新人教版八年级数学下册第十八章知识点讲解

合集下载

人教版数学八年级下册第十八章平行四边形的对角线性质课件

人教版数学八年级下册第十八章平行四边形的对角线性质课件
人教版数学八年级下册
第十八章
18.1.2 平行四边形的对角线性质
学习目标
1.掌握平行四边形对角线互相平分的性质. 2.利用平行四边形对角线互相平分解决有关 问题.
导入新知
同学们,今天这节课,我们就一 起来学习关于平行四边形的对角线性 质的相关知识。
平行四边形的对角线性质
合作探究
因为AC=8,BD=14,
OA+AB+OB-(OB+BC+OC)=8, 【中考·泸州】如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
性质,先连接BD交AC于点O,再进行证明.
平行四边形的对角线互相平分
2在一平条行直四线边上形,的求对∴证角:线AA性E质B=C+F. BC=30,AB-BC=8.
又由△AOB的周长比△BOC的周长长8,
的结论吗? 性质,先连接BD交AC于点O,再进行证明.
在▱ABCD中,AD=BC=10,AB=CD.
如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为( )
我们猜想,在▱ABCD中,OA=OC,OB=OD.
由此我们又得到平行四边形的一个性质: 平行四边形的对角线互相平分
C.20 cm2
D.16 cm2
【点拨】易知 S▱ABCD=2S△ABC,在△ABC 中作 BE⊥AC 于 E 点, 由∠CAB=30°可得 BE=12AB=3 cm,则 S△ABC 可求出.
即这个平行四边形各边长分别为19,11,19,11.
BD,并设它们相交于点O, OA与OC, 行四边形的任意一条边,高为这条边与其对边
△DBC的周长-△ABC的周长=24+AB-(18+AB)

