基于matlab的4连杆机构设计
基于matlab的四杆机构运动分析
基于matlab的四杆机构运动分析一、四杆机构基本概念四杆机构是一种通过变换连杆长度,改变机构运动形态的机械系统。
四杆机构通常由固定连杆、推动连杆、连接杆和工作连杆四个连杆组成,其中固定连杆和推动连杆固定不动,连接杆和工作连杆则沿固定轴线的方向做平动或旋转运动。
四杆机构的基本构造如下图所示:四杆机构的四个连杆的长度和构造参数,以及驱动机构的运动决定了机构的运动特性。
在进行四杆机构运动分析时,需要通过求解运动学关系式和动力学方程,得到连杆的运动规律和力学特性。
二、四杆机构运动学分析1.运动学基本方程四杆机构的运动学分析基本方程是连杆长度变化的定理,即:l₁²+l₂²-2l₁l₂cosθ₂=l₃²+l₄²-2l₃l₄cosθ₄其中,l₁,l₂分别为固定连杆和推动连杆长度;l₃,l₄分别为连接杆和工作连杆长度;θ₂,θ₄分别为推动连杆和工作连杆的夹角。
2.运动学求解方法根据四杆机构运动学基本方程,可以求解机构中任意连杆的角度和位置,从而分析机构运动规律。
在matlab程序中,运动分析可以采用分析法或图解法。
分析法通常采用向量法或坐标法,即将四杆机构中各连杆和运动副的运动量表示为向量或坐标,然后根据连杆长度变化的定理,求解四个未知角度θ₁、θ₂、θ₃、θ₄。
图解法则先通过画图确定机构的运动规律,在图上求解连杆的角度。
比如可以采用伯格(Bourgeois)图法或恰普利恩(Chaplygin)图法等。
四杆机构动力学分析基本方程包括平衡方程和力平衡方程。
平衡方程:当四杆机构处于平衡状态时,连杆的受力关系可以表示为:ΣF=0其中ΣF为各连杆受力的合力。
ΣF=m×a其中,m为每个连杆的质量,a为连杆的加速度。
四杆机构动力学求解方法以matlab为工具,可借助matlab的求解器完成求解。
具体可以利用matlab的优化工具箱、控制工具箱和系统动态学工具箱等,来实现机构模型的动态模拟、仿真和优化设计。
基于matlab的连杆机构设计
基于matlab的连杆机构设计————————————————————————————————作者: ————————————————————————————————日期:目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理 (1)1.3机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程...................................................11.3.2求解方法.....................................................................22基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计……………………………………………………………………………………………113.2代码设计……………………………………………………………………………………………124 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
基于MATLAB的平面四连杆机构优化设计
基于 MATLAB 的四连杆机构的优化设计
陈伟斌
(汕头大学,工学院)
[摘要] 对平面四连杆机构进行数学建模,要求实现预期的传递函数运动轨迹。利用 MATLAB 强大的运算功能,快速精确地计 算出优化结果。再利用 MATLAB 编写程序检验得出的运动轨迹是否达到期望目标。 [关键词] 连杆、轨迹、优化设计、MATLAB。
Optimized design for four bar linkage mechanism of crushing machine based on MATLAB
Terry Chen (Shantou University, Engineering College)
[Abstract] Analyze the model of four bar linkage mechanism and try to satisfy the movement locus that we excepted. With the strong functions of MATLAB, we can calculate and get the best result quickly. Then write a program to simulate the movement locus of the output and examine whether it satisfy our requirement. [Key Words] Linkage, Movement locus , Optimized Design, MATLAB
l 2, l 3 两 个 独 立 变 量 。 设
l 2 x1; l 3 x 2; 可以得出本题是二维优化问题。
有志,有恒,有识,有为
基于MATLAB的四连杆机构运动分析软件设计开题报告
基于MATLAB的四连杆机构运动分析软件设计开题报告云南农业大学本科生毕业设计开题报告工程技术学院车辆工程专业( 工科) 2008级设计题目:基于MATLAB的四连杆机构运动分析软件设计人机交互界面的设计云南农业大学教务处制2011年10月8日云南农业大学毕业设计开题报告1(本课题所涉及的问题在国内(外)的研究现状综述目前,MATLAB软件是功能强大的科学计算软件,被国内外高校和科研单位所使用。
尤其是基于矩阵运算的数据处理,还可用符号运算计算解析解;还可以实现数值分析、图像处理等若干个领域的计算和图形显示功能。
在工程技术界,MATLAB 也被用来解决一些实际课题和数学模型问题。
典型的应用包括数值计算、算法预设计与验证,以及一些特殊的矩阵计算应用,如自动控制理论、统计、数字信号处理(时间序列分拆)等。
平面连杆机构是一种应用十分广泛的机构。
对它的分析及设计一直是机构学研究的一个重要课题。
但传统方法对于常见的连杆机构的运动学、动力学分析仍然是非常繁琐,以至于很难对它进行深入的研究,如果建立一个连杆机构的仿真系统,使设计人员在进行设计时,从复杂的机构分析和烦琐的计算中摆脱出来,集中精力从事于创新工作,那将是很有意义的。
基于这样一种考虑,本课题尝试建立一个平面连杆机构的运动学仿真系统。
应用Matlab/Simulink对机构领域中应用广泛的基本机构——双曲柄机构、曲柄摇杆机构、曲柄滑块机构等的连杆点轨迹作仿真,该方法编程工作量小、轨迹图形显示便捷,所建模型只需作少量更改即可适应四杆机构的不同特征值,并可推广至多杆机构情况。
建立四杆机构的优化设计模型,用 MATLAB 优化工具箱实现四杆机构的优化设计及仿真,得到的优化结果有足够的精度,能满足设计需求,同时表明MATLAB 优化工具箱在四杆机构优化设计及其相关问题中具有较好的应用前景。
2(本人对课题提出的任务要求及实现预期目标的可行性分析由于连杆机构的性能受机构上繁多的几何参数的影响,呈复杂的非线性关系,无论从性能分析上还是性能综合上都是一个比较困难的工作。
基于matlab的平面四连杆机构设计以及该机构的运动分析参考模板
基于matlab的平面四连杆机构设计以及该机构的运动仿真分析摘要四连杆机构因其结构方便灵活,能够传递动力并实现多种运动形式而被广泛应用于各个领域,因此对其进行运动分析具有重要的意义。
传统的分析方法主要应用几何综合法和解析综合法,几何综合法简单直观,但是精确度较低;解析法精确度较高,但是计算工作量大。
随着计算机辅助数值解法的发展,特别是MATLAB软件的引入,解析法已经得到了广泛的应用。
对于四连杆的运动分析,若应用MATLAB 则需要大量的编程,因此我们引入proe软件,我们不仅可以在此软件中建立实物图,而且还可以对其进行运动仿真并对其运动分析。
在设计四连杆时,我们利用解析综合法建立数学模型,再根据数学模型在MATLAB中编程可以求得其他杆件的长度。
针对范例中所求得的各连杆的长度,我们在proe软件中画出其三维图(如图4)并在proe软件中进行仿真分析得出CB,的角加速度的变化,从而得到CB,两接触处所受到的力是成周期性变化的,可以看出CB,两点处的疲劳断裂,我们提B,两点处极易疲劳断裂,针对C出了在设计四连杆中的一些建议。
