解析几何问题的题型与方法2

合集下载

高考复习中解析几何题型分析及解法梳理

高考复习中解析几何题型分析及解法梳理

一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。

2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。

3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。

4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。

5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。

二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。

平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。

下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。

一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。

常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。

这里我们以已知直线上的两点,求直线方程为例进行说明。

例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。

解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。

根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。

解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。

3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。

通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。

二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。

常见的题型有直线与圆的切线问题、直线与圆的交点问题等。

这里我们以直线与圆的切线问题为例进行说明。

例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。

解题思路:首先,我们需要确定直线与圆是否有交点。

当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。

当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。

解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。

2.求解二次方程,得到x的值。

解析几何题型及解题方法总结

解析几何题型及解题方法总结

解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。

解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。

2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。

3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。

例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。

线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。

数学解析几何的常见题型解析

数学解析几何的常见题型解析

数学解析几何的常见题型解析解析几何是数学中的分支学科,通过运用代数和几何的知识,以方程和不等式为工具,研究几何对象的性质和关系。

解析几何的题型主要包括直线方程、曲线方程、平面方程和空间曲面方程等。

本文将对解析几何的常见题型进行解析。

一、直线方程的解析1. 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C是常数,且A和B不同时为0。

2. 斜截式方程直线的斜截式方程为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。

3. 点斜式方程直线的点斜式方程为(y - y₁) = k(x - x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。

二、曲线方程的解析1. 圆的方程圆的标准方程为(x - a)² + (y - b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。

2. 椭圆的方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别是椭圆在x轴和y轴上的半轴长度。

3. 双曲线的方程双曲线的标准方程为(x²/a²) - (y²/b²) = 1,其中a和b分别是双曲线在x轴和y轴上的半轴长度。

三、平面方程的解析1. 一般式方程平面的一般式方程为Ax + By + Cz + D = 0,其中A、B、C和D是常数,且A、B和C不同时为0。

2. 法向量和点的关系式平面的法向量为(A,B,C),平面上一点为(x₁,y₁,z₁),则平面方程为A(x - x₁) + B(y - y₁) + C(z - z₁) = 0。

四、空间曲面方程的解析1. 球的方程球的标准方程为(x - a)² + (y - b)² + (z - c)² = r²,其中(a,b,c)是球心的坐标,r是球的半径。

2. 圆锥曲线的方程圆锥曲线的方程根据不同类型的圆锥曲线而不同,比如椭圆锥的方程为(x²/a²) + (y²/b²) - (z²/c²) = 0,双曲锥的方程为(x²/a²) + (y²/b²) - (z²/c²)= 1等。

初中解析几何题型及解题方法

初中解析几何题型及解题方法

初中解析几何题型及解题方法解析几何是初中数学中的一个重要部分,主要涉及直线、圆、抛物线、双曲线等图形的性质和特点。

以下是一些常见的初中解析几何题型及解题方法:1. 求直线的方程题型描述:给定直线上两点或一点及斜率,要求求出直线的方程。

解题方法:+ 两点式:$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$+ 点斜式:$y - y_1 = m(x - x_1)$2. 求圆的方程题型描述:给定圆上的三点或两点及半径,要求求出圆的方程。

解题方法:$(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆心,$r$ 是半径。

3. 直线与圆的位置关系题型描述:给定直线和圆的方程,要求判断直线与圆的位置关系(相交、相切、相离)。

解题方法:计算圆心到直线的距离,与半径比较。

4. 求抛物线的方程题型描述:给定抛物线上的两点或一点及焦点,要求求出抛物线的方程。

解题方法:标准方程为 $y = ax^2 + bx + c$。

如果知道焦点和准线,则可以求出 $a$ 和 $b$ 的值。

5. 求最值问题题型描述:在给定的图形中,求某一点的坐标或某条线段的长度,使得该值最大或最小。

解题方法:使用配方法、顶点式、导数等方法求最值。

6. 实际应用题题型描述:给定生活中的实际问题,如最短路径、最大面积等,要求用解析几何知识求解。

解题方法:建立数学模型,转化为几何问题,然后使用解析几何的知识求解。

在解决解析几何问题时,除了掌握上述方法外,还需要培养自己的空间想象能力和逻辑推理能力。

同时,多做练习题也是提高解题能力的有效途径。

解析几何中定值和定点问题

解析几何中定值和定点问题

解析几何中定值与定点问题【探究问题解决的技巧、方法】(1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【实例探究】题型1:定值问题:例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于(Ⅰ)求椭圆C的标准方程;(Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若为定值.解:(I)设椭圆C的方程为,则由题意知b= 1.∴椭圆C的方程为(II)方法一:设A、B、M点的坐标分别为易知F点的坐标为(2,0).将A点坐标代入到椭圆方程中,得去分母整理得方法二:设A、B、M点的坐标分别为又易知F点的坐标为(2,0).显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是将直线l的方程代入到椭圆C的方程中,消去y并整理得又例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0).1)求椭圆方程2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值(1)a²-b²=c² =1设椭圆方程为x²/(b²+1)+y²/b²=1将(1,3/2)代入整理得4b^4-9b²-9=0 解得b²=3 (另一值舍)所以椭圆方程为x²/4+y²/3=1(2)设AE斜率为k则AE方程为y-(3/2)=k(x-1)①x ²/4+y ²/3=1 ②①,②联立得出两个解一个是A (1,3/2)另一个是E (x1,y1) ①代入②消去y 得(1/4+k ²/3)x ²-(2k ²/3-k )x+k ²/3-k-1/4=0 根据韦达定理 x1·1=(k ²/3-k-1/4)/(1/4+k ²/3)③ 将③的结果代入①式得y1=(-k ²/2-k/2+3/8)/(1/4+k ²/3)设AF 斜率为-k ,F (x2,y2) 则AF 方程为y-(3/2)=-k (x-1)④ x ²/4+y ²/3=1 ② ②④联立同样解得x2=(k ²/3+k-1/4)/(1/4+k ²/3) y2=(-k ²/2+k/2+3/8)/(1/4+k ²/3) EF 斜率为(y2-y1)/(x2-x1)=1/2所以直线EF 斜率为定值,这个定值是1/2。

高考数学解析几何9种题型的解题技巧!

高考数学解析几何9种题型的解题技巧!

