第十二章 表观遗传学
合集下载
表观遗传学(共20张PPT)
异性降解的现象。PTGS是启动了细胞质内靶mRNA序列特异性的降解机制。
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不
• 近几年来RNAi研究取得了突破性进展,被《Science》杂志评为2001年的十大科 学进展之一,并名列2002年十大科学进展之首。由于使用RNAi技术可以特异性剔 除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及 恶性肿瘤的基因治疗领域。
表观遗传学 EPIGENETICS
什么是表观遗传学?
表观遗传学是研究除DNA序列 变化外的其他机制引起的细胞表 型和基因表达的可遗传的改变。 表观遗传学调控真核基因表达, 与人类重大疾病,如肿瘤、神经 退行性疾病、自身免疫性疾病等 密切相关。
举两个例子~
在胚胎发育过程中,果蝇存在很多体节。对 Hox 基因来 说,在有些体节中表达,有些中不表达。一开始,这种表 达或不表达经不在了,由原来不 表达(Hox 基因)的细胞衍生的后代呢,这些基因仍然不 表达;表达那些 Hox 基因的细胞衍生的细胞,仍然表达。
• 最常见的DNA甲基化形式是将甲基加到胞嘧啶环的 5‘位置上,形成5’-甲基胞嘧啶。哺乳动物中大约有 5%的胞嘧啶被甲基化,而甲基化与否,基因的转录活 性相差了上百万倍。
• DNA甲基化的作用主要体现于抑制基因转录活性,而具 体的抑制机制还尚未明确
• MeCP1所结合的DNA序列常需要有10个以上的甲基化CpG, 这一蛋白广泛存在于许多组织。
工蜂和蜂王都由同种受精卵发育而来,如 果能吃到蜂王浆,就变成蜂后;吃不到就 变成工蜂。
与工蜂相比,蜂王的成熟期短平均在半
个月左右,而工蜂则需要二十天以上;
寿命长蜂王可以活几年,而工蜂则只有
几十天的寿命;有生殖能力蜂王每天可
蜂王
工蜂
以产下几百枚卵,而工蜂一般终生都不
细胞生物学-13表观遗传学
泛素化-- 一般是C端Lys修饰,启动基因表达。
SUMO(一种类泛素蛋白)化-- 可稳定异染色质。
其他修饰
第十二章 表观遗传学
组蛋白密码(histone code):组蛋白中被修饰氨基酸 的种类、位置和修饰类型,为遗传密码的表观遗传学延伸 ,决定了基因表达调控的状态,并且可遗传。
Bryan M. Turner, nature cell biology, 2007
第十二章 表观遗传学
研究不涉及DNA序列改变的基因表达和调 控的可遗传变化。或者说是研究从基因演绎为 表型的过程和机制的一门新兴遗传学分支。
第十二章 表观遗传学
Jirtle R Waterland RA 由于Agouti基因 (A)编码一种旁分泌的信号分子能使毛 囊黑色素细胞从合成黑色素转为合成黄色素,因此在鼠毛生 长的中间阶段,A基因的一过性短暂表达在每根鼠毛的毛尖 下方形成黄色条带,使野生型Agouti小鼠呈现特征性的棕 褐色。
组蛋白修饰种类: 乙酰化-- 一般与活化的染色质构型相关联,乙酰化修 饰大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Asp 残基上,可以 与基因抑制有关,也可以与基因的激活相关,这往往 取决于被修饰的位置和程度。
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。
鼠 的仔鼠大多数为黄色。
第十二章 表观遗传学
第十二章 表观遗传学
基因表达模式
相同的基因型
不同的表型
一个多细胞生物机体的不同类型细胞
第十二章 表观遗传学
基因表达模式 (gene expression pattern)
决定细胞类型的不是基因 本身,而是基因表达模式,通 过细胞分裂来传递和稳定地维 持具有组织和细胞特异性的基 因表达模式对于整个机体的结 构和功能协调是至关重要的。
SUMO(一种类泛素蛋白)化-- 可稳定异染色质。
其他修饰
第十二章 表观遗传学
组蛋白密码(histone code):组蛋白中被修饰氨基酸 的种类、位置和修饰类型,为遗传密码的表观遗传学延伸 ,决定了基因表达调控的状态,并且可遗传。
Bryan M. Turner, nature cell biology, 2007
第十二章 表观遗传学
研究不涉及DNA序列改变的基因表达和调 控的可遗传变化。或者说是研究从基因演绎为 表型的过程和机制的一门新兴遗传学分支。
第十二章 表观遗传学
Jirtle R Waterland RA 由于Agouti基因 (A)编码一种旁分泌的信号分子能使毛 囊黑色素细胞从合成黑色素转为合成黄色素,因此在鼠毛生 长的中间阶段,A基因的一过性短暂表达在每根鼠毛的毛尖 下方形成黄色条带,使野生型Agouti小鼠呈现特征性的棕 褐色。
组蛋白修饰种类: 乙酰化-- 一般与活化的染色质构型相关联,乙酰化修 饰大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Asp 残基上,可以 与基因抑制有关,也可以与基因的激活相关,这往往 取决于被修饰的位置和程度。
磷酸化-- 发生与 Ser 残基,一般与基因活化相关。
鼠 的仔鼠大多数为黄色。
第十二章 表观遗传学
第十二章 表观遗传学
基因表达模式
相同的基因型
不同的表型
一个多细胞生物机体的不同类型细胞
第十二章 表观遗传学
基因表达模式 (gene expression pattern)
决定细胞类型的不是基因 本身,而是基因表达模式,通 过细胞分裂来传递和稳定地维 持具有组织和细胞特异性的基 因表达模式对于整个机体的结 构和功能协调是至关重要的。
表观遗传学
In my mind, these studies stress the importance of keeping a close track of dietary intake while pregnant. As you probably know, obesity rates are on the rise and are associated with HUGE health care costs because of the slew of other health problems associated with obesity (diabetes, hypertension, etc.). Additionally, environmental toxins are unfortunately becoming somewhat ubiquitous and can apparently have the ability to exacerbate the obesity problem.
