第七章应力和应变分析强度理论.
材料力学带答疑
第七章应力和应变分析强度理论1.单元体最大剪应力作用面上必无正应力答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。
拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。
)2. 单向应力状态有一个主平面,二向应力状态有两个主平面答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零)3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。
)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零)5.应力超过材料的比例极限后,广义虎克定律不再成立答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。
)6. 材料的破坏形式由材料的种类而定答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。
)二、选择1.滚珠轴承中,滚珠与外圆接触点为应力状态。
A:二向; B:单向C:三向D:纯剪切答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。
)2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。
A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。
)3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面中。
A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面;答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力状态为二向不等值拉伸,其σx =pD/4t、σy=pD/2t。
材料力学应力和应变分析强度理论
§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
第七章+应力应变分析+强度理论
(Analysis of stress-state and strain-state)
§7-1 应力状态概述 (Introduction of stress-state)
一、应力状态的概念 (Concepts of stresses-state)
σ1 ≥ σ 2 ≥ σ 3
(Analysis of stress-state and strain-state)
三、应力状态的分类 (The classification of stresses-state)
1.空间应力状态(Triaxial stress-state or three-dimensional stress-state ) 三个主应力σ1 ,σ2 ,σ3 均不等于零 2.平面应力状态(Biaxial stress-state or plane stress-state) 三个主应力σ1 ,σ2 ,σ3 中有两个不等于零 3.单向应力状态(Uniaxial stress-state or simple stress-state) 三个主应力 σ1 ,σ2 ,σ3 中只有一个不等于零
x
− 62.5
σ3
因为 σx < σy ,所以 α0= 27.5°与σmin对应
σx −σ y 2 ⎧σ max σ x + σ y ⎧ 26MPa 2 ) + τ xy = ⎨ = ± ( ⎨ 2 2 ⎩ − 96MPa ⎩σ min σ 1 = 26MPa , σ 2 = 0, σ 3 = −96MPa
1.求单元体上任一截面上的应力(Determine the stresses on any inclined plane by using stress-circle) 从应力圆的半径 CD 按方位角α的转向转动2α得到半径CE. 圆周上 E 点的坐标就依次为斜截面上的正应力σα 和切应力τα.
材料力学-应力分析、强度理论
点的研究常采用分析单元体的方法
Down Up
σy y
空间一般应力状态
y
σy
A
σx x
τxy
平面一般应力状态
τyz
τxz
σx
τxy
x
z σz
7
Down Up
主平面:若单元体上某个平面上的切应力为零,
则该平面称为主平面。
而主平面上的正应力称为主应力。
主单元体:所有面均为主平面的单元体。
σ3 σ2
σ1 σ2
例如:拉(压)杆横截面上各点的应力状态
P
P
k
σ
k
P
FN =σA
σ= FN/A
10
分析薄壁圆筒受内压时的应力状态
σ’’ m n
n
σ’
k σ’ p
Dp
p
σ’’ l
πD
2
m
(D
)
n
4
pD
4
n
2
plD (2l
)
dq
Oq
p
D
t
pD
2
直径平面
pD
2
1
3 p 0 11