解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。

考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。

解析几何专题2圆的方程及应用

解析几何专题2圆的方程及应用

《高中数学专题题型分类大全》解析专题二圆的方程及应用『知识与方法梳理』?(一)圆的方程的两种形式方程形式方程相关参数意义标准式(x - a)1 2+ (y - b)2= r2圆心(a,b),半径:r一般式2 2x + y2+ Dx + Ey + F = 0 (D2+ E2-4F > 0 )圆心(--D,- E ),半径:r= 2/ D2+ E2- 4F(二)点与圆的位置关系的判定点P(x°, y o). 圆M 方程 (1) (x -a)2 + (y -b)2 = r2;(2) x2 + y2 + Dx + Ey + F = 0.(1) (X0 -a)2+ (y0 -b)2= r2;2 2(2) X0 + y0 + Dx。

+ Ey0 + F = 0.1.点p在圆上.(1) (X0 -a)2+ (y0 -b)2< r2;2 2(2) X。

+ y°+ Dx 0 + Ey 0 + F < 0.2.点P在圆内.(1)(X。

-a)2+ (y°-b)2> r2;2 2⑵ X0 + y°+ Dx0 + Ey°+ F > 03.点P在圆夕卜.圆方程点p(x0, y0)到圆上的切线长1. x2+y2=r2|PT| ^X02+ y02- r22 2 22. (x-a) 2+(y 七)2=r2|PT| 珂(x°- a)2+( y°- b)2- r22 23. x2+y2+Dx+Ey+F=0|PT| 珂X02+ y02+ Dx0 + Ey°+F圆方程切线方程1. x2+y2=r22X0X + y°y = r2 2 22. (x-a)2+(y-b)2=r22(X0 - a)(x - a) + (y0 - b)(y - b) = r2 23. x2+y2+Dx+Ey+F=0X0X + y°y + D号+ 誓+F = 01. 直线I:Ax+By+C=0,圆C: x2+y2+Dx+Ey+F=0 当直线l与圆C相交时,过两交点的圆的方程可设成(三)直线与圆的关系方法已知细d直M圆旳X FD 4 < +2 -2一二A卜+2X线:—直M圆2 22 C1: x +y +D1x+E1y+F1=0C2: x2+y2+D2X+E2y+F2=0(1 )当5与C2相交时,两圆公共弦所在直线方程为(D1 - D2)X + (E1 - E2)y + (F1 - F2) = 0(2)当C1与C2相交时,过两圆交点的圆的方程可设为_x2+y2+D1x+E1y+F1 + X (xhy2+D2x+E2y+F2) = 0_ 或—'"_ _x2+y2+D j x+E 1y+Fj_+ X [(D- D2)x+(E^ - E2)y+(F 1 - F2)] = 0相关运算离距N= ( d心凰=0那+F判M+CDX脚立BV2+尹耽用2x,Ax元{艄《必修2》解析专题、圆的方程及应用圆|G半径D,圆C2半径r2.圆C1与圆C?位置关系.(1)皿施心内含(2)也-呵=15。

解析几何题型及解题方法

解析几何题型及解题方法

解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。

以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。

解题方法包括直接法、参数法、代入法等。

2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。

解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。

3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。

解题方法包括公式法、参数法、极坐标法等。

4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。

解题方法包括导数法、不等式法、极坐标法等。

5. 证明不等式:通过几何图形证明不等式。

解题方法包括构造法、极坐标法、数形结合法等。

6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。

解题方法包括归纳法、反证法、构造法等。

以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。

同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。

解析几何的常见题型解题方法

解析几何的常见题型解题方法

解析几何的常见题型解题方法几何学是数学的一个分支,研究与形状、大小、位置等相关的问题。

在解析几何中,常见的题型包括直线方程、平面方程、距离公式、中点公式、向量运算等。

本文将从这些常见题型出发,介绍解析几何的解题方法。

1. 直线方程直线方程是解析几何中常见的题型之一。

一条直线可以用斜率截距法、两点法或点斜式等多种方式表示。

例如,已知直线过点A(2,3)且斜率为2,求直线的方程。

解法如下:首先,利用点斜式可以得到直线的方程为y-3=2(x-2)。

进一步化简,得到直线方程为y=2x-1。

2. 平面方程平面方程是解析几何中另一个常见的题型。

平面可以用点法、法向量法或截距法表示。

例如,已知平面过点A(2,3,4)、B(1,2,3)和C(3,4,5),求平面的方程。

解法如下:首先,利用两个向量来确定平面的法向量。

设AB和AC两向量,则平面的法向量可以通过叉积运算得到。

即AB×AC=(-1,1,1)。

进一步,利用点法可得平面的方程为-1(x-2)+1(y-3)+1(z-4)=0。

化简可得-x+y+z-5=0,即平面的方程为x-y-z+5=0。

3. 距离公式在解析几何中,我们常需要计算两点之间的距离。

两点间的距离可以通过距离公式来计算。

例如,已知点A(2,3)和点B(4,5),求AB两点间的距离。

解法如下:根据距离公式,AB的距离可以表示为√[(x2-x1)²+(y2-y1)²]。

带入坐标可得√[(4-2)²+(5-3)²],化简后得√8。

因此,点A(2,3)和点B(4,5)之间的距离为√8。

4. 中点公式中点公式是解析几何中常见的一个定理,用来求线段的中点坐标。

例如,已知线段AB的两个端点A(2,3)和B(4,5),求线段AB的中点坐标。

解法如下:根据中点公式,线段AB的中点坐标可以表示为[(x1+x2)/2,(y1+y2)/2]。

带入坐标可得[(2+4)/2, (3+5)/2],化简后得(3,4)。

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。

数学作为高考的一门重要科目,解析几何是其中的一个重点内容。

为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。

1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。

1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。

2. 空间几何体2.1 球球是解析几何中的一个重要概念。

其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。

2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。

通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。

掌握其特点和方程形式,对于解析几何的学习非常重要。

3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。

根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。

3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。

根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。

4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。

通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。

4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。

对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。

解析几何1 (2)

解析几何1 (2)

学后反思 (1)对直线 的大致位置分析,界定了斜率的存在性及其范围,指 明了解题方向,这种分析是避免解题盲目性的重要技能. (2)本题将面积表示为k的函数,再用基本不等式求最小值,方程选择不同, 自然参数不同,但是求最值的方法首先考虑基本不等式,然后是函数单调性、 换元等方法.
举一反三
3. 已知直线 L过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点, 如图所示,求△ABO的面积的最小值及此时直线 L 的方程.
k 1
所以
S (k )
1 2
1 2 k 2


1 k 2
l 1 4 4k
1 1 4 4 4 k 2
当且仅当
4k
1 k
,即k=- 时,等号成立.
2 1
1
故直线 l 的方程为y-1=- (x-2),即x+2y-4=0. 2 x y l 方法二:设过P(2,1)的直线为 a b 1 (a>0,b>0), 则
2 a 1 b 1
.
l
2 1 2 1 1 ,即ab≥8, a b a b 2 1 1 1 S O AB ab 4 ,当且仅当 ,即a=4,b=2时,等号成立. a b 2 2 x y 故直线方程为 1 ,即x+2y-4=0. 4 2
由基本不等式得 2
5 3
5x+2y+1=0, 5 , ∴ l的斜率k=- ,
3

3x+2y-1=0, 得 l1 , l 2 的交点P(-1,2).
∴l :y-2=- (x+1),即5x+3y-1=0. 方法二:由 l ⊥ l 3 ,可设l :5x+3y+C=0. ∵l1 ,l 2 的交点可以求得为P(-1,2). ∴5〓(-1)+3〓2+C=0,∴C=-1, ∴l :5x+3y-1=0.