关键字:解析法 MATLAB 软件 proe 软件 运动仿真建立用解析法设计平面四杆机构模型对于问题中所给出的连架杆AB 的三个位置与连架杆CD 的三个位置相对应,即三组对应位置为:332211,,,,,ψϕψϕψϕ,其中他们对应的值分别为: 52,45,82,90,112,135,为了便于写代数式,可作出AB 与CD 对应的关系,其图如下:图—2 AB 与CD 三个位置对应的关系通过上图我们可以通过建立平面直角坐标系并利用解析法来求解,其直角坐标系图如下:φααi θi φi图—3 平面机构直角坐标系通过建立直角坐标系OXY ,如上图所示,其中0α与0φ为AB 杆与CD 杆的初始角,各杆件的长度分别用矢量d c b a ,,,,表示,将各矢量分别在X 轴与Y 轴上投影的方程为⎩⎨⎧=++=+)sin(*)sin(*)sin(*)cos(*)cos(*)cos(*φθαφθαc b a c d b a在上述的方程中我们可以消除θ,从而可以得到α与φ之间的关系如下:)cos(2)cos(2)cos(2)(2222αφαφab ac cd b d c a +-=+-++ (1) 为便于化简以及matlab 编程我们可以令:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-++=c d H a d H ac b d c a H 32222212 (2) 通过将(2)式代入(1)式中则可以化简得到如下等式: )cos()cos()cos(321αφαφH H H +-=+ (3)我们可以通过(3)式将两连架杆对应的位置带入(3)式中,我们可以得到如下方程:⎪⎩⎪⎨⎧+-=++-=++-=+)cos()cos()cos()cos()cos()cos()cos()cos()cos(333332123222211311121ϕψϕψϕψϕψϕψϕψH H H H H H H H H (4) 联立(4)方程组我们可以求得321,,H H H ,再根据(2)中的条件以及所给定的机架d 的长度,我们可以求出其它杆件的长度为:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++===1222322acH d c a b H d c H d a (5)四连杆设计范例:在日常生活中,我们经常看到消防门总能自动关上,其实它是利用四连杆机构与弹簧组成的。
基于matlab的平面四杆机构运动分析_毕业论文
……………………. ………………. …………………毕业论文基于MATLAB的平面四杆机构运动分析院部机械与电子工程学院装订线……………….……. …………. …………. ………摘要 (I)Abstract (II)1 绪论 (1)2 平面四杆机构运动分析 (2)2.1 平面四杆机构简介 (2)2.2 平面四杆机构类型分析 (3)2.3 建立平面四杆机构的数学模型 (4)2.3.1 建立平面四杆机构的封闭矢量位置方程式 (4)2.3.2 运用矢量法和矩阵法求解封闭矢量方程式 (5)2.3.3 求解过程涉及的数学、物理计算方法 (6)3 基于MATLAB 的运动分析程序设计 (7)3.1 MATLAB简介 (7)3.2 程序设计流程 (8)3.3 编写程序的M文件 (10)3.3.1编写fun函数 (10)3.3.2编写主程序 (10)3.4 程序运行输出结果 (12)4 基于MATLAB的GUI分析系统设计 (15)4.1 GUI简介 (15)4.2 GUI界面设计 (15)4.3 GUI代码编写 (16)4.3.1 Edit Text代码编写 (16)4.3.2 Pop-up Menu代码编写 (16)4.4 GUI分析系统运行效果 (17)5 结论 (18)参考文献 (20)致谢 (20)附录 (20)附录一主函数程序代码 (20)附录二popupmenu4_Callback函数下程序代码 (23)Abstract (II)1 Introduction (1)2 The analysis of motion for planar four-bar mechanism (2)2.1 Intoduction to the planar four-bar mechanism (2)2.2 Analysis for the types of planar four-bar mechanism (3)2.3 Build the mathematical model of planar four-bar mechanism (4)2.3.1 Build the closed position vector equation for planar four-bar mechanism (4)2.3.2 Apply the vector & matrix method to solve the closed vector equation (4)2.3.3 Mathematical & physical calculation method involved in the solving process (5)3 The program design for the motion analysis based on MATLAB (7)3.1 Introduction to MATLAB (7)3.2 The program design process (7)3.3 Write the M-file for program (9)3.3.1 Write the fun function (9)3.3.2 Write the main function (9)3.4 The output of running the program (11)4 The design of GUI analysis system based on MATLAB (14)4.1 Introducton to GUI (14)4.2 The interface design of GUI (14)4.3 Write the GUI code (15)4.3.1 Write the Edit Text code (15)4.3.2 Write the Pop-up Menu code (15)4.4 The running effect of the GUI analysis system (16)5 Conclusion (19)References (20)Acknowledgement (21)Appendix (22)Appendix I The main function code (22)Appendix II The popupmenu4_Callback function code (25)基于MATLAB的平面四杆机构运动分析摘要:建立以平面四杆机构为研究对象的数学模型,以MATLAB软件为载体,利用MATLAB矩阵数据分析处理功能,设计了平面四杆机构运动分析程序。
基于MATLAB的四连杆机构运动分析软件设计开题报告
5.完成本课题的工作方案及进度计划
工作方案:
为了模拟与仿真(动态演示)四连杆机构的运动轨迹,根据MATLAB对平面四连杆机构的运动仿真程序及机构的运动特性特制定本方案,其基本内容如下:
(1)根据进度计划的时间安排,采取讨论、查阅资料及指导老师的要求完成本方案
(2)具体的部署安排(见进度计划表)
应用Matlab/Simulink对机构领域中应用广泛的基本机构——双曲柄机构、曲柄摇杆机构、曲柄滑块机构等的连杆点轨迹作仿真,该方法编程工作量小、轨迹图形显示便捷,所建模型只需作少量更改即可适应四杆机构的不同特征值,并可推广至多杆机构情况。建立四杆机构的优化设计模型,用MATLAB优化工具箱实现四杆机构的优化设计及仿真,得到的优化结果有足够的精度,能满足设计需求,同时表明MATLAB优化工具箱在四杆机构优化设计及其相关问题中具有较好的应用前景。
操作系统:Windows XP
软件开发工具:MATLAB R2008a
网络数据库:SQL sever 2000
浏览器:Internet Explorer
Celeron(R) CPU 处理器
2GB内存
320GB硬盘
4、相关书籍
[1]《机械原理(第七版)》主编 孙恒 陈作模 葛文杰 高等教育出版社
[2]《Simulink与信号处理》编著 丁亦农 北京航空航天大学出版社