人教版八年级下册数学第十八章矩形(基础)知识讲解

人教版八年级下册数学第十八章矩形(基础)知识讲解

矩形(基础)【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质1、如图所示,在矩形ABCD 中,E 、F 分别是BC 、AD 上的点,且BE =DF .求证△ABE ≌△CDF .【思路点拨】:由矩形的性质可得AB =CD ,∠B =∠D =90°,然后用它们作条件证明△ABE ≌△CDF .【答案与解析】证明:∵ 四边形ABCD 是矩形. ∴ AB =CD ,∠B =∠D =90°在△ABE 和△CDF 中90AB CD B D BE DF =⎧⎪∠=∠=⎨⎪=⎩°∴ △ABE ≌△CDF(SAS) 【总结升华】矩形的性质常用于求线段的长度与角的度数,在解题过程中应根据题目选择不同的性质来加以应用. 举一反三:【变式】如图,Rt△ABC 中,∠C=90°,AC =3,BC =4,点P 为AB 边上任一点,过P 分别作PE⊥AC 于E ,PF⊥BC 于F ,则线段EF的最小值是 _________ .【答案】;提示:因为ECFP为矩形,所以有EF=PC.PC最小时是直角三角形斜边上的高.类型二、矩形的判定2、已知:平行四边形ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,BC=AD.∵E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴BE=DF.∴△BEC≌△DFA.(2)四边形AECF是矩形.∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD.∵E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴AE∥CF且AE=CF.∴四边形AECF是平行四边形.∵CA=CB,E是AB的中点,∴CE⊥AB,即∠AEC=90°.∴四边形AECF是矩形.【总结升华】要证明△BEC和△DFA全等,主要运用判定定理(边角边);四边形AECF是矩形,先证明四边形AECF是平行四边形,再证这个平行四边形对角线相等或者有一个角是直角.举一反三:【变式】如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.【答案】证明:∵四边形ABDE是平行四边形,∴AE∥BC,AB=DE,AE=BD∵D为BC的中点,∴CD=BD∴CD∥AE,CD=AE∴四边形ADCE是平行四边形∵AB=AC∴AC=DE∴平行四边形ADCE是矩形.3、如图所示,Y ABCD四个内角的角平分线分别交于点E、F、G、H.求证:四边形EFGH是矩形.【思路点拨】AE、BE分别为∠BAD、∠ABC的角平分线,由于在Y ABCD中,∠BAD+∠ABC=180°,易得∠BAE+∠ABE=90°,不难得到∠HEF=90°,同理可得∠H=∠F=90°.【答案与解析】证明:在Y ABCD中,AD∥BC,∴∠BAD+∠ABC=180°,∵ AE、BE分别平分∠BAD、∠ABC,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°.∴∠HEF=∠AEB=90°.同理:∠H=∠F=90°.∴四边形EFGH是矩形.【总结升华】 (1)利用角平分线、垂线得到90°的角,选择“有三个直角的四边形是矩形”来判定.(2)本题没有涉及对角线,所以不会选择利用对角线来判定矩形.类型三、直角三角形斜边上的中线的性质4、(2012•佳木斯)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE 的周长为()A.20 B.12 C.14 D.13【答案】C;【解析】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【总结升华】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.举一反三:【变式】如图所示,已知平行四边形ABCD,AC、BD相交于点O,P是平行四边形ABCD外一点,且∠APC=∠BPD=90°.求证:平行四边形ABCD是矩形.【答案】解:连接OP.∵四边形ABCD是平行四边形.∴ AO=CO,BO=DO,∵∠APC=∠BPD=90°,∴ OP=12AC,OP=12BD,∴ AC=BD.∴四边形ABCD是矩形.【巩固练习】一.选择题1.下列命题中不正确的是( ).A.直角三角形斜边中线等于斜边的一半B.矩形的对角线相等C.矩形的对角线互相垂直D.矩形是轴对称图形2.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( ).A. 3.6cmB. 7.2cmC. 1.8cmD. 14.4cm3.矩形邻边之比3∶4,对角线长为10cm,则周长为( ).A.14cmB.28cmC.20cmD.22cm4.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是( )A. B. C. D.5. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角6. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.23B.33C.4D.43二.填空题7.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.8.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.9. 如图,矩形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,则DE=__________cm.10.(宁夏)如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是________.11.(长春)如图,Y ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_______.12. 如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是______.三.解答题13.如图,矩形ABCD的对角线相交于点O,OF⊥B C,CE⊥BD,OE∶BE=1∶3,OF=4,求∠ADB的度数和BD的长.14.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.15.如图所示,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCED是矩形.【答案与解析】一.选择题1.【答案】C;【解析】矩形的对角线相等.2.【答案】B;【解析】直角三角形中,30°所对的边等于斜边的一半.3.【答案】B ;【解析】由勾股定理,可算得邻边长为6cm 和8cm ,则周长为28cm . 4.【答案】D ;【解析】∠2>∠1. 5.【答案】D ; 6.【答案】A ;【解析】先证△ADF ≌△BEF ,则DF 为△ABC 中位线,再证明四边形BCDE 是矩形,BE ,可求面积. 二.填空题7.【答案】5,53;【解析】可证△AOB 为等边三角形,AB =AO =CO =BO.8.【解析】由勾股定理算得斜边AB CD =12AB =2.9.【答案】5.8;【解析】设DE =x ,则AE =AB -BE =AB -DE =10-x .在Rt△ADE 中,由勾股定理可得AD 2+AE 2=DE 2,即()222410x x +-=,解得x =5.8.10.; 【解析】根据∠EDC :∠EDA =1:2,可得∠EDC =30°,∠EDA =60°,进而得出△OCD是等边三角形,再由AC =10,求得DE.11.【答案】3;【解析】根据平行四边形的性质求出AD =BC ,DC =AB ,证△ADC ≌△CBA ,推出△ABC 的面积是3,求出AC ×AE =6,即可求出阴影部分的面积.12.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF ∥CG ,EG ∥CA ,求出∠BEG=∠B ,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可.三.解答题 13.【解析】解:由矩形的性质可知OD =OC.又由OE∶BE=1∶3可知E 是OD 的中点.又因为CE⊥OD,根据三线合一可知OC =CD ,即OC =CD =OD , 即△OCD 是等边三角形,故∠CDB=60°. 所以∠ADB=30°. 又因为CD =2OF =8, 即BD =2OD =2CD =16. 14.【解析】证明:∵四边形ABCD是矩形,∴AD∥BC,DC=AB.∴∠DAE=∠AFB.∵DE=DC,∴DE=AB.∵DE⊥AG,∴∠DEA=∠ABF=90°.∴△ABF≌△DEA.15.【解析】证明:在△ADB和△AEC中,∵ AD=AE,∠BAD=∠CAE,AB=AC.∴△ADB≌△AEC,∴ BD=CE.又∵ DE=BC,∴四边形BCED是平行四边形.∵∠BAD=∠CAE,∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE.在△DAC和△EAB中,∵ DA=EA,∠DAC=∠EAB,AC=AB.∴△DAC≌△EAB,∴ DC=EB.∴四边形BCED是矩形(对角线相等的平行四边形是矩形).。

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

人教版八年级数学下册-第18章-平行四边形-章节知识点和常考易错点归纳

平行四边形章节知识梳理一.知识点:1、定义两组对边分别平行的四边形是平行四边形.定义中的“两组对边平行”是它的特征,抓住了这一特征,记忆理解也就不困难了.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.同学们要在理解的基础上熟记定义.2、性质平行四边形的有关性质和判定都是从边、角、对角对称性四个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)对称性:平行四边形是中心对称图形,对角线的交点是对称中心;(5)面积:①=底×高=ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形4、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:1.平行四边形;2.一组邻边相等,两者缺一不可.(3)正方形:一组邻边相等的矩形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:1.一组对边平行;2.一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.5.几种特殊四边形的有关性质(1)矩形:1.边:对边平行且相等;2.角:对角相等、邻角互补;3.对角线:对角线互相平分且相等;4.对称性:既是轴对称图形又是中心对称图形.(2)菱形:1.边:四条边都相等;2.角:对角相等、邻角互补;3.对角线:对角线互相垂直平分且每条对角线平分每组对角;4.对称性:既是轴对称图形又是中心对称图形.(3)正方形:1.边:四条边都相等;2.角:四角相等;3.对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;4.对称性:既是轴对称图形又是中心对称图形.6、几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一个角是直角的菱形;②有一组邻边相等的矩形;③对角线相等的菱形;④对角线互相垂直的矩形.7、几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直.③说明四边形ABCD 的四条边相等.(3)识别正方形的常用方法①先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.②先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.二、几种特殊四边形的面积问题(1)设矩形ABCD 的两邻边长分别为a,b ,则 S 矩形=ab .(2)设菱形ABCD 的一边长为a ,高为h ,则 S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则 S 菱形=2ab 。

