相交线与平行线思维导图

合集下载

人教版数学七年级下册思维导图

人教版数学七年级下册思维导图

5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。

七年级数学下册思维导图(超全)(可编辑修改word版)

七年级数学下册思维导图(超全)(可编辑修改word版)

第5章 相交线与平行线
思维导图
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧作图基本性质定义平移错误的命题假命题—公理,定理—正确的命题真命题—命题—命题与定理角互补、两直线平行,同旁内相等、两直线平行,内错角相等、两直线平行,同位角性质线平行、同旁内角互补,两直平行、内错角相等,两直线平行、同位角相等,两直线判定,则,推论:若已知直线平行,有且只有一条直线与公理:经过直线外一点平行公理”表示的两条直线平行,用“—在同一平面内不相交—定义平行线同旁内角内错角同位角三线八角所截两条直线被第三条直线垂直对顶角邻补角两条直线相交相交线线行平与线交相)()(321321//////a //)(c a c b b。

初中数学《平行与相交》单元教学设计以及思维导图

初中数学《平行与相交》单元教学设计以及思维导图
活动 1:说说同一平面内,两条直线的位置关系 【活动步骤】 1.同一平面内,两条直线的位置关系有哪种? 2.说说你对相交线和平行的认识。 相交线和平行对学生来说,已经有了一定的认识,这些认识有的来自 小学的学习,有的来自对生活的观察.通过说一说的活动,既可让学 生梳理自己的经验和认识,也可受到他人的启发。 3.此处重在让学生开口、唤起参与愿望,激发兴趣。学会从教材中 找答案。
专题学习目标
知识技能: 理解对顶角、余角、补角等概念,探索并掌握对顶角相等,同角(等 角)的余角(补角)相等的性质。 理解垂线、垂线段的概念,能用三角尺或量角器过一点画已知直线的 垂线。 理解点到直线距离的意义,会利用“垂线段最短”的性质解决实际问 题。 掌握基本事实:过一点有且只有一条直线与已知直线垂直 过程与方法: 经历观察、操作、推理、交流等过程,进一步发展空间观念,推理能 力和初步有条理的表达能力。 通过画、折等活动,进一步丰富对两条直线互相垂直的认识,培养学 生的符号感。 借助三角尺、量角器、方格纸画垂线,积累操作活动经验。 情感态度与价值观: 体会平行、垂直知识在生活中应用的广泛性; 通过对“对顶角相等、同角(等角)的余(补)角相等”的探究,培 养言必有据的思维品格。
3.自己动手操作,小组交流. 4.教师归纳结论:过直线外一点有且只有一条直线平行与这条直线。
平行于同一条直线的两条直线平行。 【技术应用】 (1)探索结论时,推理验证;
(2)探索证明方法时,动态体现转化过程. 活动 3:学以致用,解决问题 【活动步骤】 1.自主学习,探索 AB,CD 平行吗?
2.学生独立进行说理,小组内交流; 3.教师进行适当点拨; 4.开阔思路,自己完成课后习题. 能灵活运用所学的“对顶角”相等的知识,让学生体验推理的过程。

七年级数学下册思维导图(1)

七年级数学下册思维导图(1)

第五章 相交线与平行线思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧作图基本性质定义平移错误的命题假命题—公理,定理—正确的命题真命题—命题—命题与定理角互补、两直线平行,同旁内相等、两直线平行,内错角相等、两直线平行,同位角性质线平行、同旁内角互补,两直平行、内错角相等,两直线平行、同位角相等,两直线判定,则,推论:若已知直线平行,有且只有一条直线与公理:经过直线外一点平行公理”表示的两条直线平行,用“—在同一平面内不相交—定义平行线同旁内角内错角同位角三线八角所截两条直线被第三条直线垂直对顶角邻补角两条直线相交相交线线行平与线交相)()(321321//////a //)(c a c b b第六章 实数思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧相同法则、运算律与有理数实数的运算性质、运算、倒数与有理数相同实数的相反数、绝对值性质及运算负无理数正无理数无理数负有理数正有理数有理数分类实数—用定义和计算器求—求法的立方根是负数的立方根是负数正数的立方根是负数性质定义立方根(开立方)—用定义和计算器求—求法的平方根是负数没有平方根它们互为相反数正数的平方根有两个,性质定义平方根双重非负性负数没有算术平方根的算术平方根是的算术平方根是正数性质定义算术平方根平方根(开平方)实数0000000a a第七章 平面直角坐标系思维导图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧平移地理位置应用象限原点纵轴横轴坐标系有序数对概念平面直角坐标系第八章 二元一次方程组思维导图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧求解方法(二次消元)定义)三元一次方程组(拓展求解方程组列写方程组实际问题应用加减消元法代入消元法消元求解法方程解定义概念二元一次方程组第九章 不等式与不等式组 思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧求解方法(数轴法)定义一元一次不等式组实际问题应用去分母去括号求解方法定义一元一次不等式负数,方向改变正数,方向不变两边同乘除两边同加减方向不变性质不等式解集定义概念不等式与不等式组第十章 数据的收集、整理、与描述 思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧画频数分布直方图列频数分布图决定组距和组数分析问题绘制方法频数组距元素定义直方图调查方法定义简单随机抽样调查调查方法定义抽样调查调查方法定义全面调查统计调查数据统计 4.3.2.1.。