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are
遗传学第十二章表观遗传学精选课件.ppt
胞的两条X染色体中会有一条发生随机失活的假说, X染色体基因的剂量补偿。
Y
X
XX
X-染色体失活
24
(一)X失活中心
• 2019年G.D.Penny等发现X染色体的Xq13.3区 段有一个X失活中心( X-inactivation center,Xic),X失活中心有“记数”和“选 择”的功能。
• 长1Mb,4个已知基因:Xist;Xce;Tsix;
(三)DNA去甲基化作用(不讲)
13
二、组蛋白修饰
14
15
❖组蛋白密码 ❖组蛋白中被修饰氨基酸的种类、位置和修饰
类型被称为组蛋白密码(histone code)。 ❖组蛋白通过乙酰化、甲基化和磷酸化等共价
修饰,使染色质处于转录活性状态或非转录活 性状态,为其他蛋白与DNA的结合产生协同 或拮抗效应,属于一种动态的转录调控成分。 ❖类型:乙酰化,甲基化,磷酸化,泛素化, SUMO化,ADP核糖化,脱氨基化,脯氨酸异 构化。
16
• (一)组蛋白乙酰化作用 组蛋白N末端 Lys 上,组蛋白乙酰化能选择 性的使某些染色质区域的结构从紧密变得松散, 开放某些基因的转录,增强其表达水平 。
• 组蛋白乙酰化转移酶(histone acetyltransferase,HAT) • 组蛋白去乙酰化酶(histone deacetylase,HDAC)
• 第一节 表观遗传学的分子机制
• 1. 遗传编码信息:提供生命必需蛋白质的编码模 板。
• 2. 表观遗传学信息:何时、何地、以何种方式去 应用遗传编码信息。
• DNA和染色质上的表观遗传修饰: • DNA甲基化;组蛋白修饰;RNA相关沉默(非编码
RNA);染色质重塑。
7
Y
X
XX
X-染色体失活
24
(一)X失活中心
• 2019年G.D.Penny等发现X染色体的Xq13.3区 段有一个X失活中心( X-inactivation center,Xic),X失活中心有“记数”和“选 择”的功能。
• 长1Mb,4个已知基因:Xist;Xce;Tsix;
(三)DNA去甲基化作用(不讲)
13
二、组蛋白修饰
14
15
❖组蛋白密码 ❖组蛋白中被修饰氨基酸的种类、位置和修饰
类型被称为组蛋白密码(histone code)。 ❖组蛋白通过乙酰化、甲基化和磷酸化等共价
修饰,使染色质处于转录活性状态或非转录活 性状态,为其他蛋白与DNA的结合产生协同 或拮抗效应,属于一种动态的转录调控成分。 ❖类型:乙酰化,甲基化,磷酸化,泛素化, SUMO化,ADP核糖化,脱氨基化,脯氨酸异 构化。
16
• (一)组蛋白乙酰化作用 组蛋白N末端 Lys 上,组蛋白乙酰化能选择 性的使某些染色质区域的结构从紧密变得松散, 开放某些基因的转录,增强其表达水平 。
• 组蛋白乙酰化转移酶(histone acetyltransferase,HAT) • 组蛋白去乙酰化酶(histone deacetylase,HDAC)
• 第一节 表观遗传学的分子机制
• 1. 遗传编码信息:提供生命必需蛋白质的编码模 板。
• 2. 表观遗传学信息:何时、何地、以何种方式去 应用遗传编码信息。
• DNA和染色质上的表观遗传修饰: • DNA甲基化;组蛋白修饰;RNA相关沉默(非编码
RNA);染色质重塑。
7
《表观遗传学》PPT课件
❖ 复制过程中,组蛋白更易与新核结合。 ❖ 转录过程中,核心组蛋白从DNA分离出来,并加
速转录中所需蛋白与相应位点结合。
2021/4/23
南京农业大学 生命科学学院 生物化学与分子生物学系
16
组蛋白低乙酰化促进DNA甲基化
❖ 脊椎动物中,含甲基化DNA结合结构域的蛋白, 如MeCP2或MBD(DNA甲基化结合蛋白)可作为 接头分子将甲基化胞嘧啶连接到组蛋白去乙酰化 复合物上。
23
X染色体失活
❖ 失活X染色体即为巴氏小体。 ❖ 失活X染色体特点:
组蛋白H4不被乙酰化 CpG岛的高度甲基化
巴氏小体
2021/年4/42月3 23日
南京农业大学 生命科学学院 生物化学与分子生物学系
24
表观遗传学的意义
❖ 表观遗传学已成为生命科学中普遍关注的前沿,在功能 基因组时代尤其如此。它是生命科学中一个普遍而又十分 重要的新的研究领域。它不仅对基因表达、调控、遗传有 重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中 亦具有十分重要的意义。
白修饰、染色质重塑。
❖ 基因组印迹特点:
基因组印迹依靠单亲传递某种性状的遗传信息,被印 迹的基因会随着其来自父源或母源而表现不同,即源 自双亲的两个等位基因中一个不表达或表达很弱。
不遵循孟德尔定律,是一种典型的非孟德尔遗传,正 反交结果不同。
❖ 基因组印迹的机制:
配子在形成过程中,DNA产生的甲基化、核组蛋白产生 的乙酰化、磷酸化和泛素化等修饰,使基因的表达模 式发生了改变。
2021/年4/42月3 23日
南京农业大学 生命科学学院 生物化学与分子生物学系
20
基 因 组印 迹
❖ 由正反交实验可以看出:
印迹基因的正反交结果不一致、不符合孟德尔 定律。
速转录中所需蛋白与相应位点结合。
2021/4/23
南京农业大学 生命科学学院 生物化学与分子生物学系
16
组蛋白低乙酰化促进DNA甲基化
❖ 脊椎动物中,含甲基化DNA结合结构域的蛋白, 如MeCP2或MBD(DNA甲基化结合蛋白)可作为 接头分子将甲基化胞嘧啶连接到组蛋白去乙酰化 复合物上。
23
X染色体失活
❖ 失活X染色体即为巴氏小体。 ❖ 失活X染色体特点:
组蛋白H4不被乙酰化 CpG岛的高度甲基化
巴氏小体
2021/年4/42月3 23日
南京农业大学 生命科学学院 生物化学与分子生物学系
24
表观遗传学的意义
❖ 表观遗传学已成为生命科学中普遍关注的前沿,在功能 基因组时代尤其如此。它是生命科学中一个普遍而又十分 重要的新的研究领域。它不仅对基因表达、调控、遗传有 重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中 亦具有十分重要的意义。
白修饰、染色质重塑。
❖ 基因组印迹特点:
基因组印迹依靠单亲传递某种性状的遗传信息,被印 迹的基因会随着其来自父源或母源而表现不同,即源 自双亲的两个等位基因中一个不表达或表达很弱。
不遵循孟德尔定律,是一种典型的非孟德尔遗传,正 反交结果不同。
❖ 基因组印迹的机制:
配子在形成过程中,DNA产生的甲基化、核组蛋白产生 的乙酰化、磷酸化和泛素化等修饰,使基因的表达模 式发生了改变。
2021/年4/42月3 23日
南京农业大学 生命科学学院 生物化学与分子生物学系
20
基 因 组印 迹
❖ 由正反交实验可以看出:
印迹基因的正反交结果不一致、不符合孟德尔 定律。
第十二章-表观遗传学
表观遗传修饰的分子机制
11 2 3
DNA 甲基化 DNA 甲基化
组蛋白修饰 RNA调控
一、DNA甲基化
DNA甲基化(DNA methylation)是研究得最清楚、 也是
最重要的表观遗传修饰形式,主要是基因组 DNA上的胞嘧 啶第5位碳原子和甲基间的共价结合,胞嘧啶由此被修饰为 5甲基胞嘧啶(5-methylcytosine,5mC)。
NOEY2 1p31
被组蛋白覆盖的基因如果要表达,首先要改变组蛋白的
修饰状态,使其与DNA的结合由紧变松,这样靶基因 才能与转录复合物相互作用。因此,组蛋白是重要的染
色体结构维持单元和基因表达的负控制因子。
组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修饰
大多发生在H3、H4的 Lys 残基上。
等位基因处于不同的修饰状态。
表达的调控。 RNA干扰。
蛋白修饰:通过对特殊蛋白修饰或改变蛋白的构象实现对基因 非编码RNA调控:通过某些机制实现对基因转录的调控,如
意义:
任何一个层面异常,都将影响染色质结构和基因表达,导致复
杂综合征、多因素疾病以及癌症。和DNA序列改变不同的是, 许多表观遗传的改变是可逆的,这就为疾病的治疗提供乐观的 前景。
第十二章 表观遗传学
不依赖于DNA序列的遗传现象
掌握表观遗传、基因组印记的概念
熟悉DNA甲基化、组蛋白修
1. DNA自身通过复制传递遗传信息;
2. DNA转录成RNA; 3. RNA自身能够复制 (RNA病毒); 4. RNA能够逆转录成DNA; 5. RNA翻译成蛋白质。
DNMT1
SAM S-腺苷甲硫氨酸 胞嘧啶
杨同文.表观遗传学课件
基因印迹使基因的表达受到抑制,导致被印迹
的基因的生物功能的丧失。
2014年5月30日
10
基因印迹过程
印迹的形成
印迹形成于成熟配子,并持续到出生后。 印记的维持 印记的去除 印记的去除过程是发生在原始生殖细胞的早期阶段。 基因组印迹的机制
配子在形成过程中,DNA产生的甲基化、核组蛋白产生
39
2014年5月30日
2014年5月30日
40
组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修饰
大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Asp 残基上,可以与
基因抑制有关,也可以与基因的激活相关,这往往取决 于被修饰的位置和程度。
一系列以染色质上核小体变化为基本特征 的生物学过程。
染色质重塑是由染色质重塑复合物介导的
组蛋白尾巴的化学修饰(乙酰化、甲基化
及磷酸化等)可以改变染色质结构,从而
2014年5月30日
43
核小体
2014年5月30日
44
核小体定位是核小体在DNA上特异性定位的现
象。 核小体核心DNA并不是随机的,其具备一定的 定向特性。
基化平均水平远高于对照组,转录调控区的高甲基化使原该呈异位表达的基
因趋于沉默,毛色也趋于棕褐色。
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70% 的5mC存在于CpG二连核苷。