最新人教版初中八年级《数学》下册第十八18章全章总复习知识点考点重难要点整理复习完整完美精品打印版

最新人教版初中八年级《数学》下册第十八18章全章总复习知识点考点重难要点整理复习完整完美精品打印版

最新
最新人教版初中八年级《数学》下册
第十八章复习
知识点考点重难点要点综合归类整理复习梳理
汇总汇编






精品精编精选超级完整版完美版打印版
一.知识框架
二.知识概念
1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

3.平行四边形的判定

1.两组对边分别相等的四边形是平行四边形; ○
2.对角线互相平分的四边形是平行四边形; ○
3.两组对角分别相等的四边形是平行四边形; ○
4.一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD A
D。

八年级数学下册18章

八年级数学下册18章

证明:∵四边形 ABCD 是矩形,
∴∠B =∠D,∠C =∠A,AB∥DC.
∴∠B +∠C = 180°.
A
D
又∵∠B = 90°, ∴∠C = 90°.
B
C
∴∠B =∠C =∠D =∠A = 90°.
(2) 如图,四边形 ABCD 是矩形, A
D
∠ABC = 90°,对角线 AC 与 DB 相
交于点 O. 求证:AC = DB.
平行四 边形
新知一览
平行四 边形
平行四边形的性质 平行四边形的判定
特殊的平 行四边形
矩形 菱形 正方形
性质 判定
第十八章 平行四边形
18.2.1 矩 形
第1课时 矩形的性质
情景导入
根据四边形的不稳定性,观察在平行四边形的 变化过程中,当有一个角是直角时,会产生什么 特殊的平行四边形?
探究新知 知识点1: 矩形的性质
D
∴ AB = DC,∠ABC =∠DCB = 90°,
在 △ABC 和 △DCB 中,
O
B
C
∵ AB = DC,∠ABC = ∠DCB,BC = CB,
∴ △ABC≌△DCB.
∴ AC = DB.
归纳总结
矩形的性质 对边平行相等;对角相等;对角线相互平分.
角: 矩形的四个角都是直角
对角线: 矩形的对角线相等 A
C. 对角相等 D. 对角线互相平分
2.若直角三角形的两条直角边分别 5 和 12,则斜边
上的中线长为 A. 13 B. 6
( C) C. 6.5 D. 不能确定
3.若矩形的一条对角线与一边的夹角为 40°,则两条
对角线相交的锐角是

八年级数学下册第十八章平行四边形重点归纳笔记(带答案)

八年级数学下册第十八章平行四边形重点归纳笔记(带答案)

