时,y 取最小值 (2)已知0x >,则x x 4 32+ +的最小值是________。 (3)y x x =++23 122 的最小值是 (4)a+b=2,则3a +3b 的最小值是______________ (5)a+2b=4,则3a +9b 的最小值是______________ 【 例2】设x ,y 为正数, 求14 ()()x y x y ++的最小值 【例4 】若0,0,x y >>且 21 1x y +=,则2x y +的最小值为________

2021届浙江省温州市高三上学期11月高考适应性测试(一模)数学试题教师解析版

2021届浙江省温州市高三上学期11月高考适应性测试(一模)数学 试题 一、单选题 1.已知集合{} 15A x x =<<,{} 03B y y =<<,则A B =() A .? B .{} 13x x << C .{} 05x x << D .{} 05x x << 答案:B 利用交集的定义可求得集合A B . 解: {}15A x x =<<,{}03B y y =<<,因此,{}13A B x x ?=<<. 故选:B. 2.已知z 为复数,若()1i i z ?+=(i 是虚数单位),则z = A .1 B C . 12 D . 2 答案:D 先根据复数除法求出复数z ,结合复数模长的求解方法可得模长. 解:因为(1)z i i +=,所以i i(1i)1i 11i 1i (1i)(1i)222z -+====++-+,所以||2 z ==,故选D. 点评:本题主要考查复数的除法及模长,复数模长的求解一般是先化简复数为z a bi =+形式,结 合模长公式z = . 3.设公差为d 的等差数列{}n a 的前n 项和n S ,若4228S S =+,则d =() A .1 B .2 C .3 D .4 答案:B 由4228S S =+,直接利用等差数列的前n 项和公式求解. 解:因为4228S S =+, 所以 () ()14124282 a a a a +=++,

所以()()11112328a a d a a d ++=+++, 即48d =, 解得2d =, 故选:B. 4.若实数x ,y 满足约束条件0320x y x x y -≥?? ≤??+-≥? ,则2x y -的最小值为() A ..1 B .1- C .3 D .3- 答案:D 根据实数x ,y 满足约束条件0320x y x x y -≥?? ≤??+-≥? ,画出可行域,记目标函数2z x y =-,平移直线 12 2 z y x = -,当直线在y 轴上的截距最大时z 有最小值求解. 解:实数x ,y 满足约束条件0 320x y x x y -≥?? ≤??+-≥? 的可行域如图所示: 记目标函数2z x y =-,平移直线122 z y x =-,当直线经过点(3,3)A 时在y 轴上的截距最大,此时对应的z 具有最小值, 最小值为3233z =-?=-, 故选:D. 5.已知0a >,0b >则“1a b +=”是“22 1 2 a b +≥ ”的()

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

最新对勾函数详细分析【精选】整理版

对勾函数的性质及应用 一.对勾函数的图像与性质: 1.定义域:(-∞,0)∪(0,+∞) 2.值域:(-∞,-√ab]U[√ab,+∞) 3.奇偶性:奇函数,函数图像整体呈两个 “对勾”的形状,且函数图像关于原点呈中心 对称,即 4.图像在一、三象限, 当时,2√ab(当且仅当取等号),即在x= 时,取最小值 由奇函数性质知:当x<0时,在x=时,取最大值 5.单调性:增区间为(),(),减区间是(0,),(,0) 1、对勾函数的变形形式 类型一:函数的图像与性质 1.定义域: 2.值域:(-∞,-√ab]U[√ab,+∞) 3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状. 4.图像在二、四象限, 当x<0时,在x=时,取 最小值;当时,在x=时,取最大值 5.单调性:增区间为(0,),(,0)减区间是(),(), 类型二:斜勾函数 ①作图如下 1.定义域: 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值.

5.单调性:增区间为(-,0),(0,+). ②作图如下: 1.定义域: 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值. 5.单调性:减区间为(-,0),(0,+). 类型三:函数。 此类函数可变形为,可由对勾函数上下平移得到 练习1.函数的对称中心为 类型四:函数 此类函数可变形为,则可由对勾函数左右平移,上下平移得到练习 1.作函数与的草图 2.求函数在上的最低点坐标 3. 求函数的单调区间及对称中心 类型五:函数。此类函数定义域为,且可变形为 a.若,图像如下: 1.定义域: 2. 值域: 3.奇偶性:奇函数. 4. 图像在一、三象限.当时,在时,取最大值,当x<0时,在x=时,取最小值 5. 单调性:减区间为(),();增区间是