在结构基因的5’端调控区域, CpG二连核苷常常以 成簇串联形式排列,这种富含CpG二连核苷的区域称 为CpG岛(CpG islands),其大小为500-1000bp,约 56%的编码基因含该结构。 基因调控元件(如启动子)所含CpG岛中的5mC会阻碍 转录因子复合体与DNA的结合。
的基因的生物功能的丧失。
2014年5月30日
10
基因印迹过程
印迹的形成
印迹形成于成熟配子,并持续到出生后。 印记的维持 印记的去除 印记的去除过程是发生在原始生殖细胞的早期阶段。 基因组印迹的机制
配子在形成过程中,DNA产生的甲基化、核组蛋白产生
39
2014年5月30日
2014年5月30日
40
组蛋白修饰种类
乙酰化-- 一般与活化的染色质构型相关联,乙酰化修饰
大多发生在H3、H4的 Lys 残基上。
甲基化-- 发生在H3、H4的 Lys 和 Asp 残基上,可以与
基因抑制有关,也可以与基因的激活相关,这往往取决 于被修饰的位置和程度。
一系列以染色质上核小体变化为基本特征 的生物学过程。
染色质重塑是由染色质重塑复合物介导的
组蛋白尾巴的化学修饰(乙酰化、甲基化
及磷酸化等)可以改变染色质结构,从而
2014年5月30日
43
核小体
2014年5月30日
44
核小体定位是核小体在DNA上特异性定位的现
象。 核小体核心DNA并不是随机的,其具备一定的 定向特性。
基化平均水平远高于对照组,转录调控区的高甲基化使原该呈异位表达的基
因趋于沉默,毛色也趋于棕褐色。
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70% 的5mC存在于CpG二连核苷。
在结构基因的5’端调控区域, CpG二连核苷常常以 成簇串联形式排列,这种富含CpG二连核苷的区域称 为CpG岛(CpG islands),其大小为500-1000bp,约 56%的编码基因含该结构。 基因调控元件(如启动子)所含CpG岛中的5mC会阻碍 转录因子复合体与DNA的结合。
12表观遗传学
particularchromatinstructuremayestablishingdnamethylation15151515真核生物全部遗传信息遗传密码组蛋白密码密码基因组dna序列组蛋白氨基端修饰相同的基因型相同的基因型不同的表现型不同的表现型基因表达模式基因表达模式2016年4月15日1919基因表达模式决定细胞类型的不是基因本身而是基因表达模式通过细胞分裂来传递和稳定地维持具有组织和细胞特异性的基因表达模式对于整个机体的结构和功能协调是至关重要的
一、DNA甲基化
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的5mC 存在于CpG二连核苷。 在结构基因的5’端调控区域, CpG二连核苷常常以成簇串 联形式排列,这种富含CpG二连核苷的区域称为CpG岛(CpG islands),其大小为500-1000bp,约56%的编码基因含该 结构。
获得性遗传( Inheritance
of acquired characteristics)
Jean-Baptiste Lamarck
(1744-1829)
Science 7 April 2000:Vol. 288. no. 5463, p. 38
Was Lamarck Just a Little Bit Right?
7
表观遗传学的含义:
可遗传性,即这类改变通过有丝分裂或减数分裂 ,能在细胞或个体世代间遗传;
基因表达的可变性,可逆性的基因表达调节,也 有较少的学者描述为基因活性或功能的改变; 无DNA序列的改变或不能用DNA序列变化来解释。
8
发 展 历 史
2000 多年前,古希腊哲学家亚里士多德在 《On the Generation of Animals》一书中首 先提出后生理论(the theory of epigenesis) ,它相对于先成论,新器官的发育由未分 化的团块逐渐形成的。
一、DNA甲基化
哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70%的5mC 存在于CpG二连核苷。 在结构基因的5’端调控区域, CpG二连核苷常常以成簇串 联形式排列,这种富含CpG二连核苷的区域称为CpG岛(CpG islands),其大小为500-1000bp,约56%的编码基因含该 结构。
获得性遗传( Inheritance
of acquired characteristics)
Jean-Baptiste Lamarck
(1744-1829)
Science 7 April 2000:Vol. 288. no. 5463, p. 38
Was Lamarck Just a Little Bit Right?
7
表观遗传学的含义:
可遗传性,即这类改变通过有丝分裂或减数分裂 ,能在细胞或个体世代间遗传;
基因表达的可变性,可逆性的基因表达调节,也 有较少的学者描述为基因活性或功能的改变; 无DNA序列的改变或不能用DNA序列变化来解释。
8
发 展 历 史
2000 多年前,古希腊哲学家亚里士多德在 《On the Generation of Animals》一书中首 先提出后生理论(the theory of epigenesis) ,它相对于先成论,新器官的发育由未分 化的团块逐渐形成的。
(2024年)表观遗传学完整版
突触可塑性
表观遗传调控参与突触可塑性的形成和维持,影响学习记忆等认知 功能。
神经退行性疾病治疗
针对神经退行性疾病中的表观遗传调控异常,开发潜在的治疗策略 。
15
其他疾病中表观遗传影响
心血管疾病
表观遗传调控在心血管疾病如 动脉粥样硬化、高血压等的发
生发展中具有潜在作用。
2024/3/26
代谢性疾病
表观遗传变化与肥胖、糖尿病 等代谢性疾病的发生和发展密 切相关。
20
非编码RNA研究技术
2024/3/26
非编码RNA测序技术
通过对特定细胞或组织中的非编码RNA进行高通量测序,从而鉴定新的非编码RNA分子 并研究其表达模式和功能。
微小RNA(microRNA)靶基因预测和验证
利用生物信息学方法预测microRNA的靶基因,并通过实验手段验证其调控关系,从而揭 示microRNA在生物过程中的作用。
与疾病关联
非编码RNA异常表达与多种疾病相 关,如心血管疾病、代谢性疾病和 癌症等。
10
其他类型表观遗传变异
2024/3/26
染色质可及性
01
染色质结构的开放或关闭状态可以影响基因表达,这种变化可
以通过高通量测序技术进行检测和分析。
拷贝数变异
02
基因组中特定区域的拷贝数增加或减少也可以导致表观遗传变
DNA甲基化异常与多种疾 病的发生和发展密切相关 ,如癌症、神经退行性疾 病等。
8
组蛋白修饰与染色质重塑
组蛋白修饰类型
包括乙酰化、甲基化、磷 酸化等多种共价修饰方式 ,影响组蛋白与DNA的相 互作用。
2024/3/26
染色质重塑
通过改变核小体位置和组 蛋白修饰状态来调控染色 质结构和基因表达。
表观遗传调控参与突触可塑性的形成和维持,影响学习记忆等认知 功能。
神经退行性疾病治疗
针对神经退行性疾病中的表观遗传调控异常,开发潜在的治疗策略 。
15
其他疾病中表观遗传影响
心血管疾病
表观遗传调控在心血管疾病如 动脉粥样硬化、高血压等的发
生发展中具有潜在作用。
2024/3/26
代谢性疾病
表观遗传变化与肥胖、糖尿病 等代谢性疾病的发生和发展密 切相关。
20
非编码RNA研究技术
2024/3/26
非编码RNA测序技术
通过对特定细胞或组织中的非编码RNA进行高通量测序,从而鉴定新的非编码RNA分子 并研究其表达模式和功能。
微小RNA(microRNA)靶基因预测和验证
利用生物信息学方法预测microRNA的靶基因,并通过实验手段验证其调控关系,从而揭 示microRNA在生物过程中的作用。
与疾病关联
非编码RNA异常表达与多种疾病相 关,如心血管疾病、代谢性疾病和 癌症等。
10
其他类型表观遗传变异
2024/3/26
染色质可及性
01
染色质结构的开放或关闭状态可以影响基因表达,这种变化可
以通过高通量测序技术进行检测和分析。
拷贝数变异
02
基因组中特定区域的拷贝数增加或减少也可以导致表观遗传变
DNA甲基化异常与多种疾 病的发生和发展密切相关 ,如癌症、神经退行性疾 病等。
8
组蛋白修饰与染色质重塑
组蛋白修饰类型
包括乙酰化、甲基化、磷 酸化等多种共价修饰方式 ,影响组蛋白与DNA的相 互作用。
2024/3/26
染色质重塑
通过改变核小体位置和组 蛋白修饰状态来调控染色 质结构和基因表达。
2024版表观遗传学课件
发展历程
从经典的遗传学理论到现代表观遗传学的建立,经 历了对基因表达调控机制的逐步深入认识。近年来, 随着高通量测序技术的发展,表观遗传学领域取得 了重要突破。
2024/1/25
4
研究对象及意义
2024/1/25
研究对象
主要包括DNA甲基化、组蛋白修饰、 非编码RNA调控等表观遗传修饰现 象。
意义
表观遗传学揭示了生物体内基因表 达调控的复杂性和多样性,对于理 解生物发育、进化以及疾病发生发 展机制具有重要意义。
5
与其他生物学领域关系
与遗传学关系
表观遗传学与经典遗传学相互补 充,共同揭示生物遗传信息的传 递和表达调控机制。
与发育生物学关系
发育过程中涉及大量基因表达的 时空特异性调控,表观遗传学修 饰参与其中并发挥关键作用。
2024/1/25
组蛋白修饰的定义
01
通过对组蛋白进行共价修饰,如乙酰化、甲基化、磷酸化等,
改变染色质的结构和功能。
组蛋白修饰的作用
02
参与基因表达的调控,影响DNA的复制、修复和重组等过程。
组蛋白修饰的研究方法
03
包括染色质免疫共沉淀、质谱分析等。
9
非编码RNA调控
2024/1/25
非编码RNA的定义
2024/1/25
01 02 03 04
与细胞生物学关系
细胞是生物体结构和功能的基本 单位,表观遗传学修饰在细胞分 裂、增殖和分化过程中发挥重要 作用。
与医学关系
表观遗传学异常与多种疾病的发 生发展密切相关,为疾病的预防、 诊断和治疗提供了新的思路和方 法。
6
02
表观遗传机制
Chapter
2024/1/25
表观遗传学简介ppt课件
表观遗传学简介
Jomi
20131121
·表观遗传学简介
基因突变??
2
·表观遗传学简介
·表观遗传学概述 ·表观遗传学研究内容 ·表观遗传学研究意义
3
·表观遗传学概述
-表观遗传(Epigenetics)
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基因表达 调控所决定的表型遗传,涉及染色质重编程、整体的基因表 达调控(如隔离子,增强子,弱化子,DNA甲基化,组蛋白 修饰等功能 ), 及基因型对表型的决定作用。
泛 素 是一种存在于大多数真核细胞中的小蛋白 , 它的主 要功能是标记需要分解掉的蛋白质,使其被水解 ; 当附有泛 素的蛋白质移动到桶状的蛋白酶的时候,蛋白酶就会将该蛋 白质水解 , 泛素也可以标记跨膜蛋白,如受体,将其从细胞 膜上除去。
17
·表观遗传学研究内容
-染色质重塑(chromatin remodeling)
·转录抑制复合物干扰基因转录。 甲基化DNA结合蛋白与启动子区内的甲基化CpG岛结合,再与其
他一些蛋白共同形成转录抑制复合物(TRC),阻止转录因子与启动子 区靶序列的结合,从而影响基因的转录。
·通过改变染色质结构而抑制基因表达。 染色质构型变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化和
去乙酰化本身就分别是转录增强子和转录阻遏物蛋白。
21
·表观遗传学研究内容
siRNA介导的RNAi
22
·表观遗传学研究内容
miRNA(microRNA)介导的RNAi
23
·表观遗传学研究内容
-其他内容
转录后基因沉默(Post-transcriptional Gene Silencing ,PTGS) 研究结果发现有大量的转基因植株不能正常表达,通常这并不是由
Jomi
20131121
·表观遗传学简介
基因突变??
2
·表观遗传学简介
·表观遗传学概述 ·表观遗传学研究内容 ·表观遗传学研究意义
3
·表观遗传学概述
-表观遗传(Epigenetics)
所谓表观遗传就是不基于DNA差异的核酸遗传。即细胞 分裂过程中,DNA 序列不变的前提下,全基因组的基因表达 调控所决定的表型遗传,涉及染色质重编程、整体的基因表 达调控(如隔离子,增强子,弱化子,DNA甲基化,组蛋白 修饰等功能 ), 及基因型对表型的决定作用。
泛 素 是一种存在于大多数真核细胞中的小蛋白 , 它的主 要功能是标记需要分解掉的蛋白质,使其被水解 ; 当附有泛 素的蛋白质移动到桶状的蛋白酶的时候,蛋白酶就会将该蛋 白质水解 , 泛素也可以标记跨膜蛋白,如受体,将其从细胞 膜上除去。
17
·表观遗传学研究内容
-染色质重塑(chromatin remodeling)
·转录抑制复合物干扰基因转录。 甲基化DNA结合蛋白与启动子区内的甲基化CpG岛结合,再与其
他一些蛋白共同形成转录抑制复合物(TRC),阻止转录因子与启动子 区靶序列的结合,从而影响基因的转录。
·通过改变染色质结构而抑制基因表达。 染色质构型变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化和
去乙酰化本身就分别是转录增强子和转录阻遏物蛋白。
21
·表观遗传学研究内容
siRNA介导的RNAi
22
·表观遗传学研究内容
miRNA(microRNA)介导的RNAi
23
·表观遗传学研究内容
-其他内容
转录后基因沉默(Post-transcriptional Gene Silencing ,PTGS) 研究结果发现有大量的转基因植株不能正常表达,通常这并不是由
《表观遗传学》PPT课件-2024鲜版
通过设计特异性针对非编码RNA的小分子抑制剂或RNA干 扰片段,研究非编码RNA的功能和作用机制。
染色质构象捕获技 术
结合高通量测序和生物信息学分析,研究非编码RNA与染 色质构象的关系及其对基因表达的调控作用。
2024/3/27
26
07
表观遗传学前沿与展望
2024/3/27
27
表观遗传学领域的研究热点
表观遗传学定义
研究基因表达或细胞表现型的变化, 而非DNA序列改变的科学。
发展历程
从经典遗传学到分子遗传学,再到表 观遗传学,人类对基因表达调控的认 识不断深入。
2024/3/27
4
表观遗传学与遗传学的关系
2024/3/27
遗传学
01
研究基因序列的遗传与变异规律。
表观遗传学
02
研究基因表达调控的规律,与遗传学相辅相成。
17
表观遗传与生物进化
2024/3/27
表观遗传变异与自然选择
生物体在应对环境压力时,可能通过表观遗传变异产生适应性表型。这些变异可以在不改变DNA序列的情 况下传递给后代,并在自然选择的作用下逐渐在种群中累积。
表观遗传与物种形成
在物种形成过程中,生殖隔离的形成是至关重要的。表观遗传机制可以在不影响DNA序列的情况下,导致 不同种群间基因表达的差异,进而促进生殖隔离的形成和物种的分化。
表观遗传与生物复杂性
生物体的复杂性不仅体现在基因组的多样性上,还体现在基因表达的精细调控上。表观遗传机制通过影响基 因表达的时空特异性和水平,为生物复杂性的产生和维持提供了重要的调控手段。
18
05
表观遗传与人类疾病
2024/3/27
19
肿瘤与表观遗传异常
染色质构象捕获技 术
结合高通量测序和生物信息学分析,研究非编码RNA与染 色质构象的关系及其对基因表达的调控作用。
2024/3/27
26
07
表观遗传学前沿与展望
2024/3/27
27
表观遗传学领域的研究热点
表观遗传学定义
研究基因表达或细胞表现型的变化, 而非DNA序列改变的科学。
发展历程
从经典遗传学到分子遗传学,再到表 观遗传学,人类对基因表达调控的认 识不断深入。
2024/3/27
4
表观遗传学与遗传学的关系
2024/3/27
遗传学
01
研究基因序列的遗传与变异规律。
表观遗传学
02
研究基因表达调控的规律,与遗传学相辅相成。
17
表观遗传与生物进化
2024/3/27
表观遗传变异与自然选择
生物体在应对环境压力时,可能通过表观遗传变异产生适应性表型。这些变异可以在不改变DNA序列的情 况下传递给后代,并在自然选择的作用下逐渐在种群中累积。
表观遗传与物种形成
在物种形成过程中,生殖隔离的形成是至关重要的。表观遗传机制可以在不影响DNA序列的情况下,导致 不同种群间基因表达的差异,进而促进生殖隔离的形成和物种的分化。
表观遗传与生物复杂性
生物体的复杂性不仅体现在基因组的多样性上,还体现在基因表达的精细调控上。表观遗传机制通过影响基 因表达的时空特异性和水平,为生物复杂性的产生和维持提供了重要的调控手段。
18
05
表观遗传与人类疾病
2024/3/27
19
肿瘤与表观遗传异常
遗传学:表观遗传学教学课件
基因表达模式
• 决定细胞类型的不是基因本身,而是基因 表达模式,通过细胞分裂来传递和稳定地 维持具有组织和细胞特异性的基因表达模 式对于整个机体的结构和功能协调是至关 重要的。
• 基因表达模式在细胞世代之间的可遗传性 并不依赖细胞内DNA的序列信息。
• 基因表达模式有表观遗传修饰决定。
Waddington's epigenetics
• CMT3 (CHROMOMETHYLASE3) – 5'-CHG-3' sites
• (H= A, C or T) • Interacts with histone mark
• CMT2 (CHROMOMETHYLASE3) – 5'-CHH-3' sites
DRM 1, DRM 2 (DOMAINS REARRANGED 1 and 2) - 5'-CHH-3' sites
Photo credit: DrL
Mosaicism: An Individual with Two Different Eye Colors
“Diego”
Mosaicism: An Individual Eye with Two Colors