5 相交线与平行-线思维导图

5 相交线与平行-线思维导图

相交线与平行线相交线平行线的判定平行线的性质平移判定方法平行公理:Only one:过直线外一点,有且仅有一条直线与已知直线平行定义法:同一平面内,不相交的两直线平行平行公理的推论:平行于同一条直线的两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两直线平行两直线平行,同位角相等两直线平行,内错角相等两条直线相交三条直线两两相交相交垂直同位角:F内错角:Z同旁内角:C邻补角对顶角垂线、垂线段、垂足Only one:在同一平面内,过一点有且只有一条直线与已知直线垂直垂线段最短点到直线的距离:直线外一点到这条直线的垂线段的长度两直线平行,同旁内角互补两要素性质方向距离平移前后图形的形状和大小完全相同,对应边平行且相等,对应角相等,变化的是位置连接各组对应点的线段平行(或在同一条直线上)且相等命题定义结构分类真命题假命题题设结论定理证明定义:有一条公共边,另一边互为反向延长线的两个角性质:互为领补角的两个角的度数之和为180°几何语言的表示方法与补角的区别:邻补角一定是补角,补角不一定是邻补角定义:有一个公共顶点,两边互为反向延长线的两个角性质:对顶角相等几何语言的表示方法经过推理证实的真命题推理命题正确性的过程。

人教版数学七年级下册思维导图

人教版数学七年级下册思维导图

5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。

初中数学《相交线与平行线》单元教学设计以及思维导图

初中数学《相交线与平行线》单元教学设计以及思维导图

相交线与平行线适用七年级年级所需(说明:课内共用12课时,每周5课时;课外共用2课时)时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500)本单元的教学内容为相交线与平行线及其在现实生活中的应用,平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,是学生开始接触几何逻辑推导的初步。

主要研究平面内两条直线的位置关系,重点是垂直和平行关系,以及有关平移变换的内容,难点是运用逻辑思维解决几何问题,以及对集合语言的组织与运用。

专题一:首先研究相交的情形:探究了两直线相交所成的角的位置和大小关系,给出了领补角和对顶角概念;垂直作为两条直线相交的特殊情形,是学习下一章“平面直角坐标系”的直接基础,本章对垂直的情形进行了专门的研究,探索得出了“同一平面内,过一点有且只有一条直线与已知直线垂直”“垂线段最短”等结论,并给出点到直线的距离的概念。

专题二:平行线的判定公理、判定定理、平行线的性质:理解判定定理的形成、判定定理的证法,学会运用平行线的性质,了解表达推理证明的方式,同位角、内错角、同旁内角的概念。

