第十九章一次函数全章教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章一次函数

本章概述

本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系.以及以建立一次函数模型来选择最优方案为素材的课题学习.

全章包括三节:第节变量与函数是全章的基础部分;第节是全章的重点部分;第节是全章的拓展提高部分,通过两个典型问题的讨论,展示函数的应用价值,突出建立数学模型的思想方法和实际意义.

教学目标

1. 以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.

2. 结合实例,了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.

3. 能确定简单实际问题中函数自变量的取值范围,并会求函数值.

4. 结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.

5. 通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.

6. 进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.

课时安排

本章教学时间约需17课时,具体分配如下:

变量与函数 6课时

一次函数 6课时

课题学习选择方案 3课时教学活动

小结 2课时

函数

教案A

第1课时

教学内容

变量与函数.

教学目标

1. 结合实例,了解常量、变量的意义,体会“变化与对应”的思想.

2. 通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.

3. 引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.

教学重点

变量发现的过程.

教学难点

变量发现的过程.

教学过程

一、导入新课

“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,树高随树龄而变化……在你周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在.那么,什么是变量呢我们今天就研究这个问题.

二、新课教学

1. 思考问题

(1)汽车以60 km/h的速度匀速行驶,行驶路程为s km,行

驶时间为t h.填写下表,s 的值随t 的值的变化而变化吗

(2)电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元设一场电影售出x张票,票房收入为y元,y的值随x 的值的变化而变化吗

(3)你见过水中涟漪吗圆形水波慢慢地扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少S 的值随r 的值的变化而变化吗

(4)用10 m长的绳子围一个矩形.当矩形的一边长x 分别为3 m, m,4 m, m时,它的邻边长y分别为多少y的值随x的值的变化而变化吗

设计意图:让学生熟练地从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示

另一个变化的量.

教师引导学生思考这些问题,通过合理、正确的思维方法探索出变化规律.可以分组进行实验活动,然后各组选派代表汇报.最后教师进行点评.通过动手实验,调动学生的学习积极性,使学生进一步深刻体会了变量间的关系,学会运用表格形式来表示实验信息.

2. 变量与常量的概念

(1)在学生动手实验并充分发表自己意见的基础上,师生共同归纳:

这些问题反映了不同事物的变化过程.其中有些量的数值是变化的,例如时间t,路程s;售出票数x,票房收入y……有些量的数值是始终不变的,例如速度 60 km/h,票价 10元/张……在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.

(2)请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.

(3)举出一些变化的实例,指出其中的变量和常量.

学生先独立思考,然后组内交流并作记录,最后各组选派代表汇报.通过活动,培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.

三、课堂练习

指出下列问题中的变量和常量:

1. 某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.

2. 某地手机通话费为元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为t min,话费卡中的余额为w元.

3. 水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π.

4. 把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.

练习答案:1. 变量x,y;常量4.2. 变量t,w;常量,30.3. 变量r,C;常量π.4. 变量x,y;常量10.

四、课堂小结

对本节课进行总结、理清脉络.

五、布置作业

教材第71、72页练习.

第2课时

教学内容

变量与函数.

教学目标

1. 了解函数的概念.

2. 能结合具体实例概括函数的概念.

3. 在函数概念的形成过程中体会运动变化与对应的思想.

相关文档
最新文档