例7.2 圆球形薄壁容器,壁厚为δ,内径为D,
切应力2个下标的意义:
第1个下标表示切应力所 τyx
< 0 σy
在的面;
σx
第2个下标表示切应力实际 沿那个坐标轴的方向。
x
τxy > 0
18
7.3 二向应力状态分析----解析法
若图示单元体上的应力
y
σx、 σy 、τxy
ττyxxy
均为已知,
则由平衡方程可求得 σx 斜角为α的斜截面上
第七章 应力状态、应变分析和强度理论
§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
应力应变分析与强度理论
ax in
m
ax
2
m in
极值切应力等于极值正应力差的一半。
材料力学电子教案 C 机械工业出版社
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0
2 xy x
y
tan
21
x 2 xy
y
tan
20
第7章 应力应变分析与强度理论
§7.1 应力状态的概念 §7.2 平面应力状态分析的解析法 §7.3 平面应力状态分析的图解法 §7.4 三向应力状态简介 §7.5 平面应力状态的应变分析 §7.6 广义胡克定律 §7.7 强度理论概述 §7.8 四个常用的强度理论 §7.9 莫尔强度理论
材料力学电子教案 C 机械工业出版社
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0
得
tan
21
x 2 xy
y
二、最大、最小切应力
m m
ax in
x
2
y
2
2 xy
m m
主应力通常用1、 2 和 3 表示,它们的顺序按代 数值大小排列,即 1 2 3 。
材料力学电子教案 C 机械工业出版社
§7.1 应力状态的概念
7.1.4 应力状态的分类 1. 单向应力状态 (简单应力状态 ) 三个主应力中,只有一个不等于零 2. 二向应力状态 (复杂应力状态 ) 有两个应力不等于零 3. 三向应力状态 (复杂应力状态 ) 三个主应力都不等于零
7应力和应变分析
应力状态的分类:
①单向应力状态:只有一个主应力不等于零 ②二向应力状态(平面应力状态):两个主应
力不等于零 ③三向应力状态(空间应力状态):三个主应
力皆不等于零 • 单向应力状态也称为简单应力状态 • 二向和三向应力状态统称为复杂应力状态
§7-2 平面应力状态下的应力分析
y sy
t yx t xy s x
20 30 40
0 14.9o s 3
40
3)
t t
m
ax
min
s1
s
2
3
40.3MPa
s1
20 3104.9o
s1
单位:MsPa3
二、图解法
s
sx
s y
2
sx
s y
2
cos 2
t xy sin 2(1)
t
sx
s y
2
sin 2
t xy cos 2 (2)
(1)2 (2)2 , 得 ( x x0 )2 ( y y0 )2 R2
s
t
sx sx
s y
2
s y
2
s
x
s
2
y
cos2
t
xy
sin
2
sin 2 t xy cos2
任意倾角斜截面的应力公式
s和t都是的函数。利用上式便可 确
定正应力和剪应力的极 值。
3、主应力及其方位:
s
t
sx sx
s y
2
s y
2
s
x
s
2
y
cos2
t
xy
sin
2
sin 2 t xy cos2
材料力学刘鸿文第六版最新课件第七章 应力和应变分析 强度理论
5
7-1 应力状态的概述
直杆拉伸斜截面上的应力
k
F
{ F
p cos cos2
k
F
k p
k
p sin cos sin sin 2
2
直杆拉伸应力分析结果表明:即 使同一点不同方向面上的应力也是各
不相同的,此即应力的面的概念。
6
7-1 应力状态的概述
点的应力状态:
虚线:主压应力迹线 实线:主拉应力迹线
思考:在钢筋混泥土梁中,钢筋怎么放置最佳。 30
内容小结:
(1)根据已知点的应力状态求任意截面的应力。 (2)根据已知点的应力状态求主应力、主平面。 (3)结合前五章内容,掌握梁在拉、压、剪、扭、弯 等状态下,求某点的应力,并计算主应力和主平面。
31
第七章 应力和应变分析
58.3MPa 22
7-3 二向应力状态分析-解析法
(2)主应力、主平面
y xy
max
x
y
2
(
x
y
)2
2 xy
2
68.3MPa
x
min
x
y
2
(
x
y
)2
2 xy
2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa
23
7-3 二向应力状态分析-解析法
y
主平面的方位:
2
2sin cos sin2
并注意到 yx xy (切应力互等)
化简得出:
1 2
( x
y)
1 2
(
x
y ) cos 2
xy
sin
2
材料力学第七章知识点总结
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
第七章 应力与应变分析 强度理论4
2 x
29.8MPa 3.72 MPa
(单位 MPa)
1 29.28MPa, 2 3.72MPa, 3 0
1 29.28MPa < 30MPa