让学生知道公理与定理的区别,体验从实践中总结知识,从逻辑推导中扩展知识的过程。

专题三:认识图形的平移、应用及相关概念,学会利用平行线段以及对应点画出平移图形,知道平移的几个要点,知道一些平移的应用。

通过合作小组交流、讨论以及动手操作,提高学生的作图能力、交流能力和数学表达能力,通过引入具体情境,发现生活中的数学问题,激发学生学习数学的兴趣。

主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。

初中数学《相交线与平行线》单元教学设计以及思维导图

初中数学《相交线与平行线》单元教学设计以及思维导图
在教学过程中教师精心设计一些带有启发性和思考性的问题,诱导学生 去解决问题,教师适时的运用多媒体化静为动,激发学生探求知识的欲望, 逐步引导学生积极主动的去探索问题,从而培养了学生的思维能力.在学法 上以“问题情境----数学模型----求解模型”为主要线索,让学生在数学活 动中通过相互间的合作与交流解决问题,从而掌握知识. 主题单元规划思维导图(说明:将主题单元规划的思维导图导出为 jpeg 文 件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操 作见《2013 学员教师远程研修手册》。)
1.会识别余角、补角、对顶角,掌握对顶角、补(余)角的性质,并会
利用其性质进行计算.
2.理解垂线、垂线段、点到直线的距离等概念,会用三角板或量角器
过一点画已知直线的垂线,掌握垂线的性质.
3.理解三线八角的意义,能在不同的图形中识别出同位角、内错角和同
旁内角.
4.进一步理解、掌握平5.能用尺规作一个角等于已知角.
1、 两直线相交想成了些什么角?有什么特点?
2、 主题单元
3、 问题设计
4、
两直线垂直有哪些特点? 怎样画已知直线的平行线? 有哪些条件可以判定两直线平行?
5、 两直线平行具有什么样的特点?
专题一:两直线的位置关系 ( 2 课时)
专题二:平移的判定 专题划分
专题三:平移的性质
主题单元学习概述 相交线与平行线是七年级教学的重要内容之一,是后续学习三角形、四
边形的基础,学会用几何语言进行简单的推理.学生在这一章中主要要了解 平行线性质,经历了探索平行线平行的条件的过程,理解了平行线的条件和 平行线的性质的区别与联系,运用这些知识解决了一些相关的实际问题.
专题主要是按照知识之间的联系来进行,先介绍相交线,在介绍平行线,

初中数学《相交线与平行线》单元教学设计以及思维导图

初中数学《相交线与平行线》单元教学设计以及思维导图

相交线与平行线
本章在最后一节安排了有关平移变换的内容.从《课程标准》看,图形的变化是“空间与图形”领域中一块重要的内容,教科书将“平移”安排在本章最后一节,一方面是考虑将其作为平行线的一个应用,另一方面考虑引入平移变换,可以尽早渗透图形变换的思想,使学生尽早接触利用平移分析和解决问题的方法.在“平移”一节中,教科书首先给出几个美丽图案,分析这些图案的共同特点,由此引出图形的平移;接着通过一个“探究”栏目让学生画雪人,体会动手平移的过程;再观察两个相邻的雪人,分析它们之间对应点连线的位置和长短关系,发现平移的基本性质,给出了平移变换的概念;最后学习利用平移设计图案和分析解决实际生活中的问题.
重点:垂线的概念与平行线的判定与性质及平移;
难点:学会写推理过程和对直线平行的性质和判定的灵活运用
主题单元规划思维导图
主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单。

七年级下册数学第一章思维导图

七年级下册数学第一章思维导图

▲七年级下册数学各章节思维导图▲一、相交线两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。

如:∠1、∠3。

③对顶角相等。

二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。

如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。

如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。

如:∠3和∠6。

四、平行线及其判定平行线1.平行:两条直线不相交。

互相平行的两条直线,互为平行线。

a∥b(在同一平面内,不相交的两条直线叫做平行线。

)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。

如果b//a,c//a,那么b//c平行线的判定:1.两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。