八年级数学下册第十八章平行四边形重点归纳笔记单选题1、如图,将矩形纸片ABCD 的两个直角进行折叠,使CB ,AD 恰好落在对角线AC 上,B ′,D ′分别是B ,D 的对应点,折痕分别为CF ,AE .若AB =4,BC =3,则线段B ′D ′的长是( )A .52B .2C .32D .1答案:D分析:先利用矩形的性质与勾股定理求解AC, 再利用轴对称的性质求解AB ′,CD ′,从而可得答案.解:∵ 矩形纸片ABCD ,∴AD =BC =3,AB =DC =4,∠B =∠D =90°,∴AC =√32+42=5,由折叠可得:∠CB ′F =∠B =90°,CB ′=CB =3,∴AB ′=AC −CB ′=2,同理:CD ′=2,∴B ′D ′=AC −AB ′−CD ′=5−2−2=1,故选:D.小提示:本题考查的是勾股定理的应用,轴对称的性质,矩形的性质,掌握以上知识是解题的关键.2、如图,▱ ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则▱ABCD 的周长为( )A .20B .16C .12D .8答案:BBC,由AE+EO=4,推出AB+BC=8即可解决问题;分析:首先证明:OE=12解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=1BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.小提示:本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.3、如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为()D.2A.√2B.2√2C.32答案:A分析:过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE 的对称点,进而可知D′P′即为DQ+PQ的最小值.作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=4,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=4,∴P′D′=√2,即DQ+PQ的最小值为√2,故A正确.故选:A.小提示:本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的关键.4、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为()A .4B .4.8C .5D .5.5答案:B分析:由垂线段最短,可得AP ⊥BC 时,AP 有最小值,由菱形的性质和勾股定理可求BC 的长,由菱形的面积公式可求解.如图,设AC 与BD 的交点为O ,∵点P 是BC 边上的一动点,∴AP ⊥BC 时,AP 有最小值,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO =12AC =3,BO =DO =12BD =4, ∴BC =√BO 2+CO 2=√9+16=5, ∵S 菱形ABCD =12×AC×BD =BC×AP ,∴AP =245=4.8,故选:B .小提示:本题考查了菱形的性质,勾股定理,确定当AP ⊥BC 时,AP 有最小值是本题关键.5、如图,矩形OABC 的顶点B 的坐标为(2,3),则AC 长为( )A.√13B.√7C.5D.4答案:A分析:首先连接OB,根据两点间距离公式即可求得OB,再根据矩形的性质可得OB=AC,即可求得AC的长.解:如图:连接OB∵点B的坐标为(2,3),∴OB=√22+32=√13,又∵四边形OABC是矩形,∴AC=OB=√13,故选:A.小提示:本题考查了两点间距离公式,矩形的性质,作出辅助线是解决本题的关键.6、如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.√27B.3+√27C.6+√3D.6√3答案:D分析:过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.解:过点D作DE⊥AB于点E,连接BD,如图所示:∵四边形ABCD为菱形,∴AD=AB=DC=BC,AD∥BC,∵∠ABC=120°,∴∠DAB=60°,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE=√AD2−AE2=√62−32=3√3,∴2DE=6√3,∴MA+MB+MD的最小值是6√3,故D正确.故选:D.小提示:本题主要考查了菱形的性质,等边三角形的判定与性质,勾股定理等知识点,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.7、一块直角三角板按如图所示方式放置在一张长方形纸条上,若∠1=28°,则∠2的度数为()A.28°B.56°C.36°D.62°答案:D分析:根据矩形的性质得出EF∥GH,过点C作CA∥EF,利用平行线的性质得出∠2=∠MCA,∠1=CAN,然后代入求解即可.解:如图所示标注字母,∵四边形EGHF为矩形,∴EF∥GH,过点C作CA∥EF,∴CA∥EF∥GH,∴∠2=∠MCA,∠1=∠NCA,∵∠1=28°,∠MCN=90°,∴∠2=∠MCA=90°-∠1=62°,故选:D.小提示:题目主要考查矩形的性质,平行线的性质,角度的计算等,理解题意,作出相应辅助线是解题关键.8、如图,已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值是()A.5B.10C.6D.8答案:A分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、BP,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,则P是AC中点,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴PQ∥AD,而点Q是AB的中点,故PQ是△ABD的中位线,即点P是BD的中点,同理可得,PM是△ABC的中位线,故点P是AC的中点,即点P是菱形ABCD对角线的交点,∵四边形ABCD是菱形,则△BPC为直角三角形,CP=12AC=3,BP=12BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故选:A.小提示:本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.9、如图,在▱ABCD中,AC平分∠DAB,AB=2,则▱ABCD的周长为()A.4B.6C.8D.12答案:C分析:在平行四边形ABCD中,AC平分∠DAB,则四边形ABCD为菱形,根据菱形的性质求周长.解:∵在▱ABCD中,AC平分∠DAB,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.故选C.小提示:本题考查了菱形的判定定理,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形,④对角线平分一组对角的平行四边形是菱形.10、如图,点P是矩形ABCD的对角线上一点,过点P作EF//BC,分别交AB,CD于E,F,连接PB,PD,若AE= 1,PF=3,则图中阴影部分的面积为()A.3B.6C.9D.12答案:A分析:先根据矩形的性质证得S△DFP=S△PBE,然后求解即可.解:作PM⊥AD于M,交BC于N,∴四边形AEPM、四边形DFPM、四边形CFPN和四边形BEPN都是矩形,∵S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S矩形DFPM=S矩形BEPN,∵PM=AE=1,PF=NC=3,∴S△DFP=S△PBE=12×1×3=32,∴S阴=32+32=3,故选:A.小提示:本题主要考查矩形的性质、三角形的面积等知识,证得S△DFP=S△PBE是解答本题的关键.填空题11、若正方形的边长为a,则它的对角线长为__________.答案:√2a分析:根据题意,可得正方形的相邻两边与对角线正好构成一个等腰直角三角形,对角线是斜边,结合勾股定理计算可得答案.解:∵正方形的相邻两边与对角线正好构成一个等腰直角三角形,对角线是斜边;∵正方形的边长为a,∴对角线长是√a2+a2=√2a.所以答案是:√2a小提示:本题考查了正方形的性质和勾股定理,熟知正方形的两邻边与对角线构成一个等腰直角三角形是解题的关键.12、如图,在等腰Rt△ABC中,CA=BA,∠CAB=90°,点M是AB上一点,点P为射线CA(除点C外)上一个动点,直线PM交射线CB于点D,若AM=1,BM=3,ΔCPD的面积的最小值为________.