SPSS非参数检验—两独立样本检验_案例解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS-非参数检验—两独立样本检验案例解析
2011-09-16 16:29
好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究与分享一下:spss非参数检验——两独立样本检验,
我还就是引用教程里面得案例,以:一种产品有两种不同得工艺生产方法,那她们得使用寿命分别就是否相同
下面进行假设:1:一种产品两种不同得工艺生产方法,她们得使用寿命分布就是相同得
2:一种产品两种不同得工艺生产方法,她们得使用寿命分布就是不相同得
我们采用SPSS进行分析,数据如下所示:
点击“分析”选择“非参数检验” 再选择“旧对话框——2个独立样本检
验如下所示:
在检验类型下面选择"Mann-Whitney U “ 检验类型 (Mann-whitney u 检验等同于对两组数据得Wilcoxon秩与检验与Kruskal-Wallis检验,主要检验两个样本得总体在某些位置上就是否相等。)
两种工艺类型分别为:甲种工艺与乙种工艺分别用定义值为“1” 与
“2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 与组别 2 中分别填入 1与2,点击继续按钮
选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:
下面对结果,我将进行详细分解:
1:N 代表变量个数,甲种工艺秩与为 80
乙种工艺秩与为 40,
下面来分析“秩与”这个结果如何出来得
第一步:我们将”使用寿命“这个变量按照“从小到大”得顺序进行排序,得到如下结果:
得到数据如下:
甲种工
艺: 661 669 675 679 682 692
693
乙种工
艺:646 649 650 651 652 662
663 672
我们将“甲种工艺”与“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序”分别用“序号”代替以上数据
序号分别
为:1 2 3 4 5 6 7
8 9 10 11 12 13
14 15
得到以下结果:
甲种工艺
为:6 9 11 12 13 14 15 (加起来刚好等于80)
乙种工艺
为:1 2 3 4 5 7 8 10 (加起来刚好等于40)
结果得到了验证
2:“在检验统计量B ”表中可以瞧出:
1:渐进显著性与“单侧显著性”(精确显著性“ 都分别小于 0、05,所以可以得出结论:
一种产品两种不同得工艺生产方法,她们得使用寿命分布就是不相同得
大家可以采用其它“检验类型”来进一步验证这个结论
Mann-Whitney U 统计值可以通过以下计算公式得到: