第五章 习题与复习题详解(矩阵特征值和特征向量)----高等代数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题

1. (1) 若A 2

= E ,证明A 的特征值为1或-1;

(2) 若A 2

= A ,证明A 的特征值为0或1. 证明(1)2

2A E A =±所以的特征值为1,故A 的特征值为1

(2)

2222

2

,,()0,001

A A A X A X AX X X

X λλλλλλλ===-=-==所以两边同乘的特征向量得即由于特征向量非零,故即或

2. 若正交矩阵有实特征值,证明它的实特征值为1或 -1. 证明

1,1

T T T A A A E A A A A A λλλλ

-=∴==±设是正交阵,故有与有相同的特征值,

1

故设的特征值是,有=,即

3.求数量矩阵A=aE 的特征值与特征向量. 解

A 设是数量阵,则

000000000000a a

A aE a a

a E A a

λλλλ⎛⎫

⎪== ⎪

⎪⎝⎭

---=

-L L L L L

L

L

L L L L L

所以:特征值为a (n 重), A 属于a 的特征向量为 k 1(1,0,…,0)T + k 2(0,1,…,0)T

+ k n (0,0,…,1)T

,(k 1, k 2, …, k n 不全为0)

4.求下列矩阵的特征值与特征向量.

(1)113012002-⎛⎫ ⎪

⎪ ⎪⎝⎭

(2)324202423⎛⎫ ⎪ ⎪ ⎪⎝⎭

(3)⎪⎪⎪

⎭⎫ ⎝⎛---122212

221 (4)212533102-⎛⎫ ⎪- ⎪ ⎪--⎝⎭

()1112221211(5) , , (0,0)0.T T n n n n a a b a a b A b b b a b a a b αβαβαβ⎛⎫

⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪====≠≠= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭

⎝⎭⎝⎭

L M M M 其中,且 解(1)

11

3

0120,1,2,00

2A E AX λλλ

λλλλ

---=-====-0,123求得特征值为:分别代入=求得

A 属于特征值1的全部特征向量为k(1,0,0)T

,(k ≠0)

A 属于特征值2的全部特征向量为k(1,2,1)T

,(k ≠0)

解(2)

131323249490492222024

234

2

312

349(1)(1)(8)

2

A E r r c c λ

λλλλλλλλλλ

λλ

λλλλλλλ

-------=

-+-----+---+=-+--按第一列展开

231,8λλλ==-=1求得特征值:

将其代入()A E X λ-=0,求得特征向量:

1211211001X k k λ⎛⎫

- ⎪-⎛⎫ ⎪ ⎪=-=+ ⎪ ⎪

⎪ ⎪

⎝⎭ ⎪

⎝⎭

时,,12,k k 不全为零

11

821X k λ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭

时, 0k ≠

解(3)

12312312

2111111212212(1)21222

12

2

12

2

1011

(1)112(1)(1)(3)0

211,1,3

A E r r r λλλλλλ

λλλλ

λ

λ

λλλλλλλ

λλλ-----=--++--=------------=-+--=-+-+--==-=解得:

代入()A E X λ+=0,求得特征向量:

A 属于特征值-1的全部特征向量为k(1,-1,0)T

,(k ≠0);A 属于特征值1的全部特征向量

为k(1,-1,1)T

,(k ≠0);A 属于特征值3的全部特征向量为k(0,1,-1)T

,(k ≠0)

解(4)

32

23

212212533503751

21

2(1)[21](1)r r λλλλλλ

λ

λλλλ------⨯+----------=+---=-+直接展开:

特征值为-1,-1,-1;A 属于特征值-1的全部特征向量为k(1,1,-1)T

,(k ≠0)

解(5)

()11112122122

21212

n n n n n n n n a a b a b a b a

a b a b a b A b b b a a b a b a b ⎛⎫⎛⎫

⎪ ⎪ ⎪

== ⎪ ⎪ ⎪

⎪⎝⎭⎝⎭

L L L

M L L L

设λ为A 的任一特征值,A 的属于λ的特征向量为:ξ,则 A ξλξ= 于是 2

2

A A ξλξλξ== 而2

()()0T

T

T

T

T

T

T A αβαβαβαβααββ====

故 2λξ=0,因为特征向量0ξ≠,所以 0λ=,即矩阵A 的所有特征值为0.

1112

11112

12122221

22211

21

2120,000000

0n n n n n n n n n n n n n a b a b a b a b a b a b a b a b a b a b a b a b A E a b a b a b a b a b a b a b b b b λλλλ-⎛⎫⎛⎫

⎪ ⎪- ⎪ ⎪

-=≠≠ ⎪ ⎪

⎪-⎝⎭⎝⎭

⎛⎫

⎪ ⎪ ⎪ ⎪⎝⎭

L

L

L L

u u

u u u u u u u u u u u r L L L L L L

L u u u u u u u u u u u u u r M L L

1初等行变换

解得基础解系:

3211112n-1100,,010001n b b b b b b ξξξ⎛⎫⎛⎫⎛⎫

--- ⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

===

⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎝⎭⎝⎭⎝⎭

L M M M

相关文档
最新文档