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试校核此结构是否安全。
3)强度理论:
材料的破坏与上述因素有关(某一方面),在长期的实践 中,对材料失效的原因提出各种不同的假设,形成各种不 同的判断准则,统称为强度理论(关于构件失效的假说) 4)意义: 找出失效原因 解决实际问题 提出强度理论
用简单的试验模拟
四、介绍四种强度理论
1、关于断裂失效的强度理论 ------适用于脆性材料 1)最大拉应力理论 十七世纪(1638年)由伽利略提出来的关于强度判断 的理论,亦称第一强度理论 认为: 材料失效的原因是由于材料内部的最大拉应力引 起的,无论应力状态如何,只要拉应力达到某一 限值,材料断裂。 模拟: 用简单的试验模拟,如单向拉伸。
2 50MPa
max 1 3
2
3 50MPa
65MPa
例2 已知如图所示过一点两个平
面上的应力。试求:
(1)该点的主应力及主平面;
(2)两平面的夹角。
1.四个常用的古典强度理论的相当表达式分 为 、 、 、 。 2.当矩形截面钢拉伸试样的轴向拉力F = 20 kN时,
三向拉应力, 1 2 3>0且相差不大时,发生脆 性破坏,尽管材料可能是塑性的。选择第一、二强度 理论。 三向压应力, 1 2 3<0 且相差不大时,发生 塑性破坏,尽管材料可能是脆性的。选择第三、四强 度理论。
工程力学第七章应力和应变分析
1
30MPa 3 30MPa
max
1 3
2
80MPa
二、 广义胡克定律
纵向应变:
E
横向应变:
E
下面计算沿 1方向的应变:
1 1 引起的应变为 1 E 2 、 3 引起的应变为 2 1 E 3 1 E 当三个主应力同时作用时: 1 1 1 ( 2 3 ) E
2
1
3
E
( 1 2 )
§7-4~5材料破坏的形式强度理论
max [ ] max [ ]
材料破坏的形式主要有两类:
流动(屈服)破坏 断裂破坏
常用的四种强度理论
材料破坏的基本形式有两种:流动、断裂 相应地,强度理论也可分为两类: 一类是关于脆性断裂的强度理论; 另一类是关于塑性屈服的强度理论。
(3)最大剪应力值。 单位:MPa
解:
x 80MPa, x 60MPa, x y
y 40MPa = 30 x y
cos 2 x sin 2
2 2 102 MPa x y sin 2 x cos 2 2 22.0MPa
2
1 3
广义胡克定律:
1 1 1 ( 2 3 ) E 1 2 2 ( 3 1 ) E 1 3 3 ( 1 2 ) E
Hale Waihona Puke 对于二向应力状态:1 1 ( 1 2 ) E 1 2 ( 2 1 ) E
1 ( 2 3 ) b
工程力学(材料力学部分第七章)
4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
应力和应变分析和强度理论
机械设计
01
02
03
零件强度校核
通过应力和应变分析,可 以校核机械零件的强度, 确保零件在正常工作载荷 下不会发生破坏。
优化装配设计
通过应力和应变分析,可 以优化机械装配设计,减 少装配误差和应力集中, 提高装配质量和可靠性。
振动和噪声控制
通过应力和应变分析,可 以预测和控制机械系统的 振动和噪声,提高机械系 统的性能和舒适性。
总结词
最大拉应力理论
详细描述
该理论认为最大拉应力是导致材料破坏的主要因素,当最大 拉应力达到材料的极限抗拉强度时,材料发生断裂。
第二强度理论
总结词
最大伸长应变理论
详细描述
该理论认为最大伸长应变是导致材料 破坏的主要因素,当最大伸长应变达 到材料的极限抗拉应变时,材料发生 断裂。
第三强度理论
总结词
03
应力和应变的应用
结构分析
结构稳定性
01
通过应力和应变分析,可以评估结构的稳定性,预测结构在不
同载荷下的变形和破坏模式。
结构优化设计
02
通过对应力和应变的精确计算,可以优化结构设计,降低结构
重量,提高结构效率。
结构疲劳寿命预测
03
通过应力和应变分析,可以预测结构的疲劳寿命,为结构的维
护和更换提供依据。
能量法
总结词
能量法是一种基于能量守恒和变分原理 的数值分析方法,通过将问题转化为能 量泛函的极值问题,并采用变分法或有 限元法进行求解。
VS
详细描述
在应力和应变分析中,能量法可以用于求 解各种力学问题,如弹性力学、塑性力学 等。通过构造合适的能量泛函和约束条件 ,能量法能够提供精确和高效的数值解。 同时,能量法还可以用于优化设计、稳定 性分析和控制等领域。
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
刘鸿文《材料力学》(第6版)笔记和课后习题(含考研真题)详解(第7章)【圣才出品】
第7章应力和应变分析强度理论7.1复习笔记一、应力状态一点的应力状态:过一点不同方向面上应力的集合。
应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀分布;②任意一对平行平面上的应力相等。
主单元体是指各侧面上切应力均为零的单元体。