Epigenetic programming in plants helps silence transposons and maintain centromere function
2、衰老
无论DNA甲基化水平增高还是减低,都与人的 衰老过程相关。
3、免疫紊乱 在狼疮病人的T细胞中,甲基转移酶活性降低,DNA
存在异常的低甲基化。 4、神经精神疾病
精神分裂症和情绪障碍与DNMT基因相关。基因高甲 基化抑制脑组织中Reelin蛋白的表达,Reelin蛋白是 维持正常神经传递、大脑信息存储和突触可塑性所必 需的蛋白 。
表观遗传学PPT课件
1958年,R.A.Brink发现paramutation现象。
1961年,Mary Lyon发现X染色体失 活现象。
1983年,DNA甲基化的发现。
近年来,现代分子生物学 认为细胞中信息的表达受两 种因素控制:一种是传统意 义上的遗传调控,另一种是 表观遗传调控—何时、何地、 以何种方式去应用遗传信息 的指令。
表观遗传学(epigentics) 被认为是遗传学领域中探讨 基因型与表现型之间相互关 系的一个新的研究方向。
• 人类表观基因组和疾病联合会 于2003 年10月正式宣布开始投 资和实施旨在解析人类全基因 组中表观遗传信息及其与疾病 状态相关的特定表观遗传修饰 的人类表观基因组计划(Human Epigenome Project , HEP) 。
DNA低甲基化:整个基因组普遍低甲基化,这种广泛的 低甲基化会造成基因的不稳定,这与多种肿瘤的发生有 关。 DNA的低甲基化也可能在异常组蛋白修饰的协同下引起 某些T细胞基因的异常活化、导致自身免疫性疾病的发 生。
肿瘤类型 肺癌
乳腺癌 食管癌 胃癌 肝癌
结直肠癌
肾癌 膀胱癌
前列腺癌 卵巢癌
神经胶质瘤 淋巴瘤
CHCH33源自CH3DNA
DNA
CH
3
CH
复制
3
酶
甲基 CH
3
转移
CH
3
酶
CH
3
甲基化抑制基因的 表达
SUCCESS
THANK YOU
2019/7/30
DNA高甲基化:基因启动子区的CpG岛在正常状态下一般是 非甲基化的,当发生甲基化时,基因转录沉寂,使一些重 要基因如抑癌基因、DNA修复基因等丧失功能,从而导致 正常细胞的生长分化调控失常以及DNA损伤不能被及时修 复,这与多种肿瘤形成密切相关。
1961年,Mary Lyon发现X染色体失 活现象。
1983年,DNA甲基化的发现。
近年来,现代分子生物学 认为细胞中信息的表达受两 种因素控制:一种是传统意 义上的遗传调控,另一种是 表观遗传调控—何时、何地、 以何种方式去应用遗传信息 的指令。
表观遗传学(epigentics) 被认为是遗传学领域中探讨 基因型与表现型之间相互关 系的一个新的研究方向。
• 人类表观基因组和疾病联合会 于2003 年10月正式宣布开始投 资和实施旨在解析人类全基因 组中表观遗传信息及其与疾病 状态相关的特定表观遗传修饰 的人类表观基因组计划(Human Epigenome Project , HEP) 。
DNA低甲基化:整个基因组普遍低甲基化,这种广泛的 低甲基化会造成基因的不稳定,这与多种肿瘤的发生有 关。 DNA的低甲基化也可能在异常组蛋白修饰的协同下引起 某些T细胞基因的异常活化、导致自身免疫性疾病的发 生。
肿瘤类型 肺癌
乳腺癌 食管癌 胃癌 肝癌
结直肠癌
肾癌 膀胱癌
前列腺癌 卵巢癌
神经胶质瘤 淋巴瘤
CHCH33源自CH3DNA
DNA
CH
3
CH
复制
3
酶
甲基 CH
3
转移
CH
3
酶
CH
3
甲基化抑制基因的 表达
SUCCESS
THANK YOU
2019/7/30
DNA高甲基化:基因启动子区的CpG岛在正常状态下一般是 非甲基化的,当发生甲基化时,基因转录沉寂,使一些重 要基因如抑癌基因、DNA修复基因等丧失功能,从而导致 正常细胞的生长分化调控失常以及DNA损伤不能被及时修 复,这与多种肿瘤形成密切相关。
2024年度-表观遗传学课件教学课件
5
表观遗传学的研究意义
揭示生物多样性的本质
表观遗传学可以解释生物体在相同遗传背景下表现出的多样性,有助 于深入理解生物进化的机制。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾病等都与表观遗传学异常有关, 研究表观遗传学有助于揭示这些疾病的发生和发展机制。
指导个体化医疗和精准治疗
表观遗传学可以为个体化医疗和精准治疗提供理论支持和实践指导, 如针对患者的基因表达谱制定个性化治疗方案。
单细胞测序技术
通过单细胞测序技术对单个细胞的表观遗传信息进行检测和分析, 揭示细胞间的异质性和表观遗传信息的动态变化。
生物信息学分析技术
利用生物信息学方法对表观遗传学数据进行整合和分析,挖掘其中的 关键信息和调控网络。
21
05 表观遗传学的应 用前景与挑战 22
表观遗传学在医学领域的应用前景
疾病诊断
13
神经退行性疾病与表观遗传学
1 2
DNA甲基化与神经退行性疾病
DNA甲基化异常可导致神经元功能障碍和死亡, 进而参与神经退行性疾病的发生和发展。
组蛋白修饰与神经退行性疾病
组蛋白修饰异常可影响神经元功能和存活,与神 经退行性疾病的发生和发展密切相关。
3
非编码RNA与神经退行性疾病
非编码RNA可通过调控基因表达和表观遗传修饰 等方式参与神经退行性疾病的发生和发展。
解,从而调控基因表达。
长非编码RNA(lncRNA)
02
通过与DNA、RNA或蛋白质相互作用,在多个层面调控基因表
达,如染色质修饰、转录和转录后调控等。
环状RNA(circRNA)
03
作为miRNA海绵或参与蛋白质翻译调控等方式,影响基因表达
表观遗传学的研究意义
揭示生物多样性的本质
表观遗传学可以解释生物体在相同遗传背景下表现出的多样性,有助 于深入理解生物进化的机制。
解析复杂疾病的发生机制
许多复杂疾病如癌症、神经退行性疾病等都与表观遗传学异常有关, 研究表观遗传学有助于揭示这些疾病的发生和发展机制。
指导个体化医疗和精准治疗
表观遗传学可以为个体化医疗和精准治疗提供理论支持和实践指导, 如针对患者的基因表达谱制定个性化治疗方案。
单细胞测序技术
通过单细胞测序技术对单个细胞的表观遗传信息进行检测和分析, 揭示细胞间的异质性和表观遗传信息的动态变化。
生物信息学分析技术
利用生物信息学方法对表观遗传学数据进行整合和分析,挖掘其中的 关键信息和调控网络。
21
05 表观遗传学的应 用前景与挑战 22
表观遗传学在医学领域的应用前景
疾病诊断
13
神经退行性疾病与表观遗传学
1 2
DNA甲基化与神经退行性疾病
DNA甲基化异常可导致神经元功能障碍和死亡, 进而参与神经退行性疾病的发生和发展。
组蛋白修饰与神经退行性疾病
组蛋白修饰异常可影响神经元功能和存活,与神 经退行性疾病的发生和发展密切相关。
3
非编码RNA与神经退行性疾病
非编码RNA可通过调控基因表达和表观遗传修饰 等方式参与神经退行性疾病的发生和发展。
解,从而调控基因表达。
长非编码RNA(lncRNA)
02
通过与DNA、RNA或蛋白质相互作用,在多个层面调控基因表
达,如染色质修饰、转录和转录后调控等。
环状RNA(circRNA)
03
作为miRNA海绵或参与蛋白质翻译调控等方式,影响基因表达
遗传学第十二章表观遗传学精选课件
染色质重塑与表观遗传调控
探讨染色质重塑与DNA甲基化、组蛋白修饰等表观 遗传调控之间的相互作用及联合用药策略。
THANKS
感谢观看
异常影响
异常的染色质重塑与多种疾病相关,如癌症、神经系统疾病等。同时, 核小体定位的改变也可能导致基因表达的异常和疾病的发生。
03 表观遗传机制探 讨
基因印记与X染色体失活
01 02 03
基因印记定义与特点
基因印记是指来自父方或母方的等位基因在发育过程中产生 专一性的加工修饰,导致后代体细胞中两个等位基因出现不 同的表达特性。这种修饰是稳定和可遗传的,但不涉及DNA 序列的改变。