解析几何题型方法归纳(配例题)

解析几何题型方法归纳(配例题)

解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc

高考解析几何解答题题型分析及解答策略。

©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。

解答题题型归纳之解析几何(解析版)

解答题题型归纳之解析几何(解析版)

专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。

二级结论专题11 解析几何2

二级结论专题11  解析几何2

二级结论专题11解析几何2二级结论1:圆锥曲线中的定值问题【结论阐述】1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.【应用场景】在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点P (非顶点)与曲线上的两动点A ,B 满足直线PA 与PB 的斜率互为相反数(倾斜角互补),则直线AB 的斜率为定值.【典例指引1】1.已知点P 在抛物线2:4C y x =上,过点P 作两条斜率互为相反数的直线交抛物线C 于A 、B 两点,若直线AB 的斜率为1-,则点P 坐标为()A .()1,2B .()1,2-C .(2,D .(2,-【典例指引2】2.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点为12,F F ,椭圆的离心率为12,点2⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的方程;(2)点T 为椭圆C 上的点,若点T 在第一象限,且2TF 与x 轴垂直,过T 作两条斜率互为相反数的直线分别与椭圆C 交于点M ,N ,探究直线MN 的斜率是否为定值?若为定值,请求之;若不为定值,请说明理由.【针对训练】3.已知抛物线2:4C y x =,点Q 在x 轴上,直线:(2)240l m x y m ---+=与抛物线C 交于M ,N 两点,若直线QM 与直线QN 的斜率互为相反数,则点Q 的坐标是_____.(2022·山西晋中·高二期末)4.已知点()2,1P -是椭圆2222:1(0)x y C a b a b +=>>上的一点,且椭圆C 的离心率2e =.(1)求椭圆C 的标准方程;(2)两动点,A B 在椭圆C 上,总满足直线PA 与PB 的斜率互为相反数,求证:直线AB 的斜率为定值.5.已知椭圆2222:1(0)x y C a b a b+=>>过点31,2A ⎛⎫ ⎪⎝⎭,且离心率e 为12(1)求椭圆C 的方程;(2)E 、F 是椭圆上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.6.已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1.(1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;7.如图,已知9(,3)4M 是抛物线()2:20C y px p =>上一点,直线AM ,BM 的斜率互为相反数,与抛物线C 分别交于A ,B 两点,且均在M 点的下方.证明:直线AB 的斜率为定值.8.已知()1,2A 为抛物线22(0)y px p =>上的一点,E ,F 为抛物线上异于点A 的两点,且直线AE 的斜率与直线AF 的斜率互为相反数.求直线EF 的斜率.9.已知点)Q,点P 是圆C :22(x y 12+=上的任意一点,线段PQ 的垂直平分线与直线CP 交于点M .()1求点M 的轨迹方程;()2过点()A 作直线与点M 的轨迹交于点E ,过点()B 0,1作直线与点M 的轨迹交于点F(E,F 不重合),且直线AE 和直线BF 的斜率互为相反数,直线EF 的斜率是否为定值,若为定值,求出直线EF 的斜率;若不是定值,请说明理由.10.已知,椭圆C 过点35A ,22⎛⎫⎪⎝⎭,两个焦点为()0,2,()0,2-,,E F 是椭圆C 上的两个动点,直线AE 的斜率与AF 的斜率互为相反数.()1求椭圆C 的方程;()2求证:直线EF 的斜率为定值.(2022沙坪坝·重庆八中)11.在平面直角坐标系xOy 中,设点()00,M x y 是椭圆22:1205x y C +=上一点,以M 为圆心的一个半径2r =的圆,过原点作此圆的两条切线分别与椭圆C 交于点P 、Q .(1)若点M 在第一象限且直线,OP OQ 互相垂直,求圆M 的方程;(2)若直线,OP OQ 的斜率都存在,且分别记为12,k k .求证:12k k 为定值;(3)探究22OP OQ +是否为定值,若是,则求出OP OQ ⋅的最大值;若不是,请说明理由.(2022沙坪坝·重庆南开中学)12.已知椭圆2222:1(0)x y E a b a b +=>>的左右焦点为1F 、2F ,离心率2e =,过圆2221:C x y b +=上一点Q (Q 在y 轴左侧)作该圆的切线,分别交椭圆E 于A 、B 两点,交圆2222:C x y a +=于C 、D 两点(如图所示).当切线AB 与x 轴垂直时,2CDF V 的面积为3.(1)求椭圆E 的标准方程;(2)(ⅰ)求ABO 的面积的最大值;(ⅱ)求证:2AC AF +为定值,并求出这个定值.13.已知双曲线()222210,0x y a b a b-=>>过点()3,2A -,且离心率e =(1)求该双曲线的标准方程:(2)如果B ,C 为双曲线上的动点,直线AB 与直线AC 的斜率互为相反数,证明直线BC 的斜率为定值,并求出该定值.(2021全国高考真题)14.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.二级结论2:圆锥曲线中的定点问题【结论阐述】若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(+a b aa b -.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b aa b-.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b aa b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .【应用场景】一般情况下,若方程(),0f x y =中含有一个或者多个参数,当x 取某个常数0x 时,求得的y 也是一个与参数无关的常数0y ,这样就可以说方程(),=0f x y 对应的曲线经过定点()00,x y .有时圆锥曲线中的定点问题,可以充分考虑几何性质,从特殊情况出发,对可能的定点有初步的判断,争取确定出定点,这样可以转化为有方向、有目标的一般性证明题,从而找到解决问题的突破口.【典例指引1】(2022·安徽蚌埠·高二期末)15.已知直线l 与抛物线24y x =交于不同的两点A ,B ,O 为坐标原点,若直线,OA OB 的斜率之积为1-,则直线l 恒过定点()A .(4,0)B .(0,4)C .(0,4)-D .(4,0)-【典例指引2】16.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上.(Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【反思】在分析直线方程时,要考虑直线的特殊情况,注意分类讨论.要想整理得出k 和m 的关系,需要借助韦达定理建立关于k 和m 方程,注意化简运算的技巧.【针对训练】17.已知双曲线2212y x -=,点()1,0A -,在双曲线上任取两点P 、Q 满足AP AQ ⊥,则直线PQ 恒过定点__________;(2022·四川巴中·一模)18.