对勾函数求最值

对勾函数年级:高二科目:数学时间:9/6/2009 16:25:27 新5961438 请问对勾函数的最值如何求。 答:同学,你好,现提供以下资料供你参考: 函数的单调性. 显然此函数的定义域为(-∞,0)∪(0,+∞),用描点法可作出此函数的图象为: 从图象上可看出,函数在(0,)上单调递减,在[,+∞)上单调递增,在(-∞,-]上单调递增,在[-,0)上单调递减. 我们可用单调性的定义验证它的单调性(证明略). 很容易看出f(x)是一个奇函数,所以它的图象是关于原点对称的,我们只需记住它在(0,]、[,+ ∞)上的单调性就可以了,而且我们用这个函数解题时,通常只用这两个区间上函数的单调性. 特殊地,当k=1时,,它在(0,1]上单调递减,在[1,+∞)上单调递增. 一般地,对于函数,我们也可把它转化为的形式,即为, 此时,f(x)在上单调递减,在上单调递增. 说明:因课本并没有介绍此函数的单调性,所以在利用它时应在答题中将它的单调性证一遍 例:甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元. (1)把全部运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶? 解:(1) (2)依题意知s,a,b,v都为正数,故,

当且仅当,即v=时上述等号成立. 若≤c,则当时v=时,全程运输成本y最小. 若>c,,此函数在(0,]上单调递减, 则在(0,c]上也单调递减,所以y≥,当v=c时取等号. 综上知,为使全程运输成本y最小,当≤c时行驶速度应为v=,当>c时,行驶速度应为v=c. 同学,你好,你要记住做每件事情要有决心。决心决定一切,要努力地去做,让你每一天都充满光彩。学习更上一层楼!

对数函数-典型例题

对数函数 例1求下列函数的定义域 (1)y=log2(x2-4x-5); (2)y=log x+1(16-4x) (3)y= . 解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为{x|x<-1,或x>5}. (2)令得 故所求定义域为{x|-1<x<0,或0<x<2}. (3)令,得 故所求定义域为 {x|x<-1- ,或-1- <x<-3,或x≥2}. 说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零. 例2求下列函数的单调区间. (1)y=log2(x-4);(2)y=log0.5x2. 解:(1)定义域是(4,+∞),设t=x-4,当x>4时,t随x的增大而增大,而y=log2t,y又随t的增大而增大, ∴(4,+∞)是y=log2(x-4)的递增区间. (2)定义域{x|x∈R,且x≠0},设t=x2,则y=log0.5t 当x>0时,t随x的增大而增大,y随t的增大而减小, ∴(0,+∞)是y=log0.5x2的递减区间. 当x<0时,t随x的增大而减小,y随t的增大而减小, ∴(-∞,0)是y=log0.5x2的递增区间.

例3比较大小: (1)log0.71.3和log0.71.8. (2)(lg n)1.7和(lgn)2(n>1). (3)log23和log53. (4)log35和log64. 解:(1)对数函数y=log0.7x在(0,+∞)是减函数.因为1.3<1.8,所以 log0.71.3>log0.71.8. (2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论. 若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2; 若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53. (4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解. 因为log35>log33=1=log66>log64,所以log35>log64. 评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论. 例4已知函数f(x)=log a(a-a x)(a>1), (1)求f(x)的定义域、值域. (2)判断并证明其单调性. (3)解不等式f-1(x2-2)>f(x). 解:(1)要使函数有意义,必须满足a-a x>0,即a x

对勾函数最值的十种求法

关于求函数()01>+=x x x y 最小值的十种解法 一、 均值不等式 Θ0>x ,∴21≥+=x x y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。 ∴当1=x 的时候,2min =y 二、?法 0112=+-?+=yx x x x y 若y 的最小值存在,则042≥-=?y 必需存在,即2≥y 或2-≤y (舍) 找到使2=y 时,存在相应的x 即可。 通过观察当1=x 的时候,2min =y 三、单调性定义 设210x x << ()()()??? ? ??--=-+-=-21212121211111x x x x x x x x x f x f ()2121211x x x x x x --= 当对于任意的21,x x ,只有21,x x (]1,0∈时,()()21x f x f -0>,∴此时()x f 单调递增; 当对于任意的21,x x ,只有21,x x ()+∞∈,1时,()()21x f x f -0<,∴此时()x f 单调递减。 ∴当1=x 取到最小值,()21min ==f y 四、复合函数的单调性 2112 +??? ? ??-=+=x x x x y x x t 1 -=在()+∞,0单调递增,22+=t y 在()0,∞-单调递减;在[)+∞,0单调递增 又Θ∈x ()1,0()0,∞-∈?t ∈x [)+∞,1[)+∞∈?,0t ∴原函数在()1,0上单调递减;在[)+∞,1上单调递增 即当1=x 取到最小值,()21min ==f y