甲基化特异性PCR 根据甲基化和非甲基化DNA设计特异性引物,通 过PCR扩增来检测特定基因的甲基化状态。
3
甲基化敏感的限制性内切酶法
利用对甲基化敏感的限制性内切酶切割DNA,通 过比较切割前后的DNA片段差异来判断甲基化水 平。
组蛋白修饰检测技术
01
染色质免疫沉淀
利用特异性抗体与组蛋白修饰位点结合,再通过沉淀和洗涤等步骤富集
遗传学第十二章表观遗传学 精选课件
目 录
• 表观遗传学概述 • 表观遗传变异类型 • 表观遗传机制探讨 • 实验方法与技术手段 • 疾病发生发展中作用 • 药物研发及临床应用前景
01 表观遗传学概述
表观遗传学定义与特点
定义
表观遗传学是研究基因表达发生可 遗传变化而不涉及DNA序列改变的 学科。
异常影响
异常的非编码RNA表达与多种疾病相 关,如癌症、心血管疾病等。
作用
非编码RNA能够通过与靶基因结合或 调控转录因子等方式,影响基因表达 和细胞功能。
染色质重塑与核小体定位
定义
探讨染色质重塑与DNA甲基化、组蛋白修饰等表观 遗传调控之间的相互作用及联合用药策略。
THANKS
感谢观看
异常影响
异常的染色质重塑与多种疾病相关,如癌症、神经系统疾病等。同时, 核小体定位的改变也可能导致基因表达的异常和疾病的发生。
03 表观遗传机制探 讨
基因印记与X染色体失活
01 02 03
基因印记定义与特点
基因印记是指来自父方或母方的等位基因在发育过程中产生 专一性的加工修饰,导致后代体细胞中两个等位基因出现不 同的表达特性。这种修饰是稳定和可遗传的,但不涉及DNA 序列的改变。
甲基化特异性PCR 根据甲基化和非甲基化DNA设计特异性引物,通 过PCR扩增来检测特定基因的甲基化状态。
3
甲基化敏感的限制性内切酶法
利用对甲基化敏感的限制性内切酶切割DNA,通 过比较切割前后的DNA片段差异来判断甲基化水 平。
组蛋白修饰检测技术
01
染色质免疫沉淀
利用特异性抗体与组蛋白修饰位点结合,再通过沉淀和洗涤等步骤富集
遗传学第十二章表观遗传学 精选课件
目 录
• 表观遗传学概述 • 表观遗传变异类型 • 表观遗传机制探讨 • 实验方法与技术手段 • 疾病发生发展中作用 • 药物研发及临床应用前景
01 表观遗传学概述
表观遗传学定义与特点
定义
表观遗传学是研究基因表达发生可 遗传变化而不涉及DNA序列改变的 学科。
异常影响
异常的非编码RNA表达与多种疾病相 关,如癌症、心血管疾病等。
作用
非编码RNA能够通过与靶基因结合或 调控转录因子等方式,影响基因表达 和细胞功能。
染色质重塑与核小体定位
定义
表观遗传学
Epigenetics, SXMU
Epigenetics comes of age
“The major problem, I think, is chromatin… you can inherit something beyond the DNA sequence. That’s where the real excitement of genetics is now” (Watson, 2003).
Epigenetics, SXMU
DNA甲基化的特点
不改变DNA的碱基配对特性
不改变DNA的编码属性
增加额外的信息
体细胞可遗传
Epigenetics, SXMU
DNA甲基化与肿瘤
1、DNA甲基化整体与局部的悖论
癌基因组整体甲基化水平降低 Global hypomethylation
1. 遗传的基本功能单位 2. 基因由DNA编码 3. 一个基因编码一条蛋白质 4. 基因序列的改变可能导致功能及表型的改变
基因型 (Genotype) -> 表型 (Phenotype)
Epigenetics, SXMU
获得性遗传( Inheritance of
acquired characteristics)
Epigenetics, SXMU
表观遗传(epigenetic inheritance): 通过有丝
分裂或减数分裂来传递非DNA序列信息的现象。
表观遗传学(epigenetics):则是研究不涉及
DNA序列改变的基因表达和调控的可遗传变化。
研究从基因演绎为表型的过程和机制的一门新兴
的遗传学分支。
2)靶向性DNA甲基化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双向(bidirectional);内含子间(intronic); 基因间(intergenic);5种lncRNA。 (二)Polycomb蛋白表观遗传调控(不讲) (三)染色体位置效应(不讲)
23
24
• 第二节
表观遗传学的功能
一、X染色体失活的表观遗传学 • 1961年M.F.Lyon就提出了关于雌性哺乳动物体细 胞的两条X染色体中会有一条发生随机失活的假说, X染色体基因的剂量补偿。
WASP基因突变,多男患;女患者由于携带 正常WASP基因X染色体过多失活导致。
31
• 第二节
遗传印记
♀驴(31对)×♂马(32对)
♀马×♂驴
马骡
驴骡
32
• (一)遗传印记 • 是一种典型的非孟德尔遗传,是指不同亲本来源 的一对等位基因之间存在功能上的差异。 • 基因印记过程 印记的去除(去甲基化) 印记的去除过程是发生在原始生殖细胞的早 期阶段。 父源将甲基直接去除。 印记的形成(重新甲基化) 印记形成于成熟配子,并持续到出生后。 印记的维持(甲基化维持) 母源甲基化维持失败
• 基因调控元件(如启动子)所含CpG岛中的5mC会阻 碍转录因子复合体与DNA的结合。 DNA甲基化一般与基因沉默相关联; 非甲基化一般与基因的活化相关联; 而去甲基化往往与一个沉默基因的重新激活相 关联。
11
• DNA甲基化对基因表达的时空调控
DNA全新甲基化
DNA主动去甲基化
DNA甲基• • • • • (一)非编码RNA的表观遗传学 非编码RNA(non-protein-coding RNA,ncRNA) tRNA,rRNA;短链非编码RNA,长链非编码RNA。 1.短链非编码RNA 短链RNA(又称小RNA),小干涉RNA(short interfering RNA ,siRNA—双链) 和 微小RNA(microRNA ,miRNA—单链)。 • RNA干扰(RNAi):是通过小RNA分子在mRNA水平上 介导mRNA的降解诱导特异性序列基因沉默的过程。 • 诱导染色质结构的改变,决定着细胞的分化命运,还 对外源的核酸序列有降解作用以保护本身的基因组。
13
2. DNMT3 (DNMT3A; DNMT3B;调控因子DNMT3L) 重新(重头)甲基化。维持甲基化也有作用,
重复序列甲基化。DNMT3L缺乏-COOH末端催化结构域。
•(二)DNMTs与细胞增殖和分化
DNMTs参与大规模去甲基化、再甲基化实现胚胎发育 中基因表达的重新编程,可遗传。
DNA甲基化异常:甲基化增强、甲基化降低。 与细胞增殖和分化有关的基因表达异常相关。
33
父亲
母亲
遗 传 印 记 的 形 成
印记基因
印记基因
印记去除 精子
印记去除
配子
卵子
印记形成
子代
基因印记过程来自父方和母方的等位基因 具有不同的甲基化模式
34
(二)遗传印记的特点
①遗传印记基因遍布基因组,50多印记基因 聚集成簇形成12个染色体印记区。 ②遗传印记基因的内含子小,雄性印记基因 的重组率高于雌性印记基因。 ③印记基因组织特异性表达,如鼠在胰腺中 Ins1和Ins2同时表达,在卵黄中Ins1表达。 ④遗传印记在世代传递中可以逆转。
赖氨酸特异性SET结构域HMT:H3K4;H3K9;H3K27;H4K20 非SET结构域HMT:H3K79
精氨酸甲基化酶:H3R2;H3R17;H3R26;H4R3
组蛋白去甲基转移酶:H3K4;H3K9(LSD1,第一个发现的
组蛋白去甲基转移酶)。