已知椭圆C :22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,点31,2M ⎛⎫ ⎪⎝⎭满足122MF MF a +=,且12MF F △的面积为32.(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为P ,不过点P 的直线l 交C 于A ,B 两点,若PA PB ⊥,证明直线l 恒过定点.19.已知椭圆22132x y E +=:的左右顶点分别为A ,B ,点P 为椭圆上异于A ,B 的任意一点.(1)证明:直线PA 与直线PB 的斜率乘积为定值;(2)设()(0Q t t ≠,,过点Q 作与x 轴不重合的任意直线交椭圆E 于M ,N 两点.问:是否存在实数t ,使得以MN 为直径的圆恒过定点B ?若存在,求出t 的值;若不存在,请说明理由.(2022届黑龙江省哈尔滨市高三上学期检测)20.已知抛物线的顶点为原点,焦点F 在x 轴的正半轴,F 到直线20x y -+=的距离点()()000,0N x y y >为此抛物线上的一点,52NF =.直线l 与抛物线交于异于N的两点A ,B ,且2NA NB k k ⋅=-.(1)求抛物线方程和N 点坐标;(2)求证:直线AB 过定点,并求该定点坐标.(2022届河南省焦作市高三上学期开学考试)21.在PAB 中,已知()2,0A -、()2,0B ,直线PA 与PB 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设Q 为曲线C 上一点,直线AP 与BQ 交点的横坐标为4,求证:直线PQ 过定点.(2022届陕西省西安市高三上学期模拟)22.已知与圆22:(1)3C x y ++=相切的直线l ,过抛物线2:2(0)E x py p =>的焦点F ,且直线l 的倾斜角为23π.(1)求抛物线E 的方程;(2)直线1l 与抛物线E 交于点A ,B 两点,且A ,B 关于直线y x =+对称,在12y x=-上是否存在点N ,使得以AB 为直径的圆恰好过点N ,若存在,求出点N 的坐标;否则,请说明理由.(2022届河南省名校联盟高三上学期阶段性测试)23.已知椭圆22:143x y C +=的右焦点为F ,直线l 与椭圆C 交于A ,B 两点.(1)若AM MB =,且直线l 的斜率为4,求直线OM (点O 为坐标原点)的斜率.(2)若直线FA ,FB 的斜率互为相反数,且直线l 不与x 轴垂直,探究:直线l 是否过定点?若是,求出该定点坐标;若不是,请说明理由.24.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-.(1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.(2022届上海市进才中学高三上学期12月联考)25.在平面直角坐标系xOy 中,动点M 到直线4x =的距离等于点M 到点(1,0)D 的距离的2倍,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知斜率为12的直线l 与曲线C 交于A 、B 两个不同点,若直线l 不过点31,2P ⎛⎫ ⎪⎝⎭,设直线PA PB 、的斜率分别为PA PB k k 、,求PA PB k k +的值;(3)设点Q 为曲线C 的上顶点,点E 、F 是C 上异于点Q 的任意两点,以EF 为直径的圆恰过Q 点,试判断直线EF 是否经过定点?若经过定点,请求出定点坐标;若不经过定点,请说明理由.(2022届广东省茂名市五校联盟高三上学期联考)26.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F .离心率等于3,点P 在y 轴正半轴上,12PF F △为直角三角形且面积等于2.(1)求椭圆C 的标准方程;(2)已知斜率存在且不为0的直线l 与椭圆C 交于A ,B 两点,当点A 关于y 轴的对称点在直线PB 上时,直线l 是否过定点?若过定点,求出此定点;若不过,请说明理由.二级结论3:圆锥曲线中的定直线问题【结论阐述】1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y ya b+=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.【应用场景】定直线问题是指因图形变化或点的移动而产生的动点在定直线上的问题.证明动点在定直线上是圆锥曲线的常规题型,解决这类问题的核心在于确定定点的轨迹,主要方法有:(1)设点法:设点的轨迹,通过已知点轨迹,消去参数,从而得到轨迹方程;(2)待定系数法:设出含参数的直线方程、待定系数法求解出系数;(3)验证法:通过特殊点位置求出直线方程,对一般位置再进行验证.【典例指引1】27.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:30l x -=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.【反思】解决直线与圆锥曲线相交的相关问题时,关键在于将目标条件转化为交点的坐标间的关系,交点坐标的韦达定理上去可得以解决.【典例指引2】(2022江苏南通·高二开学考试)28.已知双曲线C :22221x y a b-=(0a >,0b >)实轴端点分别为()1,0A a -,()2,0A a ,右焦点为F ,离心率为2,过1A 点且斜率1的直线l 与双曲线C 交于另一点B ,已知1A BF △的面积为92.(1)求双曲线的方程;(2)若过F 的直线l '与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;如不在,请说明理由.【针对训练】29.已知椭圆()2222:10x y E a b a b+=>>过点),且离心率为2.(1)求椭圆E 的方程;(2)过右焦点F 且不与x 轴重合的直线与椭圆交于M ,N 两点,已知()3,0D ,过M 且与y 轴垂直的直线与直线DN 交于点P ,求证:点P 在一定直线上,并求出此直线的方程.30.已知点P 是离心率为12的椭圆C :22221x y a b+=(0a b >>)上位于第一象限内的点,过点P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N 两点,交直线by x a=-于Q ,R 两点,记OMQ 与ONR 的面积分别为1S ,2S ,且12S S +=(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆C 的上、下顶点分别为1B ,2B ,过点()0,1D 的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.【反思】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.31.已知椭圆()2222:10x y C a b a b+=>>的右焦点1F 与抛物线24y x =的焦点重合,原点到过点()(),0,0,A a B b -的直线距离是7(1)求椭圆C 的方程(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,过1F 作1PF 的垂线与直线l 交于点Q ,求证:点Q 在定直线上,并求出定直线的方程32.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()0,1.如图所示,斜率为()0k k >且过点()1,0-的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,若F 在射线OE 上,且2OG OE OF =⋅.(1)求椭圆C 的标准方程;(2)求证:点F 在定直线上.