五、求一阶导 2'111x y x x y -=?+= 当()1,0∈x 时,0'y ,函数单调递增。 ∴当1=x 取到最小值,()21min ==f y 六、三角代换 令αtan =x ,?? ? ??∈2,0πα,则αcot 1=x α αα2sin 2cot tan 1=+=+=x x y ??? ? ?∈2,0πα()πα,02∈? ∴当4π α=,即22π α=时,()12sin max =α,2min =y ,显然此时1=x 七、向量 b a x x x x y ?=?+?=+=1111, ()1,1,1,=?? ? ??=b x x a b a ?θcos b a ?=θcos 2a 根据图象,a 为起点在原点,终点在x y 1=()0>x 图象上的一个向量,θcos a 的几何意义为a 在b 上 的投影,显然当b a =时,θcos a 取得最小值。 此时,1=x ,222min =?=y 八、图象相减 ?? ? ??--=+=x x x x y 11,即y 表示函数x y =和x y 1-=两者之间的距离 求min y ,即为求两曲线竖直距离的最小值

对勾函数详细分析

对勾函数的性质及应用 一.对勾函数b y ax x =+)0,0(>>b a 的图像与性质: 1. 定义域:(-∞,0)∪(0,+∞) 2. 值域:(-∞,-√ab]U[√ab,+∞) 3. 奇偶性:奇函数,函数图像整体呈两个 “对勾”的形状,且函数图像关于原点呈中心 对称,即0)()(=-+x f x f 4. 图像在一、三象限, 当0x >时,b y ax x =+ ≥2√ab (当 且仅当b x a = 取等号),即 )(x f 在x=a b 时,取最小值ab 2 由奇函数性质知:当x<0时,)(x f 在x=a b -时,取最大值ab 2- 5. 单调性:增区间为(∞+,a b ),(a b -∞-,),减区间是(0,a b ),(a b -,0) 1、 对勾函数的变形形式 类型一:函数b y ax x =+ )0,0(<时,)(x f 在x=a b -时,取最大 值ab 2- 5.单调性:增区间为(0,a b ),(a b -,0)减区间是(∞+,a b ),(a b -∞-,), 类型二:斜勾函数b y ax x =+)0(b a 作图如下 1.定义域:),0()0,(+∞?-∞ 2.值域:R 3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值. 5.单调性:增区间为(-∞,0),(0,+∞).

对数及对数函数典型例题精讲

对数与对数函数 一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为 ( ) A .1 B .2 C .10 D .5 解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0. 解得x =2或-5(舍去). 2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的 ( ) A .充分必要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件. 则a ,b ,c 的大小关系是 ( ) A .a 1)的值域是 ( ) A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 A ∵x + 1x -1+1=x -1+1 x -1 +2≥2(x -1)·1 x -1 +2=4,∴y ≤-2. 5.函数f (x )=2|log2x |的图象大致是 ( )

解析 C f (x )=2|log2x |=???? ? x ,x ≥1,1 x ,0≤-1,01 ,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的 图象的交点个数为 ( ) A 1 B 2 C 3 D 4 答案:B 8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2 221x f x f -等于 ( ) A 2 B 1 C 2 1 D 2log a 答案A 二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________. 解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2 10.已知0n) 11.已知f(x)=x 2log ,则)2 3 ()83(f f += 2 12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1 13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0 14.函数f (x )=log 1 2(2x 2 -3x +1)的增区间是____________. 解析 ∵2x 2 -3x +1>0,∴x <1 2或x >1.∵二次函数y =2x 2-3x +1的减区间是 ? ????-∞,34, ∴f (x )的增区间是? ????-∞,12. 【答案】 ? ? ? ??-∞,12

最新对勾函数讲解与例题解析

对勾函数 对勾函数:数学中一种常见而又特殊的函数。如图 一、对勾函数f(x)=ax+ 的图象与性质 对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。 (一) 对勾函数的图像 对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。 当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。 当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示: 当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。但是,我们依然可以看作是两个函数“叠加”而成。(请自己在图上完成:他是如何叠加而成的。) 一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。 a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号) 对勾函数的图像(ab 异号)