(二)通过 simulink模块库选择及其环境,固定刚体及运动副,分别从刚体和运动副库中将需要的刚体和运动副拖拽至建模窗口中,定义刚体及运动副的相对位置及连接形式,在模型窗口中设置运动副与刚体的相对位置,并以合适的顺序将其连接,用检测器模块得出仿真结果。
(三)GUI界面设计:
a.在界面上输出参数,根据输入的杆长参数界定机构所属类型。
基于MATLAB软件的铰链四杆机构运动分析仿真软件开发
文章编号: 1009-3818(2002)02-0047-03基于MATLAB 软件的铰链四杆机构运动分析仿真软件开发覃虹桥1 魏承辉2 罗佑新2(1华中科技大学材料学院 湖北武汉430074)(2常德师范学院机械工程系 湖南常德415003)摘 要: 建立了铰链四杆机构运动分析的数学模型,以MATLAB 程序设计语言为平台,将参数化设计与交互式相结合,设计了铰链四杆机构仿真软件,该软件具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象.设计者只需输入参数就可得到仿真结果,再将运行结果与设计要求相比较,对怎样修改设计做出决策.它为四杆机构设计提供了一种实用的软件与方法.关键词: 铰链四杆机构;按钮;界面;仿真中图分类号: TH 311.52;TH 113.2+2 文献标识码: A铰链四杆机构的运动学分析是机构学中典型的机构运动分析之一,如果设计铰链四杆机构时能及时图示其运动轨迹和速度分析,从而将图示结果与设计要求相比较,可以及时修改设计中的偏差.目前,MALTAB 已经不再是/矩阵实验室0,而成为国际上最流行的科学与工程计算的软件工具,以及一种具有广泛应用前景的全新的计算机高级编程语言,它在国内外高校和科研部门正扮演着越来越重要的角色,功能也越来越大,不断适应新的要求提出新的解决办法.可以预见,在科学运算与科学绘图领域,MATLAB 语言将长期保持其独一无二的地位.然而,国内至今尚未见到采用MATLAB 开发的有关机构学的软件,笔者以MATLAB 的科学运算与绘图的强大功能开发了铰链机构运动仿真软件.1 铰链四杆机构运动轨迹仿真软件1.1 程序功能与数学模型1)程序功能 本程序可以进行铰链四杆机构的运动分析及位置求解.用户在铰链四杆机构运动分收稿日期:2002-12-10基金项目:湖南省教育厅科研资助项目(00C289)第一作者:覃虹桥(1959-)男高级工程师研究方向:机械设计制造析仿真软件里输入各种参数,即可自动演示不同的铰链四杆机构(曲柄摇杆机构、双曲柄机构、双摇杆机构)的运动.2)数学模型 已知AB=a ,BC =b ,C D =c ,AD=d .AB 为主动杆,以匀角速度逆时针旋转,AD 为机架,见图1.图1 铰链四杆机构运动简图Fig.1 plame four-linkage motion diagram分析:求B C 的运动轨迹,可找B 、C 两点坐标与转动角度51的关系,然后求51+d 51及B 、C 两点的坐标,即可求出运动轨迹.由图1有矢量方程:AB +BC =AD +DC ,则其分量方程为:a c os 51+b cos 52=d +c cos 53(1)a sin 51+b sin 52=c sin 53(2)将式(1)、(2)联立消去52并整理得:a 2+c 2+d 2-b 22ac +d c os 53a -d cos 51c -cos (51-53)=0(3)再改写为:sin 51sin 53+(cos 51-da)cos 53+a 2+c 2+d 2-b 22ac -d c os 51c=0(4)令r 1=sin 51,r 2=cos 51-d a ,r 2222第14卷第2期常德师范学院学报(自然科学版)Vol.14No.22002年6月Journal of Changde Teachers University(Natural Science Edition)Jun.2002则(4)化为:r 1sin 53+r 2cos 53=r 3(5)由三角恒等式求得:53=2arctg r 1?r 21+r 22-r 23r 2+r 3(6)式(6)两个解对应于机构的两种不同装配形式./+0对应于图1的实线,而/-0对应于图1的虚线.B 点坐标:B x =A x +a cos 51,B y =A y +a sin 51C 点坐示:C x =D x +c cos 53,C y =D y +a sin 53从运动杆的转角53,对时间求导可得DC 的角速度,由式(1)、(2)解出52按速度合成可求得BC 的转动角速度[2].1.2 程序框图以曲柄摇杆机构的运动仿真程度为例,程序框图如下:图2 程序框图Fig.2 Programming frame diagram1.3 程序代码采用MATLAB 开发图形界面,程序如下:%fourlinkages.mh_main=figure(.Units .,.normalized .,.Position .,[.3,.3,.5,.5],,.MenuBar .,.none .,.Name .,.四杆机构仿真.,.Number Title .,,.off .,.Resize .,.off .);h_axis=axes(.Units .,.normalized .,.Position .,[.12,.15,.6,.6],,.Tag .,.axPlot .,.Visible .,.on .,.XLim .,[-50,80<,.YLim .,-60,80]);h_text1=uicontrol (.Style .,.Text .,.Tag .,.myText1.,.Units .,,.normalized .,.Position .,[0.78,0.55,.05,.38],.String .,,.输入已知参数.,,.HorizontalAlignment .,.right .);h_te xt2=uicontrol(.Style .,.Text .,.Tag .,.myText2.,.Units .,,.nor malized .,.Position .,[0.15,0.90,.35,0.05],.String .,,.正在仿真,,OK !.,,.HorizontalAlignment .,.right .);a =20;b =50;c =40;d =50;fai =60;four_linkages0(a,b ,c,fai );%初始化图形h_edit1=uicontrol(.Style .,.Edit .,.Tag .,.myEdit1.,.Units .,,.normalized .,.Position .,[0.86,.85,.10,.1],.String .,.20.,,.HorizontalAlignment .,.right .);h_edit2=uicontrol(.Style .,.Edit .,.Tag .,.myEdit2.,.Units .,,.normalized .,.Position .,[0.86,.75,.10,.1],.String .,.50.,,.HorizontalAlignment .,.right .);h_edit3=uicontrol(.Style .,.Edit .,.Tag .,.myEdit3.,.Units .,,.normalized .,.Position .,[0.86,.65,.10,.1],.String .,.40.,,.HorizontalAlignment .,.right .);h_edit4=uicontrol(.Style .,.Edit .,.Tag .,.myEdit4.,.Units .,,.normalized .,.Position .,[0.86,.55,.10,.1],.String .,.60.,,.HorizontalAlignment .,.right .);h_list=uic ontrol(.Style .,.ListBox .,.Tag .,.myList .,.Units .,,.normalized .,.Position .,[0.78,.35,.20,.15],.String .,.正置|反置.,,.HorizontalAlignment .,.right .,.Value .,1);k=1;h_button1=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.25,.2,.1],.String .,,.