答案:6分析:设点M是PD的中点,过点M作直线P′D′与射线CA、CB分别交于点P′,D′,得到当点M是PD的中点时,△CPD的面积最小,再根据直角三角形的性质及三角形的面积公式求解即可.设点M是PD的中点,过点M作直线P′D′与射线CA、CB分别交于点P′,D′,则点M不是P′D′的中点当MD′>MP′时,在MD′上截取ME=MP′,连接DE∵∠PMP′=∠DME∴△PMP′≅△DME(SAS)=S△PCD∴S△P′CD′>S四边形P′CDE当MD′<MP′时,同理可得S△P′CD′>S△PCD∴当点M是PD的中点时,△CPD的面积最小如图,作DH⊥AB于H则△DHM≌△PAM∴AM=MH,∠DHM=∠PAM=90°,AP=DH∴∠BHD=90°∵AM=1,BM=3∴AM=1=MH∴BH=2在等腰Rt△ABC中,CA=BA=3+1=4∴∠B=45°=∠C∴∠B=∠BDH=45°∴BH=DH=2=AP∴CP=AC+AP=4+2=6过点D作DK⊥PC交于K∴四边形AKDH是矩形∴DK=AH=AM+HM=2∴S△CDP=12CP⋅DK=12×6×2=6所以答案是:6小提示:本题考查了全等三角形的判定和性质、矩形的判定和性质、直角三角形的性质,熟练掌握知识点是解题的关键.13、如图,在▱ABCD中,DB=CD,∠C=70°,AE⊥BD于E,则∠DAE=_______.答案:20°分析:要求∠DAE,就要先求出∠ADE,要求出∠ADE,就要先求出∠DBC.利用DB=DC,∠C=70°即可求出.解:∵DB=DC,∠C=70°,∴∠DBC=∠C=70°,又∵AD∥BC,∴∠ADE=∠DBC=70°,∵AE⊥BD,∴∠AEB=90°,∴∠DAE=90°−∠ADE=20°.故答案是:20°.小提示:此题考查平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.14、如图,将一个长方形纸片ABCD沿EF折叠,使C点与A点重合,若AB=2,AD=4,则线段DF的长是_________.答案:32分析:根据折叠的性质和勾股定理即可求得DF.解:∵长方形纸片ABCD,∴CD=AB=2,∠C=90°,根据折叠的性质可得AD′=CD=AB=2,∠AD′F=∠C=90°,D′F=DF,设D′F=DF=x,AF=AD−DF=4−x,根据勾股定理D′F+AD′=AF,即x2+2=(4−x)2,,解得x=32.所以答案是:32小提示:本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.15、如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到点B的对应点为点F,延长EF交线段DC于点P,若AB=6,则DP的长度为___________.答案:2分析:连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E是BC的中点,∴BE=CE=1AB=3,2由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,∴AD=AF,∠AFP=∠D=90°,在Rt△AFP和Rt△ADP中,{AP=AP,AF=AD∴Rt△AFP≌Rt△ADP(HL),∴PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,所以答案是:2.小提示:本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.解答题16、如图,二次函数y=-x2 +2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),且S△ABD=S△ABC,求点D的坐标;(4)若点P在直线AC上,点Q是平面内一点,是否存在点Q,使以点A、B、P、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案:(1)m=3;(2)B(-1,0);(3)点D的坐标为(2,3);(4)点Q的坐标为(3,4)或(1,-2).分析:(1)直接将点A的坐标代入到二次函数的解析式即可求出m的值,写出二次函数的解析式;(2)分别计算当x=0和y=0时的值,写出B、C两点的坐标;(3)因为S△ABD=S△ABC,则根据同底等高的两个三角形的面积相等,所以只要高与OC的长相等即可,因此要计算y=3时对应的点即可;(4)分AB是矩形的边、AB是矩形的对角线两种情况,通过画图,利用数形结合即可求解.解:(1)把A(3,0)代入二次函数y=-x2+2x+m得:-9+6+m=0,∴m=3;(2)由(1)可知,二次函数的解析式为:y=-x2+2x+3;当x=0时,y=3,∴C(0,3),当y=0时,-x2+2x+3=0,x2-2x-3=0,(x+1)(x-3)=0,∴x=-1或3,∴B(-1,0);(3)∵S△ABD=S△ABC,当y=3时,-x2+2x+3=3,-x2+2x=0,x2-2x=0,x(x-2)=0,x=0或2,∴只有(2,3)符合题意.综上所述,点D的坐标为(2,3);(4)存在,理由:①当AB是矩形的边时,此时,对应的矩形为ABP′Q′,∵AO=OC=3,故∠PAB=45°,∴矩形ABP′Q′为正方形,故点Q′的坐标为(3,4);②当AB是矩形的对角线时,此时,对应的矩形为APBQ,同理可得,矩形APBQ为正方形,故点Q的坐标为(1,-2),故点Q的坐标为(3,4)或(1,-2).小提示:本题是二次函数综合题,主要考查的是一次函数的性质、矩形的性质、正方形的性质,面积的计算等,其中(4),要注意分类求解,避免遗漏.17、如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=3,AO=2,求BD的长及四边形ABCD的周长.2答案:(1)见解析(2)BD=6,四边形ABCD的周长为4√13分析:(1)根据对角线互相垂直的平行四边形是菱形即可得证;(2)根据三角形中位线的性质可得OD=2EF=3,进而可得BD的长,Rt△AOD中,勾股定理求得AD,根据菱形的性质即可求解.(1)证明:∵四边形ABCD是平行四边,AB=AD,∴四边形ABCD是菱形,∴AC⊥BD;(2)解:∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,OD,∴EF=12,∵EF=32∴OD=3,∵四边形ABCD是菱形,∴BD=2OD=6,∵AC⊥BD,在Rt△AOD中,AO=2,OD=3,∴AD=√AO2+OD2=√22+32=√13,∴菱形形ABCD的周长为4√13.小提示:本题考查了菱形的性质与判定,三角形中位线的性质,勾股定理,掌握菱形的性质与判定是解题的关键.18、如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F.⊙O经过点C、D、F,与AD相交于点G.(1)求证△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.答案:(1)证明见解析;(2)52.分析:分析:(1)先根据∠ADC=90∘,AF⊥DE证出∠DAF=∠CDF,再根据四边形GFCD是⊙O的内接四边形,得到∠FGA=∠FCD,从而证出结论;(2) 连接CG,根据△EDA∽△ADF得到EADA =AFDF,根据△AFG∽△DFC得AGDC=AFDF,从而AGDC=EADA,再根据DA=DC得AG=EA=1,DG=3,利用勾股定理得CG=5,即可求出⊙O的半径. (1)证明:在正方形ABCD中,∠ADC=90∘.∴∠CDF+∠ADF=90∘.∵AF⊥DE.∴∠AFD=90∘.∴∠DAF+∠ADF=90∘.∴∠DAF=∠CDF.∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180∘.又∠FGA+∠DGF=180∘,∴∠FGA=∠FCD.∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90∘,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF =DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC =AFDF.∴AGDC =EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA−AG=4−1=3.∴CG=√DG2+DC2=√32+42=5.∵∠CDG=90∘,∴CG是⊙O的直径.∴⊙O的半径为52.小提示:本题考查了相似三角形的判定与性质,圆周角定理的推论,正方形的性质.关键是利用正方形的性质证明相似三角形,利用线段,角的关系解题.。