19
• 组蛋白甲基化可以与基因抑制有关,也可以与基因 的激活相关,这往往取决于被修饰氨基酸的位置和 程度,引发不同的效应。 转录始动及延伸:
22
2.长链非编码RNA (long noncoding RNA, lncRNA)
长度超过200bp; Xist基因17kb非编码RNA在DNA甲基化和组蛋白修饰的参与 下共同导致并维持X染色体的失活; 其他长链非编码RNA参与染色质修饰;基因组修饰;转录 激活;转录干扰;核内复制等。
位置结构分类:正义(sense);反义(antisense);
H3K4me1;H3K4me2;H3K4me3;
H3K4甲基化存在活性基因启动子区域,位于松散 常染色质。
转录延伸:HK36me2/me3 转录抑制:H3K9;H3K27;H4K20。 H3K9甲基化位于凝缩异染色质——中心粒;端 粒;失活X染色体,沉默基因启动子。
20
H3-K9转录抑制; H3-K4转录活化
36
交互易换式印记调节(增强子/染色体屏障调节模式)
MBDs
父源等位基因 IGF2 DMR H19 组织特异性增强子 CTCF 母源等位基因 IGF2
DMR
H19
methyl-CpG binding proteins (MBDs)
DMR
隔离子(insulator)----染色质屏障作用
37
三、衰老的表观遗传学(不讲)
28
• Tsix基因: Xist反义基因,瞬时调控元件,Tsix
RNA是Xist RNA的反义RNA,对Xist起负调节作用。 具染色体屏障调节蛋白CTCF结合位点,在增强子 阻断中可以发挥功能。Tsix基因和CTCF共同组成 了Xist的外源开关功能。 • DXPas34基因:靠近Tsix主要启动子的DXPas34富 含CpG,15kb微卫星重复序列,通过对Tsix基因调 控影响X染色体失活。
DNA甲基转移酶:DNA methyltransferases,DNMTs DNMT1;DNMT2;DNMT3A; DNMT3B S-腺苷甲硫氨酸: S-adenosylmethionine,SAM S-腺苷同型半胱氨酸:S-adenosylhomocysteine,SAH
9
10
• 在结构基因的5’端调控区域, CpG二连核苷常常 以成簇串联形式排列,这种富含CpG二连核苷的区 域称为CpG岛(CpG islands),其大小为5001000bp,约56%的编码基因含该结构。
35
(三)印记基因及其可能的调控方式
遗传印记是生殖细胞系的一种表观遗传修饰;印 记中心(imprinting center,ICs)直接介导了不 同亲本来源的印记基因的DNA甲基化模式,并协调 遗传印记在发育全过程中的维持和传递。 胰岛素样生长因子2-----父源表达 (insulin-like growth factor,IGF2) H19(非编码RNA)------母源表达 差异甲基化区域----富含CpG岛 (differentially methylated region,DMR) 5′- IGF2 – DMR - H19 - 3′
29
• 失活X染色体特点: 组蛋白修饰----组蛋白H3、H4不被乙酰化 是X失活染色体的一个重要特征
甲基化----CpG岛的高度甲基化是维持失
活的另一个重要因素。
30 2017年3月12日
(二)与X染色体失活相关的疾病
不对称X染色体失活。
Wiskott-Aldrich综合征:XR
免疫缺陷、湿疹、伴血小板缺乏症。
第十二章
表观遗传学
2017年3月12日
1
遗传信息的传递:中心法则
• • • • • 1. 2. 3. 4. 5. DNA自身通过复制传递遗传信息; DNA转录成RNA; RNA自身能够复制 (RNA病毒); RNA能够逆转录成DNA; RNA翻译成蛋白质。
• 1939年,生物学家 Conrad Hal Waddington 首先在《现代遗传学导论》 中提出了epigenetics这一术语, 表观基因型(epigenotype) • 并于 1942 年定义表观遗传学为“生物 学的分支,研究基因型产生表型的过 程”。
遗 传 与 表 观 遗 传
基因序列发生改变
基因序列未发生改变;可遗传
6
表观遗传学的特点:
1、可遗传的,即这类改变通过有丝分裂
或减数分裂,能在细胞或个体世代间遗传。
2、基因表达的可变性。
3、没有DNA序列的改变或不能用DNA序列
变化来解释。
• 第一节
表观遗传学的分子机制
• 1. 遗传编码信息:提供生命必需蛋白质的编码模 板。 • 2. 表观遗传学信息:何时、何地、以何种方式去 应用遗传编码信息。
HAT促进基因的转录,松散的常染色质状态;
HDAC抑制基因的转录,凝缩的异染色质状态。
18
• (二)组蛋白甲基化作用
• 发生在H3、H4的 Lys 和 Arg 残基上,精氨酸残基上 存在单甲基化、双甲基化;赖氨酸残基上的甲基化存 在单甲基化、双甲基化和三甲基化3种状态。
• 组蛋白甲基转移酶(histone methyltransferase,HMT)
17
• (一)组蛋白乙酰化作用 组蛋白N末端 Lys 上,组蛋白乙酰化能选择 性的使某些染色质区域的结构从紧密变得松散, 开放某些基因的转录,增强其表达水平 。
• 组蛋白乙酰化转移酶(histone acetyltransferase,HAT )
• 组蛋白去乙酰化酶(histone deacetylase,HDAC)
• 1987年,Hollidy R 对表观遗传学进行了较 为系统的描述。
• 他认为表观遗传学是研究不涉及 DNA 序列改 变的基因表达和调控的可遗传变化的学科, 或者说是研究从基因型演绎为表型的过程中 规律和机制的一门新兴的遗传学分支。
• 概念:基因的 DNA 序列不发生改变的情 况下,基因的表达水平与功能发生改变, 并产生可遗传的表型。
• DNA和染色质上的表观遗传修饰:
• DNA甲基化;组蛋白修饰;RNA相关沉默(非编码
RNA);染色质重塑。
8
一、DNA甲基化机制 DNA甲基化(DNA methylation)是研究得 最清楚、也是最重要的表观遗传修饰形式, 主要是基因组 DNA上的胞嘧啶第5位碳原子和 甲基间的共价结合,胞嘧啶由此被修饰为5甲 基胞嘧啶(5-methylcytosine,5mC)。
23
24
• 第二节
表观遗传学的功能
一、X染色体失活的表观遗传学 • 1961年M.F.Lyon就提出了关于雌性哺乳动物体细 胞的两条X染色体中会有一条发生随机失活的假说, X染色体基因的剂量补偿。
WASP基因突变,多男患;女患者由于携带 正常WASP基因X染色体过多失活导致。
31
• 第二节
遗传印记
♀驴(31对)×♂马(32对)
♀马×♂驴
马骡
驴骡
32
• (一)遗传印记 • 是一种典型的非孟德尔遗传,是指不同亲本来源 的一对等位基因之间存在功能上的差异。 • 基因印记过程 印记的去除(去甲基化) 印记的去除过程是发生在原始生殖细胞的早 期阶段。 父源将甲基直接去除。 印记的形成(重新甲基化) 印记形成于成熟配子,并持续到出生后。 印记的维持(甲基化维持) 母源甲基化维持失败
• 基因调控元件(如启动子)所含CpG岛中的5mC会阻 碍转录因子复合体与DNA的结合。 DNA甲基化一般与基因沉默相关联; 非甲基化一般与基因的活化相关联; 而去甲基化往往与一个沉默基因的重新激活相 关联。
11
• DNA甲基化对基因表达的时空调控
DNA全新甲基化
DNA主动去甲基化
DNA甲基• • • • • (一)非编码RNA的表观遗传学 非编码RNA(non-protein-coding RNA,ncRNA) tRNA,rRNA;短链非编码RNA,长链非编码RNA。 1.短链非编码RNA 短链RNA(又称小RNA),小干涉RNA(short interfering RNA ,siRNA—双链) 和 微小RNA(microRNA ,miRNA—单链)。 • RNA干扰(RNAi):是通过小RNA分子在mRNA水平上 介导mRNA的降解诱导特异性序列基因沉默的过程。 • 诱导染色质结构的改变,决定着细胞的分化命运,还 对外源的核酸序列有降解作用以保护本身的基因组。