【反思】求定线问题常见的方法有两种:(1)从特殊入手,求出定直线,再证明这条线与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.33.已知椭圆22:142x y C +=,点()4,1P 为椭圆外一点.(1)过原点作直线交椭圆C 于M 、N 两点,求直线PM 与直线PN 的斜率之积的范围;(2)当过点P 的动直线l 与椭圆C 相交于两个不同点A 、B 时,线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅ ,证明:点Q 总在某定直线上.【反思】利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.参考答案:1.A【分析】设点()00,P x y 、()11,A x y 、()22,B x y ,求得直线AB 的斜率为1241AB k y y ==-+,可得124y y +=-,再由直线PA 和PB 的斜率互为相反数可求得0y 的值,进而可求得0x 的值,由此可求得点P 的坐标.【详解】设点()00,P x y 、()11,A x y 、()22,B x y ,则直线AB 的斜率为12221212414AB y y k y y y y -===--+,可得124y y +=-,同理可得直线PA 的斜率为014PA k y y =+,直线PB 的斜率为024PB k y y =+,PAPB k k =- ,所以,()()01020y y y y +++=,则12022y y y +=-=,20014y x ∴==,因此,点P 的坐标为()1,2.故选:A.【点睛】本题考查利用抛物线中直线的斜率关系求点的坐标,考查点差法的应用,属于中等题.2.(1)22143x y +=;(2)直线MN 的斜率为定值,且定值为12.【分析】(1)根据椭圆的离心率及所过的点求出椭圆参数a 、b ,即可得椭圆标准方程.(2)由题设得31,2T ⎛⎫⎪⎝⎭,法一:设TM 为3(1)2y k x -=-,联立椭圆方程应用韦达定理求M的坐标,根据TM 与TN 斜率关系求N 的坐标,应用两点式求斜率;法二:设MN 为y kx m =+,()()1122,,,M x y N x y ,联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于参数m 、k 的方程,即可判断是否为定值.(1)由题意,12c a =则2a c =,又===b ,所以椭圆C 的方程为2222143x y c c +=,代入⎛ ⎝⎭有22331412+=c c ,解得1c =,所以2b a ==,故椭圆的标准方程为22143x y +=;(2)由题设易知:31,2T ⎛⎫⎪⎝⎭,法一:设直线TM 为3(1)2y k x -=-,由221433(1)2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩,消去y ,整理得()2223348412302k x k k x k k ⎛⎫++-+--= ⎪⎝⎭,因为方程有一个根为1x =,所以M 的横坐标为22412334M k k x k --=+,纵坐标()223121291286M M k k y k x k --+=-+=+,故M 为2222412312129,3486k k k k k k ⎛⎫----+ ⎪++⎝⎭,用k -代替k ,得N 为2222412312129,3486k k k k k k ⎛⎫+--++ ⎪++⎝⎭,所以12M N MN M N y y k x x -==-,故直线MN 的斜率为定值12.法二:由已知直线MN 的斜率存在,可设直线MN 为y kx m =+,()()1122,,,M x y N x y ,由22143x y y kx m⎧+=⎪⎨⎪=+⎩,消去y ,整理得()2223484120k x kmx m +++-=,所以21212228412,3434km m x x x x k k -+=-=++,而12123322011TM TN y y k k x x --+=+=--,又1122,kx m y kx m y =+=+,代入整理得()()1212123322022kx x m x x k x x m ⎛⎫⎛⎫+-+-+--= ⎪ ⎪⎝⎭⎝⎭,所以()24832(21)0-++-=k k m k ,即(21)(232)0--+=k k m ,若2320k m -+=,则直线MN 过点T ,不合题意,所以210k -=.即12k =,故直线MN 的斜率为定值12.【点睛】关键点点睛:第二问,设直线方程并联立椭圆方程,应用韦达定理及0TM TN k k +=得到关于直线斜率的方M 、N 程,或求出的坐标,应用两点式求斜率.3.(2,0)-【分析】将直线l 方程代入抛物线C 中,得到关于y 的一元二次方程,设出M ,N 两点坐标,利用韦达定理写出12y y +,12y y 的关系,利用斜率坐标公式结合已知条件,得到 0+=QM QN k k ,即可求解Q 的坐标.【详解】易知2m ≠,由(2)240m x y m ---+=得22y x m =+-,代入抛物线方程得24802y y m --=-,设()11,M x y ,()22,N x y ,则1242y y m +=-①,128y y =-②.设(,0)Q a ,则11QM y k x a =-,22QN y k x a=-,依题意有1 1QM QN yk k x a +=+-220yx a =-,所以()()12210y x a y x a -+-=,即211222022y y y a y a m m ⎛⎫⎛⎫+-+⋅+-= ⎪ ⎪--⎝⎭⎝⎭,整理并把①②代入可得2a =-,故Q 点的坐标为(2,0)-.故答案为:(2,0)-.4.(1)22182x y +=(2)证明见解析【分析】(1)根据已知条件列方程组,解方程组求得22,a b ,从而求得椭圆C 的标准方程.(2)设出直线PA 的方程并与椭圆方程联立,由此求得A x ,同理求得B x ,从而化简求得直线AB 的斜率A BAB A By y k x x -=-为定值.(1)由题可知22222411c a a b c a b⎧=⎪⎪⎪-=⎨⎪⎪+=⎪⎩,解得2282a b ⎧=⎨=⎩,从而粚圆方程为22182x y +=.(2)证明设直线PA 的斜率为k ,则():12PA y k x +=-,21y kx k =--,联立直线与椭圆的方程,得()221248y k x x y ⎧+=-⎨+=⎩,整理得()(2221416k x k +-+()28)161640k x k k ++-=,从而2216164214A k k x k +-=+,于是2288214A k k x k+-=+,由题意得直线PB 的斜率为k -,则():12PB y k x +=--,21y kx k =-+-,同理可求得2288214B k k x k --=+,于是A BAB A B y y k x x -=-()2121A B A Bkx k kx k x x ----+-=-()4A B A Bk x x kx x +-=-2221644114.16214k k k k k k-⋅-+==-+即直线AB 的斜率为定值.5.(1)22143x y +=;(2)证明见解析,12.【分析】(1)根据椭圆离心率的公式,结合代入法、椭圆中,,a b c 的关系进行求解即可;(2)设出直线方程与椭圆方程联立,求出E 、F 两点坐标,最后根据直线斜率的公式进行求解即可.