运动轨迹仿真.,.CallBack .,,.hd1=findobj(gcf,..Tag ..,..myEdit1..);.,,.a =eval(get(hd1,..String ..));.,,.hd2=findobj(gcf,..Tag ..,..myEdit2..);.,,.b =eval(get(hd2,..String ..));.,,.hd3=findobj(gcf,..Tag ..,..myEdit3..);.,,.c =eval(get(hd3,..String ..));.,,.hd4=findobj(gcf,..Tag ..,..myEdit4..);.,,.d =eval(get(hd4,..String ..));.,,48常德师范学院学报(自然科学版)2002年.kk =get(findobj(gcf,..Ta g ..,..myList ..),..Value ..);.,,.four_linkages(a,b,c,d,kk ).]);%调用回调函数轨迹仿真.h_button2=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.15,.2,.1],.String .,,.角速度分析.,.CallBack .,.four_linkages1(a,b,c,d ,kk ).);h_button3=uicontrol(.Style .,.PushButton .,.Units .,,.normalized .,.Position .,[0.78,.05,.2,.1],,.String .,.退出.,.CallBack .,.four_linkages2.);%调用回调函数退出系统在主程序中有3个回调函数和一个初始化函数,回调函数分别用轨迹仿真、运动分析和退出系统.回调函数程序按前述数学模型编程(程序略);初始化函数用程序运行时初始化界面的图形.运行程序产生以下界面(图3).图3 程序运行界面Fi g.3 Programming Interface在界面中输入已知参数,则可生成相应的图形.当输入a =20,b =50,c =40,d =60,装配形式选取正置时,如果选运动轨迹仿真,则得仿真轨迹(图4);如果装配形式选反置,进行轨迹仿真(图5).(注:图4 运动轨迹仿真(装配形式正置)Fi g.4 Moti on track simulation(positiveset)图5 运动轨迹仿真(装配形式为反置)Fig.5 Motion track simulation (in reverse positive set)在图4、5中为节省篇幅,这两个图形只选了对应图3的图形部分,界面的其它部分未剪取.).而当选取装配形式进行轨迹仿真后,可再选角速度分析,得到连杆与摇杆的角速度图形(略).2 结论1)自动演示不同的四杆机构的运动,模拟仿真运动轨迹与从动件的速度分析,有助于分析机构的速度、加速程度和机构的工作性能;2)采用MATLAB 语言开发机构仿真运动分析软件,开发界面容易,运行程序时无需编辑、连接,给使用者以极大的方便.只要输入数据,即可得到结果.将运行结果与设计要求相比较,从而引导设计者修改设计.参 考 文 献1 薛定宇.科学运算程序MATLAB5.3程序设计与应用[M ].北京:清华大学出版社,2000.2 孟宪源.现代机构手册(上)[M].北京:机械工业出版社,1994.3 王沫然.Si mulink4建模及动态仿真[M].北京:电子工业出版社,2002.THE DEVELOPMENT OF EMULATIONAL SOFTWARE FOR ANALYSIS OF MOTION IN PLANE GEMEL FOUR -LINKAGEBASED ON MATLAB SOFTWAREQING Hong -qiao 1 WEI CH eng -hui 2LU O You -xin 2(1T he material institute,Cen tral China University of Science and T echnology,Wuhan Hubei,430074)(2Department of Mechanical Engineering,Changde Teachers University,Changde Hunan 415003)Abstract A mathematical model of motion analysis was estab -lished in plane four-linkage,and emulational software was deve-loped .The software adop ted Matlab5.3.1as a desi gn language.It combined parametric design with interactive design and had good in -terface for user.Thus,i t was fas ter and more convenient to analyse linkage.The emulational result was obtained as soon as input param -eters was imported and the devisers can make decision-making of modification by the comparing emulational result with design de -mand.It provides an applied software and method for linkage.Key words Gemel Four -Linkage;button;interface;emula -tion(责任编校:谭长贵)49第2期覃虹桥 魏承辉 罗佑新 基于MATLAB 软件的铰链四杆机构运动分析仿真软件开发。
基于MATLAB给定连杆预定位置的四杆机构设计
第14卷第2期2019年6月Vol.14No.2Jun.2019陕西工业职业技术学院学报Journal of Shaanxi Polytechnic Institute基于MATLAB给定连杆预定位置的四杆机构设计韩二豹(陕西工业职业技术学院土木工程学院,陕西咸阳712000)摘要:连杆机构是一种典型的机械机构,运动设计是一个比较复杂和困难的问题,给定连杆预定位置的四杆机构的设计常用的设计方法主要为解析法。
本文以MATLAB语言为基础,利用计算机对给定连杆预定位置的四杆机构进行设计。
结果表明,此方法设计过程简洁,结果合理,准确,效率高。
关键词:四杆机构;MATLAB;预定位置中图分类号:TB121文献标识码:A文章编号=9459-2019(2)-0006-03A MATLAB-based Design of Four-bar Linkage with PresetPosition of Connecting RodHan Erbao(School of Civil Engineering,Shaanxi Polytechnic Institute,Xianyang Shaanxi712000,China)Abstract:Connecting rod is a typical mechanical linkage and its motion design is complex and ually, analytical method is the main method used in the design of four一bar linkage with preset position of connecting rod. In the study,a MATLAB一based design of four bar mechanism was made to link the preset position given by com・puter.The results show that the design process is simple Key words:Four bar linkage;MATLAB;Preset positiono引言MATLAB是一种高级技术语言和发展环境,特提供了一个人机交互的系统环境,并以矩阵作为基础的数据结构,节省编程时间,语法简单、容易掌握、调试方便,可以设置调试断点、快速查找程序错误等优点,可以将使用者从繁重重复的计算中解脱出来,已经被大家认可和广泛使用,充分展现其高效、直观、简单的特点⑷。