接下来,为了研究方便,我们规定a>0,b>0。之后当a<0,b<0时,根据对称就很容易得出结论了。 (二) 对勾函数的顶点 对勾函数性质的研究离不开均值不等式。利用均值不等式可以得到: 当x>0时, 。 当x<0时,。 即对勾函数的定点坐标: (三) 对勾函数的定义域、值域 由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。 (四) 对勾函数的单调性 (五) 对勾函数的渐进线 由图像我们不难得到: (六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。说到均值不等式,其实也是根据二次函数得来的。我们都知道,(a-b)^2≥0,展开就是a^2-2ab+b^2≥0,有a^2+b^2≥2ab ,两边同时加上2ab ,整理得到(a+b)^2≥4ab ,同时开根号,就得到了均值定理的公式:a+b ≥2sqrt(ab )。把ax+b/x 套用这个公式,得到ax+b/x ≥2sqrt(axb/x)=2sqrt(ab ),这里有个规定:当且仅当ax=b/x 时取到最小值,解出x=sqrt(b/a ),对应的f(x)=2sqrt(ab )。我们再来看看均值不等式,它也可以写成这样:(a+b)/2≥sqrt(ab ),前式大家都知道,是求平均数的公式。那么后面的式子呢?也是平均数的公式,但不同的是,前面的称为算术平均数,而后面的则称为几何平均数,总结一下就是算术平均数绝对不会小于几何平均数。这些知识点也是非常重要的。 三、关于求函数()01>+=x x x y 最小值的解法 1. 均值不等式 Θ0>x ,∴21≥+ =x x y ,当且仅当x x 1=,即1=x 的时候不等式取到“=”。∴当1=x 的时候,2min =y 2. ?法 0112=+-?+=yx x x x y y X O y=ax

带答案对数与对数函数经典例题.

经典例题透析 类型一、指数式与对数式互化及其应用 1.将下列指数式与对数式互化: (1);(2);(3);(4);(5);(6). 思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5); (6). 总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段. 举一反三: 【变式1】求下列各式中x的值: (1)(2)(3)lg100=x (4) 思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x. 解:(1); (2); (3)10x=100=102,于是x=2; (4)由. 类型二、利用对数恒等式化简求值 2.求值:解:. 总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三: 【变式1】求的值(a,b,c∈R+,且不等于1,N>0) 思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算. 解:. 类型三、积、商、幂的对数 3.已知lg2=a,lg3=b,用a、b表示下列各式. (1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15 解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a (3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b (5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a

举一反三: 【变式1】求值 (1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2 解: (1) (2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1 (3)原式=2lg5+lg2(1+lg5)+(lg2)2 =2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2. 【变式2】已知3a=5b=c,,求c的值. 解:由3a=c得: 同理可得 . 【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:. 证明: . 【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:. 证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb 即. 类型四、换底公式的运用 4.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x.

分压电路的动态分析

分压电路的动态分析 分压电路是高中阶段学生必须掌握的一种电路,对分压电路的动态分析也就显得很重要了,因此有必要进行详细地讨论。 图1所示的是分压电路的电路图,其中滑动变阻器的总阻值为R,设滑片左边的部分电阻为x,则滑片右边的部分电阻为,负载电阻为。 首先,我们讨论外电阻随x的变化而变化的规律。由串并联电路知识知: 上式中括号内是数学中提到的“对勾函数”,令 则有: 当且仅当时,等号成立,此时有:。因此: 当时,为增函数; 当时,为减函数。 函数图象如图2所示。 在我们要讨论的物理问题中,。因此,y为增函数,为减函数。我们把这作 为一个非常重要的结论。 结论一:当x增大时,分压电路的外电阻将减小。 由闭合电路欧姆定律可知,干路中的电流将增大。在电路中和x是并联关系,因此它们的电流是按电阻的反比来分配的。负载上的电流 x增大的结果是使上式中的分子I增大,同时使上式中的分母减小,我们将得到 结论二:当x增大时,流过负载的电流增大。 由于负载是定值电阻,由、可知: 结论三:当x增大时,负载两端的电压增大。 结论四:当x增大时,负载消耗的电功率增大。 另外:由P=EI、可知: 结论五:当x增大时,电源提供的电功率和电源内阻上消耗的电功率都将增大。 由和结论一可知: 结论六:当x增大时,电源的效率降低。 总之,我们可以说,当x增大时,负载上的电流、电压、电功率都是增大的,电源提供的总功率也增大,但电源的效率下降了。下面的一道习题作为练习: 练习题:电路如图所示,定值电阻、,电源电动势为E=6V,内阻为,滑动变阻器总阻值为,当滑动触头P从最左端向右滑动过程中,则下更判断错误的是() A.电源消耗的功率一直减小 B.消耗的功率一直减小 C.消耗的功率一直减小 D.电源内阻r消耗的功率先减小后增大 参考答案:D [参考文献]