(1)根据题意,22222914112a bc e a a b c ⎧⎪+=⎪⎪⎪==⎨⎪=+⎪⎪⎪⎩,解得2,1a b c ===,∴椭圆C 的方程为:22143x y +=;(2)证明:设直线AE 的方程为:()312y k x -=-,由()22312143y k x x y ⎧-=-⎪⎪⎨⎪+=⎪⎩,得()()2223442341230k x k k x k k +--+--=,显然1是该方程的根,因此有22224123412313434x x k k k k E E k k ----⋅=⇒=++,()2222412312129,34234k k k k E k k ⎛⎫----+ ⎪∴ ⎪++⎝⎭,由题可知直线AF 的方程为()312y k x -=--,同理可得()2222412312129,34234k k k k F k k ⎛⎫+--++ ⎪ ⎪++⎝⎭,()()222222221212912129234234121412341232423434EF k k k k k k k k k k k k k k k -++--+-++∴===+----++,∴直线EF 的斜率为定值,且这个定值为12.【点睛】关键点睛:利用一元二次方程根与系数关系求出两点坐标是解题的关键.6.(1)24y x =(2)证明见解析,1-.【分析】(1)由抛物线的定义即可求解;(2)分别设出直线,PA PB 的方程,与抛物线方程联立,求出点A B 、坐标,再求直线AB 的斜率即可.【详解】(1)已知动点M 到直线+2=0x 的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得:动点M 的轨迹是以(1,0)F 为焦点,以直线1x =-为准线的抛物线,可得=2p ,抛物线开口向右,∴曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,∵直线PA 的斜率与直线PB 的斜率互为相反数,∴直线PB 的斜率为k -,则:2(1)PA l y k x -=-,:2(1)PB l y k x -=--,联立方程组22=(1)=4y k x y x--⎧⎨⎩,整理得2-4-4+8=0ky y k ,即[](24)(2)0ky k y +--=,42ky k-=或=2y (舍)可得22(2)42(,)k kA k k--联立方程组22=(1)=4y k x y x---⎧⎨⎩,整理得24480ky y k +--=,即[](24)(2)0ky k y ++-=,42ky k--=或=2y (舍)可得22(2)42(,)k kB k k+--则222242421(2)(2)ABk kk k k k k k k ----==-+--即直线AB 的斜率为定值1-.【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.7.证明见解析.【分析】设出直线MA 和MB 的方程,与抛物线方程联立求出点A B ,的坐标,再求直线AB 的斜率即可.【详解】证明:∵9(,3)4M 是抛物线()2:20C y px p =>上一点,∴9924p =⨯,得=2p ,∴抛物线方程为24y x =,设直线MA 的方程为93()4y k x -=-,由293=()4=4y k x y x--⎧⎪⎨⎪⎩,得241290y y k k -+-=,即4[(3)](3)0y y k +--=,解得43A y k=-或3A y =(舍)∵直线AM ,BM 的斜率互为相反数,∴直线BM 的方程为93(4y k x -=--,同理可得43B y k=--,∴224424433344B A B A AB B A B A B A y y y y k y y x x y y k k =====------+--+,∴直线AB 的斜率为定值23-,8.1-【分析】先利用已知条件求出抛物线得方程,然后利用直线斜率公式求直线,AE AF 的斜率,在由直线AE 的斜率与直线AF 的斜率互为相反数,求出124y y +=-,在根据2121214==+EF y y k x x y y --即可求出答案.【详解】设()11,E x y ,()22,F x y ,∵点()1,2A 为抛物线()220y px p =>上的一点,∴42p =,解得=2p ,∴24y x =,同时,有211=4y x ,222=4y x ,()()()()()()11111111112+22444====11+21+2+2AE y y y x k x x y x y y ------,同理,22224==1+2AF y k x y --,∵直线AE 的斜率与直线AF 的斜率互为相反数,∴1244=+2+2y y -,即124y y +=-,()22222121212121212144===44=1+EF y y y y y y k x x y y y y y y ------∴=-,故直线EF 的斜率为1-.9.(1)22x y 13+=;(2)定值【分析】(1)根据中垂线的性质得出MQ MP =,然后计算出MC MQ +=,结合椭圆的定义得知点M 的轨迹为椭圆,可得出a 和c 的值,进而求得b 的值,于是可得出点M 的轨迹方程;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,将直线AE 、BF 的方程分别与曲线E 的方程联立,利用韦达定理求出的点,E F 的坐标,然后利用两点间的斜率公式求出直线EF 的斜率,从而证明结论.【详解】(1)如下图所示,连接MQ,则MC MQ MC MP CP +=+==又CQ =M 的轨迹是以,C Q 为焦点的椭圆,因为22a c ==1a c b ===.故点M 的轨迹方程是2213x y +=;(2)设直线AE的方程为(y k x =+,则直线BF 的方程为1y kx =-+,由(2233y k x x y ⎧=⎪⎨+=⎪⎩,消去y 整理得()222231930k x x k +++-=.设交点()11,E x y 、()22,F x y ,则1x()1111x y k x ==+=.由22133y kx x y =-+⎧⎨+=⎩,消去y 整理得()223160k x kx +-=,则222222613,11313k k x y kx k k-==-+=++.所以,1212EFy y k x x -===-故直线EF的斜率为定值,其斜率为3-.【点睛】(1)求动点的轨迹方程,一般有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.(2)当直线与椭圆的两个交点中有一个是定点时,我们常用动直线的斜率表示另一个动交点的坐标,进而讨论与动交点相关的数学问题(常称为知点求点法).10.(1)22y x 1106+=;(2)见解析【分析】()1由焦点坐标求得2c =,可设椭圆方程为22221y xa b +=,可得22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解方程即可;()2设()11,E x y ,()22,F x y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=,求出点E 的坐标,再将k 换为k -,求出F 的坐标,即可求出直线的斜率,再化简即可得结果.【详解】()1由题意c 2=,可设椭圆方程为22221y x a b +=,22222591444a b a b ⎧+=⎪⎨⎪=+⎩,解得210a =,26b =,∴椭圆的方程为221106y x +=.()2设()11E x ,y ,()22F x ,y ,设直线AE 的方程为3522y k x ⎛⎫=-+ ⎪⎝⎭,代入221106y x +=得()()22233353533()30022k x k k x k ++-+-+-=,()123353352k k x k -∴=-+,113522y kx k ∴=-+,又直线AE 的斜率与AF 的斜率互为相反数,再上式中以k -代k ,可得()223353352k k x k ---=-+,2235y kx k 22∴=-++,∴直线EF 的斜率()()()()()2212212121223353353333523523133533533352352k k k k k k k k k x x k y y k k k k k x x x x k k ----⎛⎫-+-+ ⎪++-++-⎝⎭====--------+++.