运用MATLAB解决四杆机构问题
MATLAB 解题1.设有如图所示四杆机构,其中→R 4为机架(常矢),→R1为主动杆,→R3为从动杆,→R 2为连杆。
设在某一工作位置时各杆的角速度和角加速度分别取如下值:ω1=20 rad/s, ε1= 0;ω2=8.5 rad/s, ε2=-10 rad /s 2;ω3=13 rad/s, ε3=-160rad /s 2.试根据上述要求确定该机构尺寸比。
根据图(2),回路闭合方程可写为:→R 1 +→R 2 +→R 3=-→R 4 回路闭合方程对时间求导一次,利用(6)式,可得: 图2 ω1→R 1 +ω2→R 2 +ω3→R 3 = 0回路闭合方程对时间求导两次,利用(7)式,可得c 1→R 1 + c 2 →R 2 + c 3→R 3 = 0其中 c 1=ε1+j ω12 , c 2=ε2+j ω22, c 3=ε3+j ω32解关于→R 1 ,→R 2 和→R 3的线性方程组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→→→001111321321321R R R c c c ωωω→R 4 (13) 可得 →R 1=DDx →R 4, →R 2=DDy →R 4 , →R 3=DDz →R 4注意到上述解中含有相同的分母D,它是一个复数,不妨记为D =k<j α|,被它除的效果是把各杆的长度都缩小k 倍,同时方向都顺时针旋转α角,相当于机构不动,坐标轴逆时针旋转α角。
设计机构时,重要的是机构的形状与尺寸比例。
基于这种考虑,可设→R 4 / D =1,则有→R 1=D x =32320111c c ωω-=1230-j497.3 ; →R 2= D y =311030111c c ωω-=-3200-j1820 ; →R 3= D z =001112121c c ωω-=200+j1955 . 于是:→R 4 = -(→R 1 +→R 2+→R 3) = 1770+j362.3在坐标系上作出上述各杆矢量图,根据各杆矢量图作出机构的闭合矢量图,再根据实际需要选定某一杆长度,其它各杆长度按图比例相似放大。
matlab(四连杆优化设计)
机械优化设计在matlab中的应用东南大学机械工程学院**优化设计目的:在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
优化设计步骤:1. 机械优化设计的全过程一般可以分为如下几个步骤:1)建立优化设计的数学模型;2)选择适当的优化方法;3)编写计算机程序;4)准备必要的初始数据并伤及计算;5)对计算机求得的结果进行必要的分析。
其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。
优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。
在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。
2. 建立数学模型的基本原则与步骤①设计变量的确定;设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。
设计变量的全体实际上是一组变量,可用一个列向量表示:x= [彫Sa X4 ..................... 。
②目标函数的建立;选择目标函数是整个优化设计过程中最重要的决策之一。
当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。
目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。
目标函数的一般表达式为:f(x)= f(X臣」甌巧捡.■…,要根据实际的设计要求来设计目标函数。
③约束条件的确定。
一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。
由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为(.r}S O tt =A (⑴三O L.2.. /J < FT在可行域中,任意设计点满足全部约束条件,称为可行解,但不是最优解,而优化设计就是要求出目标函数在可行域的最优解。
matlab四连杆机构代码实现
matlab四连杆机构代码实现
下面是一个使用MATLAB实现四连杆机构的简单示例代码:
```matlab
% 定义连杆参数
a = [2 3 2 3]; % 连杆长度
theta = [pi/4 pi/3 pi/2 pi/6]; % 连杆转角
% 计算连杆末端坐标
x = zeros(1,5);
y = zeros(1,5);
for i = 2:5
x(i) = x(i-1) + a(i-1) * cos(theta(i-1));
y(i) = y(i-1) + a(i-1) * sin(theta(i-1));
end
% 绘制机构图像
figure;
hold on;
axis equal;
for i = 1:4
line([x(i) x(i+1)], [y(i) y(i+1)], 'LineWidth', 2);
plot(x(i+1), y(i+1), 'ro', 'MarkerSize', 8);
end
```
在这个例子中,我们使用数组`a`存储了四个连杆的长度,使用数组`theta`存储了四个连杆的转角。
通过循环计算每个连杆末端的坐标,并使用MATLAB的`line`函数和`plot`函数绘制连杆和末端坐标点。
你可以根据实际情况修改连杆长度和转角,然后运行代码来生成相应的机构图像。
希望对你有帮助!。
基于MATLAB Simulink的平面四连杆机构仿真(优选.)
基于MATLAB/Simulink的平面四连杆机构仿真一、题目及自由度分析如图1所示,该平面四杆机构中有三根运动的均质钢杆,其中有两根钢杆的一端与接地点连接,第三根杆就与这两根杆剩下的端点连接起来,两个接地点就可认为是第四杆,机构中相关尺寸如图2所示。
计算结构自由度,三个运动杆被限制到平面内运动,因此每个杆都有两个移动和一个转动,即在考虑约束之前,自由度为:3×(2+1)=9但是由于每个杆都受到约束,所以并不是每个自由度都是独立的。
在二维状态下,刚体间的连接或者刚体与接地点的连接就会增加两个约束。
这样就会使得刚体其中一端不能够作为独立的自由运动点,而是要受到邻近刚体的约束。
该题中有四个刚体--刚体或刚体—接地点的连接,这就隐含8个约束。
那么最后的自由度为9-8=1.虽然有四个转动自由度,但是,其中三个都是非独立的,只要确定其中一个,就可确定其余三个。
二、模型建立及参数设置1应用MATLAB/Simulink建立初始模型2在初始模型的基础上添加Joint Sensor模块3依题意设置相关参数⑴配置Ground模块由图2可得系统的基本尺寸为:①固定构件长86.7厘米②Ground_1表示接地点,在World CS坐标轴原点右边43.3cm处③Ground_2表示接地点,在World CS坐标轴原点左边43.4cm处④最下端的铰处于X-Z平面内原点以上4cm图5Ground_1模块参数设置图6Ground_2模块参数设置4配置Joint模块三个没有接地的联杆都是在X-Y平面内的,所以Revolute轴必须是Z轴。
⑴依次打开Revolute参数对话框,保持默认值,即Axis of rotation[x y z]默认设置为[001],Reference csys都是WORLD。
图7Revolute坐标设置⑵根据连接情况依次设置Revolute参数对话框中的Connection parameters参数图8Revolute模块参数对话框Connection parameters参数图9Revolute模块参数对话框Connection parameters参数图10Revolute模块参数对话框Connection parameters参数图11Revolute模块参数对话框Connection parameters参数5配置Body模块本题中Body模块(即Bar)定位方式不是直接相对于WORLD坐标系统,而是采用相对坐标形式,Bar1的CS1相对于Ground_1,Bar2的CS1相对于Bar1,以此类推。