导图系列(2):七年级下册数学(北师大版)各章知识点思维导图集合

导图系列(2):七年级下册数学(北师大版)各章知识点思维导图集合

第一章整式的乘除关联考点有理数及其运算乘法分配律乘方定义幂、底数、指数互为相反数定义单项式的相反数多项式的相反数如a+b,c-b,-a-c偶数次幂与奇数次幂的关系非负性绝对值偶数次幂(平方是重点)科学记数法1整式的加减合并同类项法则去括号法则同底数幂的乘法公式的正逆用理解底数(a)可以是单项式与多项式使用条件同底数幂是否可转化为同底(如两个底数互为相反数)幂的乘方公式的正逆用理解底数(a)可以是单项式与多项式积的乘方公式的正逆用理解积的因式(a、b)可以是单项式与多项式几个因式的积同底数幂的除法公式的正逆用理解底数(a)可以是单项式与多项式底数不能为0使用条件同底数幂是否可转化为同底(如两个底数互为相反数)两幂0次幂负整数次幂科学记数法2多项式乘多项式基础公式特殊公式的正逆用平方差公式使用条件一组相同,一组互反(相同组与相反组的平方差)完全平方公式完全平方和完全平方差衍生公式a2+b2=(a+b)2−2aba2+b2=(a−b)2+2ab(a+b)2−a−b2=4ab第二章相交线与平行线平面内两条直线的位置关系相交定义对顶角定义性质对顶角相等余角和补角定义余角补角(特殊的补角:邻补角)性质同角的余角或补角相等等角的余角或补角相等特殊的相交(垂直)定义垂直垂线垂足垂线的画法垂线的性质在同一平面内,过一点有且只有一条直线与已知直线垂直垂线段最短点到直线的距离平行定义平行公理及推论过直线外一点有且只有一条直线与这条直线平行平行于同一条直线的两条直线平行平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行平行线的性质(与判定相反)两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补用尺规作角什么尺什么规尺规作角步骤第三章变量之间的关系变量辨析与常量的区别分类自变量因变量关系谁与谁的关系自变量与因变量关系的种类因变量随自变量的增长而增长因变量随自变量的增长而减小因变量随自变量的增长而保持不变关系的变化趋势不变一直增长量与速一直减小量与速一直不变趋势有变先增长后减小后不变先减小后增长后不变先不变后增长后减小关系的表示方法表格法关系式法图像法如何看出如何表示第四章三角形定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形符号表示基本要素边、内角、顶点稳定性角内角分类(最大内角的度数)锐角三角形直角三角形符号表示三边名称钝角三角形内角和外角定义三角形的一条边与另一条边的反向延长线组成的角与内角关系等于与它不相邻的两个内角的和线段边对边定义三边关系任意两边之和大于第三边任意两边之差小于第三边三角形的中线定义交于一点重心三角形的角平分线定义交于一点内心三角形的高定义交于一点垂心全等图形定义能够完全重合的两个图形性质形状和大小都相同重点:全等三角形符号表示性质对应边相等对应角相等判定SSSASAAASSAS应用尺规作图第五章生活中的轴对称轴对称现象轴对称图形定义对称轴定义(注意是直线)条数成轴对称定义轴对称性质对应点连线被对称轴垂直平分对应角相等对应线段相等简单的轴对称图形等腰三角形定义有两条边相等的三角形基本要素一顶角和两底角一底边和两条腰性质三线合一两个底角相等对称轴顶角的平分线(底边上的中线、底边上的高)所在直线特殊的等腰三角形等边三角形三边相等三个内角均为60°线段对称轴线段垂直平分线(中垂线)定义性质尺规作图角对称轴角平分线所在直线角平分线性质尺规作图轴对称的应用1. 如何找角相等题目中给定的减去公共角依然相等加上公共角依然相等公共角对顶角相等同角或等角的余角相等同角或等角的补角相等两直线平行同位角相等内错角相等角平分线垂直全等三角形对应角相等等边对等角(同一三角形中)2. 如何找边相等题目中给定的减去公共边依然相等加上公共边依然相等公共边中线/中点全等三角形对应边相等等边对等角(同一三角形中)线段垂直平分线性质线段垂直平分线上的点到这条线段两端的距离相等角平分线性质角平分线上的点到这个角两边的距离相等。

新人教版七年级数学下册第五章《相交线与平行线 》公开课课件

新人教版七年级数学下册第五章《相交线与平行线 》公开课课件

1 A 125° 85°B 2
l1 l2
【解析】试题分析:过点A作l1的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2, 再根据两直线平行,同旁内角互补求出∠CAB +∠ABD=180°,然后计算即可得解;
如答图,过点A作l1的平行线,过点B作l2的平行线,∴ ∠3=∠1,∠4=∠2,
对顶角相等
垂线及其性质
点到直线的距离
同位角、内错角、同旁内角 判定
平行公理
性质
平移
例1.(广东汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关 系是 .
【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案. 【解析】解:∵ a⊥b,c⊥b,∴a∥c,故答案为平行. 【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直 线,那么这两条直线平行.
∵l1∥l2,∴AC∥BD,∴∠ CAB +∠ABD=180°, ∴∠3-∠4=125°+85°-180°=30°,∴∠1+∠2=30°
C D
1 3 A 125° 85° 42 B
l1 l2
答图 O
例6.(河北)如图,平面上直线a,b分别过线段OK两端点(数据如图), 100° 则a,b相交所成的锐角是( B ) 70° K A.20° B.30° C.70° D.80°
例4.作图题
ቤተ መጻሕፍቲ ባይዱl1
α 图1 l1
l3 P α β O 图2
【答案】
l1 l2
l3 l1 γ αβ O
α
β 答图1
l4
l2
l2
l2
答图2