指数函数和对数函数复习有详细知识点和习题详解

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(*∈N n ()0 10a a =≠ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2) ()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8 - (2)() 2 10- (3)()44 3π- (4) ()() b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++=

对勾函数详细分析.doc

对勾函数的性质及应用 一 . 对勾函数的图像与性质: 1.定义域:( - ∞, 0)∪(0,+∞) 2.值域: (- ∞,- √ab]U[ √ab,+ ∞) 3.奇偶性:奇函数,函数图像整体呈两个 “对勾”的形状,且函数图像关于原点呈中心 对称,即 2√ab (当且仅当取等号),即在x=时,取最小值4. 图像在一、三象限 , 当时, 由奇函数性质知:当x<0 时,在 x=时,取最大值 5. 单调性:增区间为(),(), 减区间是( 0,),( ,0 ) 1、对勾函数的变形形式 类型一:函数的图像与性质 1.定义域: 2.值域: (- ∞,- √ab]U[ √ab,+ ∞) 3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状. 4. 图像在二、四象限 , 当 x<0 时,在 x= 时,取最小值;当时,在x=时,取最大值 5.单调性:增区间为( 0,),( ,0 )减区间是(),() , 类型二:斜勾函数 ①作图如下 1.定义域: 2. 值域: R 3. 奇偶性:奇函数 4. 图像在二、四象限,无最大值也无最小值. 5.单调性:增区间为( - ,0),( 0, +) . ②作图如下: 1. 定义域: 2. 值域: R 3. 奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值.

5.单调性:减区间为( - ,0),( 0, +) . 类型三:函数。 此类函数可变形为,可由对勾函数上下平移得到 练习 1. 函数的对称中心为 类型四:函数 此类函数可变形为,则可由对勾函数左右平移,上下平移得到 练习 1. 作函数与的草图 2.求函数在上的最低点坐标 3.求函数的单调区间及对称中心 类型五:函数。此类函数定义域为,且可变形为 a. 若,图像如下: 1.定义域: 2.值域: 3.奇偶性:奇函数. 4. 图像在一、三象限. 当时,在时,取最大值,当x<0 时,在x=时,取最小值 5.单调性:减区间为(),();增区间是 练习 1. 函数的在区间上的值域为 b.若,作出函数图像: 1.定义域: 2.值域: 3.奇偶性:奇函数. 4.图像在一、三象限. 当时,在时,取最小值, 当 x<0 时,在 x=时,取最大值 5.单调性:增区间为(),();减区间是 练习 1. 如,则的取值范围是 类型六:函数 . 可变形为,

19.百师联盟2021届高三一轮复习联考(一)理数全国卷III试题【解析版】

百师联盟2021届高三一轮复习联考(一)理数全国卷III 试 题 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.设2 122z i ?? =- ? ??? ,其中i 是虚数单位,则 z =( ) A . 12 B .2 C .1 D 【答案】C 【分析】 先根据完全平方公式和复数的运算计算出z ,再根据复数的模的求法解出即可. 【详解】 解:因为2 1122z i ?=-=-???? , 所以1z ==. 故选:C . 【点睛】 本题考查复数的运算和复数的模的求法,属于基础题. 2.已如集合{} 0A x x =≥,集合( ){ }2 ln 2B x y x x ==+-,则A B =( ) A .()1,+∞ B .()2,1- C .[)0,1 D .()2,-+∞ 【答案】A 【分析】 求出集合B ,再利用集合的交运算即可求解. 【详解】 解:集合{}{ 2 202B x x x x x =+->=<-或}1x >, 所以()1,A B =+∞, 故选:A. 【点睛】 本题考查了集合的基本运算、对数型复合函数的定义域,考查了基本运算能力,属于基

础题. 3.已知向量(),1a x =-,()2,4b =-,若a b ⊥,=+c a b ,则a 在c 上的投影为( ) A .1 B .±1 C D . 【答案】A 【分析】 先由题意,根据向量数量积的坐标表示,求出2x =-,再由向量投影的计算公式,即可得出结果. 【详解】 因为a b ⊥,(),1a x =-,()2,4b =-, 所以240a b x ?=--=,解得2x =-, 所以()2,1a =--,()4,3c a b =+=-, 所以a 在c 上的投影为(14a c c ?= =-. 故选:A . 【点睛】 本题主要考查求向量在另一个向量上的投影,熟记向量数量积的坐标表示,以及向量数量积的几何意义即可,属于基础题型. 4.方程( )4 4 22 4x y x y +=+所表示曲线的大致形状为( ) A . B .

相关文档
最新文档