基于MATLAB的平面四连杆机构运动学分析
一、课程设计容及要求:1.对连杆机构运动工作原理及运动参数有一定理解2.掌握MATLAB基本命令3.了解MATLAB编程的基本知识,并能编写简单M文件4.了解MATLAB图形界面设计的基本知识5.课程设计说明书:应阐述整个课程设计容,要突出重点和特色,图文并茂,文字通畅。
应有目录、摘要及关键词、正文、参考文献等容,字数一般不少于6000字。
二、主要参考资料有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。
三、课程设计进度安排指导教师(签名):时间:教研室主任(签名):时间:院长(签名):时间:目录1平面连杆机构的运动分析 (1)1.1 机构运动分析的任务、目的和方法 (1)1.2 机构的工作原理 (1)1.3 机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程 (1)1.3.2求解方法 (2)2 基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3 程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计 (11)3.2代码设计 (12)4 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
基于matlab的4连杆机构设计
基于matlab的4连杆机构设计第一篇:基于matlab的4连杆机构设计目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理................................................................................................1 1.3 机构的数学模型的建立.......................................................................................1 1.3.1建立机构的闭环矢量位置方程...................................................1 1.3.2求解方法.....................................................................2 2 基于MATLAB程序设计..........................................................................................4 2.1 程序流程图 (4)2.2 M文件编写 (6)2.3 程序运行结果输出.............................................................................................7 3 基于MATLAB图形界面设计....................................................................................11 3.1界面设计 (11)3.2代码设计 (12)4 小结 (17)参考文献………………………………………………………………………………………………18平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
基于MATLAB的某特种车转向轮四连杆机构设计
第一作者 :张德坤 ,男, I8年 93 生 , 硕 士 研 究 生 ,研 究 方 向 车 辆 工程 。
中图分类号 :U 6 50 文献标识码 :A 文章编号 : 10 —262 1)70 6 —4 4 3 2 4 0 40 2 (0 1 .0 40 0
1 前 言
为使 某 特 种 车辆 实 现其 设 计 功能 ,拟采 用 全 轮独 立 转 向 ,各
转 向 轮 转 向机 构 设 计 为 四 连杆 机 构 ,主 要 由 液 压 缸 支 座 、液 压
2 基于MA L 进行机构设计 T AB
MA L B 化 工 具箱 有许 多常 用 的优 化 算法 ,其 函数 表达 简 TA 优
洁 ,优化 算 法 选 择 灵 活 ,参 数 设 置 自 由 ,集 数 值 计 算 、符 号 运
缸 、推 杆 、车 轮 、 支架 、转 向轴 、 回转 支 承 、转 向臂 支 座 、转 向 臂等 组 成 ,其结 构如 图 1 所示 。其 中 液压缸 与 液压 缸支 座 、液压 缸 与 推杆 及 转 向臂 、推杆 与 回 转支 撑 、转 向 臂 与转 向臂 支 座 均 为铰 链 连接 ,回转 支 撑 与转 向轴 为花 键连 接 ,转 向轴 与 支架 为 轴承 连
果 分析了相关参数的运动轨迹 ,验证 了设计 结果 的合理 性。该方法集设计与优化于~体 ,简化 了四
连杆机构的设计过程。 关 键 词 :独 立 转 向 四 连 杆 机 构 优 化 设 计
Abs r c Fo rba c a im a a t r fa s c a u p s e i l t e i g wh e a o fr d b ta t u - r me h n s p r me e s o pe i lp r o e v h ce se rn e lh d c n me y i o tmi a i n t o b x o ATLAB.T p ia i n r s t s o h t t e me h d c m b n e i n a d p i z t o lo fM o he a pl t e ul h ws t a h t o o c o i e d sg n op i z t n a d c n smp i h e i n p o e s tmi a i n a i lf t ed sg r c s . o y Ke r s i d p n e tse rn ; o rb rme h n s ; p i l e i n y wo d n e e d n te i g f u - a c a im o t ma sg d
基于MATLAB Simulink的平面四连杆机构仿真
基于MATLAB/Simulink的平面四连杆机构仿真一、题目及自由度分析如图1所示,该平面四杆机构中有三根运动的均质钢杆,其中有两根钢杆的一端与接地点连接,第三根杆就与这两根杆剩下的端点连接起来,两个接地点就可认为是第四杆,机构中相关尺寸如图2所示。
计算结构自由度,三个运动杆被限制到平面内运动,因此每个杆都有两个移动和一个转动,即在考虑约束之前,自由度为:3×(2+1)=9但是由于每个杆都受到约束,所以并不是每个自由度都是独立的。
在二维状态下,刚体间的连接或者刚体与接地点的连接就会增加两个约束。
这样就会使得刚体其中一端不能够作为独立的自由运动点,而是要受到邻近刚体的约束。
该题中有四个刚体--刚体或刚体—接地点的连接,这就隐含8个约束。
那么最后的自由度为9-8=1.虽然有四个转动自由度,但是,其中三个都是非独立的,只要确定其中一个,就可确定其余三个。
二、模型建立及参数设置1应用MATLAB/Simulink建立初始模型2在初始模型的基础上添加Joint Sensor模块3依题意设置相关参数⑴配置Ground模块由图2可得系统的基本尺寸为:①固定构件长86.7厘米②Ground_1表示接地点,在World CS坐标轴原点右边43.3cm处③Ground_2表示接地点,在World CS坐标轴原点左边43.4cm处④最下端的铰处于X-Z平面内原点以上4cm图5Ground_1模块参数设置图6Ground_2模块参数设置4配置Joint模块三个没有接地的联杆都是在X-Y平面内的,所以Revolute轴必须是Z轴。