七年级数学下册思维导图

七年级数学下册思维导图

第五章相交线与平行线思维导图作图基本性质定义平移错误的命题假命题—公理,定理—正确的命题真命题—命题—命题与定理角互补、两直线平行,同旁内相等、两直线平行,内错角相等、两直线平行,同位角性质线平行、同旁内角互补,两直平行、内错角相等,两直线平行、同位角相等,两直线判定,则,推论:若已知直线平行,有且只有一条直线与公理:经过直线外一点平行公理”表示的两条直线平行,用“—在同一平面内不相交—定义平行线同旁内角内错角同位角三线八角所截两条直线被第三条直线垂直对顶角邻补角两条直线相交相交线线行平与线交相)()(321321//////a //)(c a c b b第六章实数思维导图相同法则、运算律与有理数实数的运算性质、运算、倒数与有理数相同实数的相反数、绝对值性质及运算负无理数正无理数无理数负有理数正有理数有理数分类实数—用定义和计算器求—求法的立方根是负数的立方根是负数正数的立方根是负数性质定义立方根(开立方)—用定义和计算器求—求法的平方根是负数没有平方根它们互为相反数正数的平方根有两个,性质定义平方根双重非负性负数没有算术平方根的算术平方根是的算术平方根是正数性质定义算术平方根平方根(开平方)实数000000a a第七章平面直角坐标系思维导图平移地理位置应用象限原点纵轴横轴坐标系有序数对概念平面直角坐标系第八章二元一次方程组思维导图求解方法(二次消元)定义)三元一次方程组(拓展求解方程组列写方程组实际问题应用加减消元法代入消元法消元求解法方程解定义概念二元一次方程组第九章不等式与不等式组思维导图求解方法(数轴法)定义一元一次不等式组实际问题应用去分母去括号求解方法定义一元一次不等式负数,方向改变正数,方向不变两边同乘除两边同加减方向不变性质不等式解集定义概念不等式与不等式组第十章数据的收集、整理、与描述思维导图画频数分布直方图列频数分布图决定组距和组数分析问题绘制方法频数组距元素定义直方图调查方法定义简单随机抽样调查调查方法定义抽样调查调查方法定义全面调查统计调查数据统计 4.3.2.1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线思维导图 初一八班 王寒琪 相交线与平行线 相交线图1:
A B ∵AO ⊥BO ∴∠AOB=90°【垂线定义】 1)邻补角 邻补角和为180° 对顶角 对顶角相等! 2)垂线 ①垂直,垂足,垂线【图1中O 为垂足,A 与B 互相垂直】 ②在同一平面内,过一点有且只有一点与已知直线垂直; ③连接直线外一点与直线上各点的所有线段中,垂线段最短; ④直线外一点到这条直线的垂线段长度叫做点到直线的距离; ⑤垂线定义【如图1】;
⑥三线八角;【如图2】
1)判定
①定义 不相交,不重合
经过直线外一点,有且只有一条线与这条直线平行; ②平行公理
互相平行。

也就是说:a ∥b ,b ∥c ,那么a ∥c ; ③同位角相等,两直线平行;【如图2】∠1=∠4,A ④内错角相等,两直线平行;∠2=∠3,A ∥B ⑤同旁内角互补,两直线平行;∠2+∠4=180°,A ∥2)性质【如图2】
①两直线平行,同位角相等;∠1=∠4,A ∥B ②两直线平行,内错角相等;∠2=∠3,A ∥B ③两直线平行,同旁内角互补;∠2+∠4=180°,A ∥图2: ∠1 A
∠2
∠4
∠3 B
∠1与∠4是同位角,
∠2和∠3是内错角,
∠2和∠4。

相关文档
最新文档