【点睛】本题考查了椭圆的方程,直线与椭圆的关系,考查了运算求解能力,化归与转化思想的应用,属于难题.求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.11.(1)()()22224x y -+-=;(2)证明见解析;(3)是,252.【分析】(1)由切线性质得OM =,由此可求得M 点坐标,从而得圆方程.(2)设切线方程为y kx =,由直线与圆相切得出k 的方程,结合韦达定理得12k k ,并结合M 在椭圆上可得.(3)当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,利用1214k k =-可得22221212116y y x x =,利用,P Q 在椭圆上可求得2212x x +及2212y y +,从而得22OP OQ +,当直线OP OQ ,有一条落在坐标轴上求出22OP OQ +,从而得定值,再由基本不等式得最大值.【详解】(1)OM ==则22008x y +=,又2200220012058x y x y ⎧+=⎪⎨⎪+=⎩,又000,0x y >>,故解得0022x y =⎧⎨=⎩,所以()2,2M ,所以圆M 的方程为()()22224x y -+-=(2)因为直线12::OP y k x OQ y k x ==,与圆M 相切,所以直线1:OP y x k =与圆()()2200:4M x x y y -+-=联立,可得()()222210100012240k x x k y x x y +-+++-=同理()()222222000012240k x x k y x x y +-+++-=,由判别式为0,可得12k k ,是方程()2220004240xk x y k y --+-=的两个不相等的实数根,∴20122044y k k x -=-因为点00(,)M x y 在椭圆C 上,所以220054x y =-,所以1214k k =-;(3)(i )当直线OP OQ ,不落在坐标轴上时,设()()1122,,P x y Q x y ,,因为12410k k +=,所以22221212116y y x x =,因为()()1122,,,P x y Q x y 在椭圆C 上.所以2222221212121554416x x y y x x ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭整理得221220x x +=,所以22125y y +=所以2225OP OQ +=.(ii )当直线落在坐标轴上时,圆M 方程为22(2)(2)4x y -+-=,易求得2225OP OQ +=,综上:2225OP OQ +=,所以|()2212522OP OQ OP OQ ⋅≤+=所以OP OQ ⋅的最大值为252.【点睛】本题考查直线与圆相切,直线与椭圆相交问题,考查学生的运算求解能力,逻辑思维能力,对斜率积为定值问题,解题关键是设出切线方程y kx =,利用直线与圆相切得出关于k 的二次方程,由韦达定理得出结论;设()()1122,,P x y Q x y ,,由斜率积为定值求得坐标的关系,并结合点M 在椭圆上求得22OP OQ +的值,注意分类讨论.12.(1)2214x y +=;(2)(ⅰ)1;(ⅱ2.【分析】(1)由三角形面积得()3c b c +=+222a c b -=求得,,a b c 后得椭圆方程;(2)(ⅰ)直线AB 的斜率不会为零,设其方程为x ty m =+,由直线与圆相切求得,t m 的关系,设()()1122,,,A x y B x y ,直线方程与椭圆方程联立,消元后求出判别式的值(利用,t m 关系),应用韦达定理,得弦长AB ,计算OAB 面积,应用基本不等式得最大值;(ⅱ)CQ c ==,AC CQ AQ AQ =-=,用A 点坐标表示出2,AQ AF ,计算可得.【详解】(1)2CD c ==,于是有2()3CDF S c b c =+=+ 又222,2c a b c a =-=,解得2,1c a b ===,所以椭圆E 的标准方程为2214x y +=.(2)(ⅰ)因Q 在y 轴左侧,故直线AB 的斜率不会为零,设其方程为x ty m =+,由直线AB 与圆1C 2211m t =⇒=+,由2244x ty m x y =+⎧⎨+=⎩消去x 得()2224240t y tmy m +++-=,()()()222222444416448t m t m t m ∆=-+-=+-=,设()()1122,,,A x y B x y ,则12||AB y y =-=所以()2231212||124OABt S AB b t ++⋅=⋅⋅=≤=+ ,当且仅当213t+=,即t =时取等号.故ABO 的面积的最大值为1.(ⅱ)因点()11,A x y 在椭圆E 上,且在y 轴左侧,故10x <,221114x y +=,由(1)CQ c ==故12AC CQ AQ x =-====,2122AF x ====-,故2112222AC AF x +=+-=为定值.【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.求椭圆标准方程的关键是列出关于,,a b c 的方程组,解得,,a b c ,直线与椭圆相交一般是设交点坐标,设直线方程,直线方程与椭圆方程联立,消元后应用韦达定理,由韦达定理的结果求弦长等等.13.(1)221832x y -=(2)证明见解析,6【分析】(1)根据双曲线的离心率及双曲线过点A 可得方程;(2)设点B 与点C 的坐标,根据直线AB 与直线AC 的斜率互为相反数,可得直线BC 的斜率.【详解】(1)由题意22941a b c a ⎧-=⎪⎪⎨⎪=⎪⎩,解得28a =,232b =,故双曲线方程为221832x y -=(2)设点()11,B x y ,()22,C x y ,设直线AB 的方程为()23y k x -=+,代入双曲线方程,得()()()222423232320kxk k x k --+-+-=,2126434k k x k +∴-+=-,21234124k k x k ++=-,21222484k k y k ++=-,222234122248,44k k k k B k k ⎛⎫++++∴ ⎪--⎝⎭同理222234122248,44k k k k C k k ⎛⎫-+-+ ⎪--⎝⎭,4868BC kk k∴==.14.(1)()221116y x x -=≥;(2)0.【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值.【详解】(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一]【最优解】:直线方程与双曲线方程联立如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB =-=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21(2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-.因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二]:参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=,故直线AB 的斜率与直线PQ 的斜率之和为0.[方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=.又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.15.A【分析】设出直线方程x my t =+,联立抛物线方程,得到12124,4y y m y y t +==-,进而得到。