第十八章+平行四边形平行四边形中的最值问题+讲练课件+++2023—2024学年人教版数学八年级下册

第十八章+平行四边形平行四边形中的最值问题+讲练课件+++2023—2024学年人教版数学八年级下册
∴在Rt△DPH中,2PH=PD. ∴2AP+PD=2PA+2PH=2(AP+PH).
如图2,过点O作OM⊥AD于点M,与DE的交点即是
2AP+PD的值最小的点P的位置. 而此时(2AP+PD)的
最小值=2OM,
∵△ADE≌△ODE,AD=2, ∴AD=DO=2.
在Rt△OMD中,∵∠ODA=2∠ADE=60°, ∴∠DOM=30°. ∴DM= 12 DO=1. ∵DM2+OM2=DO2, ∴12+OM2=22. ∴OM= 3 . ∴(2PA+PD)的最小值为2OM=2 3 .
6. 如图,∠MON=90°,长方形ABCD的顶点B,C分别 在边OM,ON上,当点B在边OM上运动时,点C随之 在边ON上运动,若CD=5,BC=24,运动过程中, 点D到点O的最大距离为_2_5__.
利用线段转化求最值 7. 如图,以边长为2的正方形的对角线的交点O为端点,
引两条相互垂直的射线,分别与正方形的边交于A,B 两点,求线段AB的最小值.
∴△AOB是等腰直角三角形. ∴AB= 2 OA. ∴当OA最小时,AB最小. ∵OA⊥CD时,OA最小, ∴A为CD的中点,∴OA= 12CD=1. ∴AB= 2 OA= 2 . ∴线段AB的最小值为 2 .
8. 如图1所示,四边形ABCD是矩形,点O位于对角线BD 上,将△ADE,△CBF分别沿DE,BF翻折,使点A、 点C都恰好落在点O处. (1)求证:∠EDO=∠FBO;平行四边形
专题:平行四边形中的最值问题
利用轴对称求最值
1. 如图,正方形ABCD的边长为3,点E在BC上,且BE =2,点P在对角线BD上,则PE+PC的最小值为 ( B )
2. 如图,菱形ABCD的边长为2,∠DAB=60°,点E为 BC边的中点,点P为对角线AC上一动点,则PB+PE 的最小值为__3__.