⑴依次打开Revolute参数对话框,保持默认值,即Axis of rotation[x y z]默认设置为[001],Reference csys都是WORLD。
图7Revolute坐标设置⑵根据连接情况依次设置Revolute参数对话框中的Connection parameters参数图8Revolute模块参数对话框Connection parameters参数图9Revolute模块参数对话框Connection parameters参数图10Revolute模块参数对话框Connection parameters参数图11Revolute模块参数对话框Connection parameters参数5配置Body模块本题中Body模块(即Bar)定位方式不是直接相对于WORLD坐标系统,而是采用相对坐标形式,Bar1的CS1相对于Ground_1,Bar2的CS1相对于Bar1,以此类推。
基于Matlab的四杆机构优化设计简介
·制造业信息化·Vol.22.,200922009机电产品开发与创新Development &Innovation of M achinery &E lectrical P roducts3,No.1Jan .,2010第23卷第1期2010年1月收稿日期:2009-11-06作者简介:李建霞,女,河南信阳人,教授。
主要从事计算机辅助设计教学与研究工作。
已发表核心期刊论文20余篇;王良才,男,山东济南人,副教授。
主要从事机械设计教学与研究工作。
已发表核心期刊论文10余篇。
0引言Matlab 语言是一种非常强大的工程计算语言,提供了非常丰富的Matlab 优化工具箱。
其优化工具箱有许多常用的优化算法,广泛应用于线性规划、二次规划、非线性优化、最小二乘法问题、非线性方程求解、多目标决策等问题,其函数表达简洁,优化算法选择灵活,参数设置自由,相比于其它很多成熟的优化程序具有明显的优越性。
机械优化设计是在现代机械设计理论发展基础上产生的一种新的设计方法,在机械零部件设计中取得了广泛的应用。
机械优化设计是在进行某种机械产品设计时,根据规定的约束条件,优选设计参数,使某项或几项设计指标获得最优值。
在进行优化设计时,首先要建立工程设计问题的数学模型,然后按照数学模型的特点选择优化方法及其计算程序,求得最优设计方案。
1四杆机构优化设计的数学模型四杆机构是机械传动的重要组成部分。
设计四杆机构通常使用作图法与实验法,这两种方法简单易行,但误差较大,运用解析法,能获得所要求的精度,然而用人工进行,整个设计过程是一项繁琐、冗长的工作,甚至可能无法实现。
采用Matlab 优化工具箱对四杆机构进行优化设计,不仅参数输入简单,而且编程工作量小,可更快捷准确地达到设计要求。
四杆机构种类很多,这里只以曲柄摇杆机构为例说明四杆机构优化设计方法。
Matlab 优化工具箱是一套功能强大的工程计算软件,集数值计算、符号运算、可视化建模、仿真和图形处理等多种功能于一体,被广泛应用于机械设计、自动控制和数理统计等工程领域。
matlab四杆机构优化算法
matlab四杆机构优化算法四杆机构是机械工程中常用的一种机构,广泛应用于机械传动、机械臂以及其他工程领域。
四杆机构由四个连杆组成,其中两个连杆为主动连杆,另外两个连杆为从动连杆。
四杆机构的运动特性和性能对于机械系统的设计和优化具有重要意义。
本文将介绍一种基于Matlab的四杆机构优化算法,以提高机构的运动性能和效率。
需要明确优化算法的目标。
在四杆机构的优化中,常见的目标包括最小化机构的运动误差、最大化机构的工作范围、最小化机构的能量消耗等。
根据具体应用的需求,可以选择不同的优化目标。
本文以最小化机构的运动误差为例进行讨论。
在四杆机构中,运动误差是指机构在理想情况下应有的运动轨迹与实际运动轨迹之间的差异。
运动误差的大小直接影响到机构的精度和稳定性。
为了最小化运动误差,可以采用以下步骤进行优化。
需要建立四杆机构的运动学模型。
四杆机构的运动学模型描述了机构各个连杆之间的几何关系和运动规律。
根据四杆机构的结构和运动约束条件,可以建立四杆机构的运动学方程。
在Matlab中,可以利用符号运算工具箱求解运动学方程。
需要确定优化的变量和约束条件。
四杆机构的运动性能受到各个连杆的长度、角度等参数的影响。
在优化中,可以将这些参数作为优化的变量,通过调整这些变量来最小化运动误差。
同时,还需要考虑到机构的实际制造和使用条件,设置相应的约束条件,如连杆长度的范围、运动角度的限制等。
接下来,可以采用优化算法对四杆机构进行优化。
常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
这些算法可以在给定的变量范围内搜索最优解,通过迭代的方式逐步优化机构的运动性能。
在Matlab中,可以利用优化工具箱中的相应函数进行优化计算。
需要对优化结果进行评估和验证。
优化算法得到的结果可能并不是唯一的最优解,因此需要对优化结果进行评估,判断其是否满足设计要求。
可以通过仿真和实验验证的方式对优化结果进行验证,进一步改进和优化机构的设计。
基于Matlab的四杆机构优化算法可以帮助改善机构的运动性能和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1平面连杆机构的运动分析 (1)1.2 机构的工作原理 (1)1.3 机构的数学模型的建立 (1)1.3.1建立机构的闭环矢量位置方程 (1)1.3.2求解方法................................................................... ..22 基于MATLAB程序设计 (4)2.1 程序流程图 (4)2.2 M文件编写 (6)2.3 程序运行结果输出 (7)3 基于MATLAB图形界面设计 (11)3.1界面设计 (11)3.2代码设计 (12)4 小结 (17)参考文献 (18)1平面连杆机构的运动分析1.1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
1.2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
1.3 机构的数学模型的建立1.3.1建立机构的闭环矢量位置方程在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。
如图1所示,先建立一直角坐标系。
设各构件的长度分别为L1、L2 、L3 、L4 ,其方位角为、、、。
以各杆矢量组成一个封闭矢量多边形,即ABCDA。
其个矢量之和必等于零。
即:式1式1为图1所示四杆机构的封闭矢量位置方程式。
对于一个特定的四杆机构,其各构件的长度和原动件2的运动规律,即为已知,而 =0,故由此矢量方程可求得未知方位角、。
角位移方程的分量形式为:式2闭环矢量方程分量形式对时间求一阶导数(角速度方程)为:式3 其矩阵形式为:式4联立式3两公式可求得:式5式6闭环矢量方程分量形式对时间求二阶导数(角加速度方程)矩阵形式为:式7由式7可求得加速度:式8式9注:式1~式9中,Li(i=1,2,3,4)分别表示机架1、曲柄2、连杆3、摇杆4的长度;(i=1,2,3,4)是各杆与x轴的正向夹角,逆时针为正,顺时针为负,单位为 rad; 是各杆的角速度,,单位为 rad/s; 为各杆的角加速度,单位为。
1.3.2求解方法(1)求导中应用了下列公式:式10(2)在角位移方程分量形式(式2)中,由于假定机架为参考系,矢量1与x 轴重合, =0,则有非线性超越方程组:式11可以借助牛顿-辛普森数值解法或Matlab自带的fsolve函数求出连杆3的角位移和摇杆4的角位移。
(3)求解具有n个未知量(i=1,2,…,n)的线性方程组:式12式中,系列矩阵是一个阶方阵:式13的逆矩阵为 ;常数项b是一个n维矢量:式14 因此,线性方程组解的矢量为:式15式11是求解连杆3和摇杆4角速度和角加速度的依据。
基于MA TLAB程序设计MATLAB 是Mathworks 公司推出的交互式计算分析软件,具有强大的运算分析功能,具有集科学计算、程序设计和可视化于一体的高度集成化软件环境,是目前国际上公认的最优秀的计算分析软件之一,被广泛应用于自动控制、信号处理、机械设计、流体力学和数理统计等工程领域。
通过运算分析,MA TLAB 可以从众多的设计方案中寻找最佳途径,获取最优结果,大大提高了设计水平和质量。