其中,单元体上切应力为零的面称为主平面,主平面上的正应力称为主应力。
说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直的主应力分别记为σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即σ1≥σ2≥σ3。
应力状态分类及实例(1)单向应力状态:也称为简单应力状态,三个主应力σ1、σ2、σ3中只有一个不等于零。
实例:简单的拉伸或压缩。
(2)平面(二向)应力状态:三个主应力σ1、σ2、σ3中有两个不等于零。
实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。
(3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力σ1、σ2、σ3,均不等于零。
实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。
二、二向应力状态分析1.解析法如图7-1-1(a)所示,一单元体abcd处于平面应力状态,采用截面法取左边部分单元体eaf为研究对象,如图7-1-1(b)所示。
图7-1-1(1)符号规定:由x轴转到外法线n,逆时针转向夹角α为正;正应力仍规定拉应力为正;切应力对单元体内任一点取矩,顺时针转向为正。
(2)应力计算①任意斜截面α上应力正应力:cos2sin222x y x y xy ασσσσσατα+-=+-切应力:sin 2cos 22x y xy ασστατα-=+②主应力主应力的大小2max 2min 22x y x y xy σσσσστσ+-⎛⎫⎫=±+⎬ ⎪⎭⎝⎭将σmax 、σmin 和0按大小顺序排列,分别记为σ1、σ2和σ3。
主平面方位角tan2α0=-2τxy /(σx -σy )约定|α0|<45°,即α0取值在±45°范围内,则确定主平面的规则为:当σx ≥σy 时,α0是σx 与σmax 之间的夹角;当σx <σy 时,α0是σx 与σmin 之间的夹角。
7应力状态
2
τ x' y'
1 R= 2
σ x − σ y ) + 4τ 2 ( xy
2
R c
σ x'
应 力 圆
σ x +σ y
2
2、几种对应关系
点面对应——应力圆上某一点的坐 点面对应——应力圆上某一点的坐 标值对应着微元某一方向面上的正 应力和切应力; 转向一致——半径旋转方向与方向 转向一致——半径旋转方向与方向 面法线旋转方向一致; 角度二倍——半径转过的角度是方 角度二倍——半径转过的角度是方 向面法线旋转角度的两倍。
∑F
x′
=0
θ θ
σx ' dA − σx (dA cos θ ) cosθ +τ xy (dA cos θ ) sin θ +τ yx (dA sin θ ) cos θ −σ y (dA sin θ ) sin θ = 0
τ x' y '
τ yx
x´
τ xy
σ x'
σy
dA dA
平面应力状态的解析法
1 4
z
Mz
x
3
Mx τ3 = Wp
2 3
Mx 4
Mz σx = − Wz
3
Mx τ3 = Wp
§7.2 二向和三向应力状态实例
σ’A= σ’π Dt=PpD ’= 4tσ ”=?
2N=pDl N= σ ”tl pD σ ”= 2t
σ’ σ” σ’ σ” 二向应力状态
三向压缩
例7.1
•主应力排序: 主应力排序: 主应力排序 σ1≥σ2 ≥ σ3
平面应力状态的解析法
主方向(Direction of Principal Stresses):
第七章:应力状态、强度理论
s
2 2
s
2 3
2 s1s 2
s 3s 2
s1s 3 )
1 t 2 0 (t )2 2 0 0 t (t ))
2E
s1
1 t 2
E
G
E
21
)
§7–6 强度理论及其相当应力
强度理论:是关于“材料发生强度破坏或失效”的假设
材料的破坏形式: ⑴ 脆性断裂 如铸铁在拉伸和扭转时的突然断裂 ⑵ 塑性屈服 如低碳钢在拉伸和扭转时明显的塑性变形
sx
t 绕研究对象顺时针转为正;
y
txy
逆时针为正。
Ox
图1
s
sx
y
sy
ttxy
Ox 图2
设:斜截面面积为dA,由分离体平衡得:
Fn 0
n s dA (t xydAcos )sin (s xdAcos ) cos t (t yxdAsin ) cos (s ydAsin )sin 0
容器表面用电阻应变片测得环向应变 t =350×10-6,若已知容器平均 直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25
试求:1.导出容器横截面和纵截面上的正应力表达式; 2.计算容器所受的内压力。
s1 sm
p p
p
x
l
图a
D
y
xp
AO
B
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
第七章 应力状态和强度理论
§7–1 概述 §7–2 平面应力状态的应力分析.主应力 §7–3 空间应力状态的概念
§7–4 复杂应力状态下的应力 -- 应变关系 ——(广义虎克定律)