人教版数学八年级下册第十八章《18.2.1 矩 形》课件

人教版数学八年级下册第十八章《18.2.1  矩 形》课件

∴四边形ABCD是矩形.
能力提升
4.如图,平行四边形ABCD中,对角线AC、BD相交于点O, 延长OA到N,使ON=OB,再延长OC至M,使CM=AN.求 证:四边形NDMB为矩形.
课堂小结
矩形的判定
又∵∠OAD=50°,
∴∠OAB=40°.
变式训练
2.如图 , ABCD中, ∠1= ∠2中.此时四边形ABCD 是矩形吗?为什么?
A1
O
D
2 B
C
探究新知
问题1 上节课我们研究了矩形的四个角,知道它们都 是直角,它的逆命题是什么?成立吗?
逆命题:四个角是直角的四边形是矩形. 成立
问题2 至少有几个角是直角的四边形是矩形?
这节课我们一起探讨矩形的判定吧.
探究新知
平行四边形的定义是判定平行四边形的一种方法, 那么矩形的定义也是判定矩形的一种方法. 问题1 除了定义以外,判定矩形的方法还有没有呢?
类似我地们,那知我道们“研矩究形矩的形的对角线相等”,它的 性质逆的命逆命题题是是对否角成线立相. 等的四边形是矩形,
你觉得对吗?
C
C
D
C
D
D
A
B
A
BA
BБайду номын сангаас
(有一个角是直角) (有二个角是直角) (有三个角是直角)
猜测:有三个角是直角的四边形是矩形.
证一证
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形.
A
D
B
C
知识归纳
矩形的判定定理:
有三个角是直角的四边形是矩形.
几何语言描述:
在四边形ABCD中,∵ ∠A=∠B=∠C=90°,

人教版八年级数学下册知识点第十八章《平行四边形》

人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。

表示:平行四边形用“□”表示。

2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。

的顺序依次排列。

点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。

平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。

如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。

∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。

最新新编八年级数学下册第十八章平行四边形知识点总结新版新人教

最新新编八年级数学下册第十八章平行四边形知识点总结新版新人教

第十八章平行四边形一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.附:百度文库的资料为什么齐全“百度文库”是百度为网友提供的信息存储空间,是供网友在线分享文档的开放平台。

在这里,用户可以在线阅读和下载包括课件、习题、论文报告、专业资料、各类公文模板、文学资料以及法律法规、政策文件等多个领域的资料。

平台上所累积的文档,均来自热心用户的积极上传。

百度自身不编辑或修改用户上传的文平行四边形矩形菱形正方形档内容。

用户通过上传文档,可以获得平台虚拟的积分奖励,用于下载自己需要的文档。

下载文档需要登录,免费文档可以登录后下载,对于上传用户已标价的文档,下载时需要付出虚拟积分。

人教版八年级数学课件第十八章第1节《三角形的中位线》

人教版八年级数学课件第十八章第1节《三角形的中位线》
1
且DE= BC.
2
证明:延长DE到F,使EF=DE,连接FC,DC,AF.
∵ AE=EC,DE=EF
∴ 四边形ADCF是平行四边形
∴ CF∥DA,CF=DA
∴ CF∥BD,CF=BD
∴ 四边形DBCF是平行四边形
∴ DF∥BC,DF=BC
1
2
又∵ DE= DF
1
2
∴ DE∥BC,且DE= BC
知识精讲
解:∵ □ ABCD的周长为36,
∴BC+CD=18.
∵点E是CD的中点,
1
2
∴OE是△BCD的中位线,DE= CD,
1
2
∴OE= BC,
1
∴△DOE的周长为OD+OE+DE= (BD+BC+CD)=15,
2
即△DOE的周长为15.
达标检测
人教版数学八年级下册
9.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延
解:∵M,N分别是AB和AC的中点,
∴MN是△ABC的中位线.
1
2
∴MN= BC=2,MN∥BC.
∴∠NME=∠D,∠MNE=∠DCE.
∵点E是CN的中点,
∴NE=CE.
∴△MNE≌△DCE(AAS).
∴CD=MN=2.
针对练习
人教版数学八年级下册
如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中
这样,连接三角形两边中点的线段叫做三角形的中位线.
知识精讲
人教版数学八年级下册
观察下图,你能发现△ABC的中位线DE与边BC的位置关系吗?
度量一下,DE与BC之间有什么数量关系?

新人教版八年级下册第十八章平行四边形全章知识点

新人教版八年级下册第十八章平行四边形全章知识点

名师总结优秀知识点新人教版八年级下册第十八章平行四边形全章知识点要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形.2.性质:( 1)对边平行且相等;(2)对角相等;邻角互补;(3)对角线互相平分;(4)中心对称图形 .3.面积:S平行四边形底高4.判定:边:( 1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.角:( 4)两组对角分别相等的四边形是平行四边形;(5)两组邻角分别互补的四边形是平行四边形.边与角:( 6)一组对边平行,一组对角相等的四边形是平行四边形;对角线:( 7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:( 1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形 .3.面积:S矩形=长宽4.判定:( 1)有一个角是直角的平行四边形是矩形.( 2)对角线相等的平行四边形是矩形.( 3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中, 30 度角所对应的直角边等于斜边的一半.要点三、菱形1.定义:有一组邻边相等的平行四边形叫做菱形.2.性质:( 1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形 .对角线对角线3.面积:S菱形=底高=24.判定:( 1)一组邻边相等的平行四边形是菱形;( 2)对角线互相垂直的平行四边形是菱形;名师总结优秀知识点( 3)四边相等的四边形是菱形.要点四、正方形1.定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形 .3.面积:S正方形 = 边长×边长=1×对角线×对角线24.判定:( 1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.要点五、。