13
2. DNMT3 (DNMT3A; DNMT3B;调控因子DNMT3L) 重新(重头)甲基化。维持甲基化也有作用,
重复序列甲基化。DNMT3L缺乏-COOH末端催化结构域。
•(二)DNMTs与细胞增殖和分化
DNMTs参与大规模去甲基化、再甲基化实现胚胎发育 中基因表达的重新编程,可遗传。
DNA甲基化异常:甲基化增强、甲基化降低。 与细胞增殖和分化有关的基因表达异常相关。
33
父亲
母亲
遗 传 印 记 的 形 成
印记基因
印记基因
印记去除 精子
印记去除
配子
卵子
印记形成
子代
基因印记过程来自父方和母方的等位基因 具有不同的甲基化模式
34
(二)遗传印记的特点
①遗传印记基因遍布基因组,50多印记基因 聚集成簇形成12个染色体印记区。 ②遗传印记基因的内含子小,雄性印记基因 的重组率高于雌性印记基因。 ③印记基因组织特异性表达,如鼠在胰腺中 Ins1和Ins2同时表达,在卵黄中Ins1表达。 ④遗传印记在世代传递中可以逆转。
赖氨酸特异性SET结构域HMT:H3K4;H3K9;H3K27;H4K20 非SET结构域HMT:H3K79
精氨酸甲基化酶:H3R2;H3R17;H3R26;H4R3
组蛋白去甲基转移酶:H3K4;H3K9(LSD1,第一个发现的
组蛋白去甲基转移酶)。
19
• 组蛋白甲基化可以与基因抑制有关,也可以与基因 的激活相关,这往往取决于被修饰氨基酸的位置和 程度,引发不同的效应。 转录始动及延伸:
22
2.长链非编码RNA (long noncoding RNA, lncRNA)
长度超过200bp; Xist基因17kb非编码RNA在DNA甲基化和组蛋白修饰的参与 下共同导致并维持X染色体的失活; 其他长链非编码RNA参与染色质修饰;基因组修饰;转录 激活;转录干扰;核内复制等。
位置结构分类:正义(sense);反义(antisense);
H3K4me1;H3K4me2;H3K4me3;
H3K4甲基化存在活性基因启动子区域,位于松散 常染色质。
转录延伸:HK36me2/me3 转录抑制:H3K9;H3K27;H4K20。 H3K9甲基化位于凝缩异染色质——中心粒;端 粒;失活X染色体,沉默基因启动子。
20
H3-K9转录抑制; H3-K4转录活化
36
交互易换式印记调节(增强子/染色体屏障调节模式)
MBDs
父源等位基因 IGF2 DMR H19 组织特异性增强子 CTCF 母源等位基因 IGF2
DMR
H19
methyl-CpG binding proteins (MBDs)
DMR
隔离子(insulator)----染色质屏障作用
37
三、衰老的表观遗传学(不讲)
28
• Tsix基因: Xist反义基因,瞬时调控元件,Tsix
RNA是Xist RNA的反义RNA,对Xist起负调节作用。 具染色体屏障调节蛋白CTCF结合位点,在增强子 阻断中可以发挥功能。Tsix基因和CTCF共同组成 了Xist的外源开关功能。 • DXPas34基因:靠近Tsix主要启动子的DXPas34富 含CpG,15kb微卫星重复序列,通过对Tsix基因调 控影响X染色体失活。
DNA甲基转移酶:DNA methyltransferases,DNMTs DNMT1;DNMT2;DNMT3A; DNMT3B S-腺苷甲硫氨酸: S-adenosylmethionine,SAM S-腺苷同型半胱氨酸:S-adenosylhomocysteine,SAH
9
10
• 在结构基因的5’端调控区域, CpG二连核苷常常 以成簇串联形式排列,这种富含CpG二连核苷的区 域称为CpG岛(CpG islands),其大小为5001000bp,约56%的编码基因含该结构。
35
(三)印记基因及其可能的调控方式
遗传印记是生殖细胞系的一种表观遗传修饰;印 记中心(imprinting center,ICs)直接介导了不 同亲本来源的印记基因的DNA甲基化模式,并协调 遗传印记在发育全过程中的维持和传递。 胰岛素样生长因子2-----父源表达 (insulin-like growth factor,IGF2) H19(非编码RNA)------母源表达 差异甲基化区域----富含CpG岛 (differentially methylated region,DMR) 5′- IGF2 – DMR - H19 - 3′
29
• 失活X染色体特点: 组蛋白修饰----组蛋白H3、H4不被乙酰化 是X失活染色体的一个重要特征
甲基化----CpG岛的高度甲基化是维持失
活的另一个重要因素。
30 2017年3月12日
(二)与X染色体失活相关的疾病
不对称X染色体失活。
Wiskott-Aldrich综合征:XR
免疫缺陷、湿疹、伴血小板缺乏症。
第十二章
表观遗传学
2017年3月12日
1
遗传信息的传递:中心法则
• • • • • 1. 2. 3. 4. 5. DNA自身通过复制传递遗传信息; DNA转录成RNA; RNA自身能够复制 (RNA病毒); RNA能够逆转录成DNA; RNA翻译成蛋白质。
• 1939年,生物学家 Conrad Hal Waddington 首先在《现代遗传学导论》 中提出了epigenetics这一术语, 表观基因型(epigenotype) • 并于 1942 年定义表观遗传学为“生物 学的分支,研究基因型产生表型的过 程”。
遗 传 与 表 观 遗 传
基因序列发生改变
基因序列未发生改变;可遗传
6
表观遗传学的特点:
1、可遗传的,即这类改变通过有丝分裂
或减数分裂,能在细胞或个体世代间遗传。
2、基因表达的可变性。
3、没有DNA序列的改变或不能用DNA序列
变化来解释。
• 第一节
表观遗传学的分子机制
• 1. 遗传编码信息:提供生命必需蛋白质的编码模 板。 • 2. 表观遗传学信息:何时、何地、以何种方式去 应用遗传编码信息。
HAT促进基因的转录,松散的常染色质状态;
HDAC抑制基因的转录,凝缩的异染色质状态。
18
• (二)组蛋白甲基化作用
• 发生在H3、H4的 Lys 和 Arg 残基上,精氨酸残基上 存在单甲基化、双甲基化;赖氨酸残基上的甲基化存 在单甲基化、双甲基化和三甲基化3种状态。
• 组蛋白甲基转移酶(histone methyltransferase,HMT)
17
• (一)组蛋白乙酰化作用 组蛋白N末端 Lys 上,组蛋白乙酰化能选择 性的使某些染色质区域的结构从紧密变得松散, 开放某些基因的转录,增强其表达水平 。
• 组蛋白乙酰化转移酶(histone acetyltransferase,HAT )
• 组蛋白去乙酰化酶(histone deacetylase,HDAC)
• 1987年,Hollidy R 对表观遗传学进行了较 为系统的描述。
• 他认为表观遗传学是研究不涉及 DNA 序列改 变的基因表达和调控的可遗传变化的学科, 或者说是研究从基因型演绎为表型的过程中 规律和机制的一门新兴的遗传学分支。
• 概念:基因的 DNA 序列不发生改变的情 况下,基因的表达水平与功能发生改变, 并产生可遗传的表型。
• DNA和染色质上的表观遗传修饰:
• DNA甲基化;组蛋白修饰;RNA相关沉默(非编码
RNA);染色质重塑。
8
一、DNA甲基化机制 DNA甲基化(DNA methylation)是研究得 最清楚、也是最重要的表观遗传修饰形式, 主要是基因组 DNA上的胞嘧啶第5位碳原子和 甲基间的共价结合,胞嘧啶由此被修饰为5甲 基胞嘧啶(5-methylcytosine,5mC)。