高考中解析几何问题的题型与方法

高考中解析几何问题的题型与方法

解析几何问题的题型与方法例1、椭圆22221(,0)x y a b a b+=>的两个焦点F 1、F 2,点P 在椭圆C 上,且P F 1⊥F 1F 2,,| P F 1|=34,,| P F 2|=314.(I )求椭圆C 的方程;(II )若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L的方程。

解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称. 所以.29491822221-=++-=+kk k x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx① ,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98, 所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意.) 例2、 直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B .(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆恰好过双曲线的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(I )由方程组⎩⎨⎧=-+=12122y x kx y 消去y 得022)2(22=++-kx x k . 设),,(),,(2211y x B y x A 由题意,直线l 与双曲线C的右支交于不同两点,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>--=+>--=∆≠-∴0220220)2(8)2(02221221222k x x k k x x k k k ).2,2(--∈⇒k(II )假设存在实数k ,使得以线段AB 为直径的圆恰好过)0,(c F ,则FB FA ⊥,0=⋅∴,))((2121=+--∴y y c x c x ,即)1)(1())((2121=+++--kx kx c x c x ,整理得01))(()1(221212=+++-++c x x c k x x k .将26=c 及22221--=+k k x x ,22221-=k x x 代入并化简可得066252=-+k k .解得566--=k 或566+-=k (舍去). 故存在566--=k 满足题意. 例 3 设经过点),0(m Q 且倾斜角为4π的直线l 与椭圆4422=+y x 交于不同的两点A 、B ,O 为坐标原点.(I )若QB AQ 23-=,求m 的值;(II )当AOB ∆的面积最大时,求m 的值.解:(I )直线l 的方程为m x y +=,由⎩⎨⎧=++=4422y x m x y 得0)1(48522=-++m mx x .由题意,0)1(80)8(22>--=∆m m ,∴55<<-m .设),,(),,(2211y x B y x A 则有5821mx x -=+①,5)1(4221-=m x x ②.由23-=可得,2123x x -=-③.由①②③联解可得291455±=m ,且满足0>∆.故m 的值为291455±. (II )结合图形可知AOB ∆的面积21221124)(121x x x x m x x m S AOB -+⋅⋅=-⋅⋅=∆ 5)1(16)58(2122---⋅⋅=m m m )5(5222m m -= 24552m m +-=.易知当252=m 时,AOB S ∆取得最大值, 此时m 的值为210±. (注:求AOB S ∆的表达式时,题解中用的是图形的割补思想,若用点O 到直线AB 的距离2m d =及弦长122x x AB -=来处理,可得到同样的结果.)例4 已知椭圆1222=+y x .(I)求斜率为2的平行弦中点的轨迹方程;(II)过)1,2(N 的直线l 与椭圆相交,求被l 截得的弦的中点轨迹方程;(III)求过点)21,21(P 且被P 点平分的弦所在直线的方程.解:设弦的两端点为),(),,(2211y x B y x A ,中点为),(00y x M ,则有210212,2y y y x x x =+=+.由122121=+y x ,122222=+y x 两式作差得:1))((2))((12121212=+-++-y y y y x x x x ,00121212122)(2y x y y x x x x y y -=++-=--∴.即002y xk AB -=.①I )设弦中点为),(y x M ,由①式,yx22-=,∴04=+y x .故所求的轨迹方程为04=+y x (在已知椭圆的内部). (II )不妨设l 交椭圆于A 、B ,弦中点为),(y x M .由①式,yxk k AB l 2-==,又∵12--==x y k k MN l ,122--=-∴x y y x .整理得,04222=--+y x y x 此即所求的轨迹方程. (III )由①式,弦所在的直线的斜率21200-=-=y x k ,故其方程为)21(2121--=-x y ,即0342=-+y x .例5、设双曲线C :线222x -y =1(a>0)与直l:x+y =1a相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为例6、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210k x y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又故所求k=±7. 例7、O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AC AB ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB ACAB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()AB ACOP OA AP AB ACλ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第102-105课时 解析几何问题的题型与方法一.复习目标:1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二.考试要求:(一)直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

3.了解二元一次不等式表示平面区域。

4.了解线性规划的意义,并会简单的应用。

5.了解解析几何的基本思想,了解坐标法。

6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。

(二)圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质。

2.掌握双曲线的定义、标准方程和双曲线的简单几何性质。

3.掌握抛物线的定义、标准方程和抛物线的简单几何性质。

4.了解圆锥曲线的初步应用。

三.教学过程:(Ⅰ)基础知识详析高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识.......和向量的基本方法........,这一点值得强化。

(一)直线的方程1.点斜式:)(11x x k y y -=-;2. 截距式:b kx y +=;3.两点式:121121x x x x y y y y --=--;4. 截距式:1=+by a x ; 5.一般式:0=++C By Ax ,其中A 、B 不同时为0.(二)两条直线的位置关系两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交. 设直线1l :y =1k x +1b ,直线2l :y =2k x +2b ,则1l ∥2l 的充要条件是1k =2k ,且1b =2b ;1l ⊥2l 的充要条件是1k 2k =-1.(三)线性规划问题1.线性规划问题涉及如下概念:⑴存在一定的限制条件,这些约束条件如果由x 、y 的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.⑵都有一个目标要求,就是要求依赖于x 、y 的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x 、y 的一次解析式,就称为线性目标函数.⑶求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题. ⑷满足线性约束条件的解(x ,y )叫做可行解.⑸所有可行解组成的集合,叫做可行域.⑹使目标函数取得最大值或最小值的可行解,叫做这个问题的最优解.2.线性规划问题有以下基本定理:⑴ 一个线性规划问题,若有可行解,则可行域一定是一个凸多边形.⑵ 凸多边形的顶点个数是有限的.⑶ 对于不是求最优整数解的线性规划问题,最优解一定在凸多边形的顶点中找到.3.线性规划问题一般用图解法.(四)圆的有关问题1.圆的标准方程222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r. 特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+.2.圆的一般方程 022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程, 其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=. 当F E D 422-+=0时,方程表示一个点(2D -,2E -);当F E D 422-+<0时,方程不表示任何图形.3.圆的参数方程圆的普通方程与参数方程之间有如下关系:222r y x =+ ⇔ cos sin x r y r θθ=⎧⎨=⎩(θ为参数) 222)()(r b y a x =-+- ⇔ cos sin x a r y b r θθ=+⎧⎨=+⎩ (θ为参数)(五)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0). 3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(六)椭圆的简单几何性质1.椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0). ⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义 ⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数a ce =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即ca y 2±=.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ac e =两个关系,因此确定椭圆的标准方程只需两个独立条件.(七)椭圆的参数方程 椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数). 说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan ab =; ⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换.(八)双曲线及其标准方程1.双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.(九)双曲线的简单几何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a c e =>1,离心率e 越大,双曲线的开口越大.2. 双曲线12222=-by a x 的渐近线方程为x a b y ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x nm y ±=,即0=±ny mx ,那么双曲线的方程具有以下形式: k y n x m =-2222,其中k 是一个不为零的常数.3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-by a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是c a x 2-=和ca x 2=. 在双曲线中,a 、b 、c 、e 四个元素间有ac e =与222b a c +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.(十)抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

相关文档
最新文档