18.1.1+第2课时+平行四边形的对角线性质+课件++2023-2024学年人教版数学八年级下册

18.1.1+第2课时+平行四边形的对角线性质+课件++2023-2024学年人教版数学八年级下册

求证:OA=OC,OB=OD.
证明:∵四边形ABCD是平行四边形,
∴ AD=BC,AD∥BC,
A
D
13
O
4 B
2 C
∴ ∠1=∠2,∠3=∠4,
∴ △AOD≌△COB(ASA),
∴ OA=OC,OB=OD.
课本例2 如图,在 ABCD中,AB=10,AD=8,AC⊥BC. 求BC,CD,AC,OA的长,以及 ABCD的面积.
练习
如图,平行四边形ABCD中,AC、BD交于O点,点E、F分别是 AO、CO的中点,试判断线段BE、DF的关系并证明你的结论.
已知: □ ABCD的对角线AC,BD相交于点 O,AC =16cm, BD =12cm,BC =10cm,则□ABCD 的周长是_4_0_c_m_, □ABCD的面积是___9_6c_m__2 ___.
A.13 B.17
C.20 D.26
3.如图,若▱ABCD的周长为36 cm,过点D分别作AB, BC边上的高DE,DF,且DE=4 cm,DF=5 cm, ▱ABCD的面积为( A )cm2. A.40 B.32 C.36 D.50
4. 如图,已知▱ABCD与▱EBFD的顶点A,E,F,
C在一条直线上,求证:AE=CF.
证明:如图,连接BD交AC于点O.
∵四边形ABCD是平行四边形,
∴OA=OC(平行四边形的对角线互相平分).
∵四边形EBFD是平行四边形,
O
∴OE=OF(平行四边形的对角线互相平分),
∴OA-OE=OC-OF,即AE=CF(等式的性质).
作直线EF,分别交AB,CD于点E,F.求证:OE=OF.
A
D
E
O F
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
; (5) 两条对角线把正方形分成四个全等的等腰直角三
角形; (6)中心对称图形,轴对称图形.
正方形的判断
判定 (1)有一个角是直角的菱形是正方形; (2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形; (5)对角线互相垂直平分且相等的四边形是正
形; 对角线 (7)对角线互相平分的四边形是平行四边形.
平行四边形的额外知识
• 要点诠释:平行线的性质:
• (1)平行线间的距离都相等;
• (2)等底等高的平行四边形面积相等

平行四边形的考点
• (1)平行四边形的性质与判定(多出现在 选择题与证明题)
• (2)运用平行四边形已知条件进行对三角 形以及面积
矩形
定义:有一个角是直角的平行四边形叫做矩 形.
性质: (1)具有平行四边形的所有性质; (2)四个角都是直角; (3)对角线互相平分且相等; (4)中心对称图形,轴对称图形. • 3.面积: S矩形=长 宽
如何判定矩形
判定: (1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形.
矩形的额外知识点 由矩形得直角三角形的性质 (1)直角三角形斜边上的中线等于斜边的一半
; (2)直角三角形中,30度角所对应的直角边等
于斜边的一半.
菱形
定义:有一组邻边相等的平行四边形叫做菱 形.
性质: (1)具有平行四边形的一切性质; (2)四条边相等; (3)两条对角线互相平分且垂直,并且每一
平行四边形判定
边: (1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; ***(3)一组对边平行且相等的四边形是平行四边形. 角: (4)两组对角分别相等的四边形是平行四边形; (5)两组邻角分别互补的四边形是平行四边形. 边与角: (6)一组对边平行,一组对角相等的四边形是平行四边
条对角线平分一组对角; (4)中心对称图形,轴对称图形.
菱形的判断
判定:
(1)一组邻边相等的平行四边形是菱形;
(2)对角线互相垂直的平行四边形是菱形;
(3)四边相等的四边形是菱形.
面积
S菱形=底
高=对角线 2
对角线
正方形
定义:四条边都相等,四个角都是直角的四边形叫做 正方形.
性质: (1)对边平行; (2)四个角都是直角; (3)四条边都相等; (4)对角线互相垂直平分且相等,对角线平分对角
第十八章
• 1.平行四边形 • 2.矩形 • 3.菱形 • 4.正方形 • 5.三角形中位线
平行四边形
• 1.定义:两组对边分别平行的四边形叫做 平行四边形.
• 2.性质: • (1)对边平行且相等; • (2)对角相等;邻角互补; • (3)对角线互相平分 • (4)中心对称图形. • 3.面积:S平行四边形 底 高
4个小三角形,因而每个小三角形的周长为 原三角形的周长的1/2,每个小三角形的面 积为原三角形面积的1/4 (3)三角形的中位线不同于三角形的中线
方形; (6)四条边都相等,四个角都是直角的四边形
是正方形.(可以通过1去判断,6可有可无)
三角形中位线
定义: 连接三角形两边中点的线段叫做三角形的中
位线 定理; 三角形的中位线平行于第三边,并且等于第
三边的一半
三角形中位线2
重点: (1)三角形有三条中位线,每一条与第三边
都有相应的位置与数量关系 (2)三角形的中位线把原三角分成可全等的
相关文档
最新文档