四连杆机构的解析法同样可以用MATLAB 的计算工具来求值,并结合MA TLAB 的可视化手段,把各点的计算值拟合成曲线,得到四连杆机构的运动仿真轨迹。
2.1 程序流程图2.2 M文件编写首先创建函数FoutBarPosition,函数fsolve通过他确定。
function t=fourbarposition(th,th2,L2,L3,L4,L1)t=[L2*cos(th2)+L3*cos(th(1))-L4*cos(th(2))-L1;L2*sin(th2)+L3*sin(th(1))-L4*sin(th(2))];主程序如下:disp ' * * * * * * 平面四杆机构的运动分析* * * * * *'L1=304.8;L2=101.6;L3=254.0;L4=177.8; %给定已知量,各杆长L1,L2,L3,L4th2=[0:1/6:2]*pi; %曲柄输入角度从0至360度,步长为pi/6th34=zeros(length(th2),2); %建立一个N行2列的零矩阵,第一列存放options=optimset('display','off'); %θ_3,第二列存放θ_3for m=1:length(th2) %建立for循环,求解θ_3,θ_4th34(m,:)=fsolve('fourbarposition',[1 1], options,th2(m),L2,L3,L4,L1); %的非线性超越方程,结果保存在th34中endy=L2*sin(th2)+L3*sin(th34(:,1)'); %连杆3的D端点Y坐标值x=L2*cos(th2)+L3*cos(th34(:,1)'); %连杆3的D端点X坐标值xx=[L2*cos(th2)]; %连杆3的C端点X坐标值yy=[L2*sin(th2)]; %连杆3的C端点Y坐标值figure(1)plot([x;xx],[y;yy],'k',[0 L1],[0 0], %绘制连杆3的几个位置点'k--^',x,y,'ko',xx,yy,'ks')title('连杆3的几个位置点')xlabel('水平方向')ylabel('垂直方向')axis equal %XY坐标均衡th2=[0:2/72:2]*pi; %重新细分曲柄输入角度θ_2,步长为5度th34=zeros(length(th2),2);options=optimset('display','off');for m=1:length(th2)th34(m,:)=fsolve('fourbarposition',[1 1],options,th2(m),L2,L3,L4,L1);endfigure(2)plot(th2*180/pi,th34(:,1),th2*180/pi,th34(:,2)) %绘制连杆3的角位移关于曲柄2的角位移图plot(th2*180/pi,th34(:,1)*180/pi, th2*180/pi,th34(:,2)*180/pi) %绘制摇杆4的角位移关于曲柄2的角位移图axis([0 360 0 170]) %确定XY边界值grid %图形加网格xlabel('主动件转角\theta_2(度)')ylabel('从动件角位移(度)')title('角位移线图')text(120,120,'摇杆4角位移')text(150,40,'连杆3角位移')w2=250; %设定曲柄角速度for i=1:length(th2)A=[-L3*sin(th34(i,1)) L4*sin(th34(i,2)); L3*cos(th34(i,1)) -L4*cos(th34(i,2))];B=[w2*L2*sin(th2(i)); -w2*L2*cos(th2(i))];w=inv(A)*B;w3(i)=w(1);w4(i)=w(2);endfigure(3)plot(th2*180/pi,w3,th2*180/pi,w4); %绘制角速度线图axis([0 360 -175 200])text(50,160,'摇杆4角速度(\omega_4)')text(220,130,'连杆3角速度(\omega_3)')gridxlabel('主动件转角\theta_2(度)')ylabel('从动件角速度(rad\cdot s^{-1})')title('角速度线图')for i=1:length(th2)C=[-L3*sin(th34(i,1)) L4*sin(th34(i,2));L3*cos(th34(i,1)) -L4*cos(th34(i,2))];D=[w2^2*L2*cos(th2(i))+w3(i)^2*L3*cos(th34(i,1))-w4(i)^2*L4*cos(th34(i,2)); w2^2*L2*sin(t h2(i))+w3(i)^2*L3*sin(th34(i,1))-w4(i)^2*L4*sin(th34(i,2))];a=inv(C)*D;a3(i)=a(1);a4(i)=a(2);endfigure(4)plot(th2*180/pi,a3,th2*180/pi,a4); %绘制角加速度线图axis([0 360 -70000 65000])text(50,50000,'摇杆4角加速度(\alpha_4)')text(220,12000,'连杆3角加速度(\alpha_3)')gridxlabel('从动件角加速度')ylabel('从动件角加速度(rad\cdot s^{-2})')title('角加速度线图')disp '曲柄转角连杆转角-摇杆转角-连杆角速度-摇杆角速度-连杆加速度-摇杆加速度' ydcs=[th2'*180/pi,th34(:,1)*180/pi,th34(:,2)*180/pi,w3',w4',a3',a4'];disp(ydcs)2.3 程序运行结果输出>> * * * * * * 平面四杆机构的运动分析* * * * * *曲柄转角连杆转角-摇杆转角-连杆角速度-摇杆角速度-连杆加速度-摇杆加速度1.0e+004 *0 0.0044 0.0097 -0.0125 -0.0125 -0.5478 4.84580.0005 0.0042 0.0094 -0.0126 -0.0107 0.2300 5.56300.0010 0.0039 0.0092 -0.0124 -0.0086 0.8946 6.05200.0015 0.0037 0.0091 -0.0119 -0.0065 1.4143 6.29820.0020 0.0034 0.0090 -0.0114 -0.0043 1.7801 6.31740.0025 0.0032 0.0089 -0.0107 -0.0021 2.0027 6.14670.0030 0.0030 0.0089 -0.0100 0.0000 2.1046 5.83390.0035 0.0028 0.0089 -0.0093 0.0020 2.1134 5.42720.0040 0.0026 0.0090 -0.0085 0.0038 2.0566 4.96870.0045 0.0025 0.0091 -0.0078 0.0054 1.9578 4.49180.0050 0.0023 0.0092 -0.0072 0.0069 1.8356 4.01980.0055 0.0022 0.0093 -0.0065 0.0082 1.7040 3.56800.0060 0.0021 0.0095 -0.0060 0.0094 1.5725 3.14500.0065 0.0019 0.0097 -0.0055 0.0104 1.4474 2.75450.0070 0.0018 0.0099 -0.0050 0.0113 1.3328 2.39680.0075 0.0017 0.0102 -0.0045 0.0121 1.2307 2.07020.0080 0.0017 0.0104 -0.0041 0.0128 1.1425 1.77160.0085 0.0016 0.0107 -0.0037 0.0134 1.0687 1.4971 0.0090 0.0015 0.0110 -0.0034 0.0138 1.0095 1.2426 0.0095 0.0014 0.0112 -0.0030 0.0142 0.9653 1.0035 0.0100 0.0014 0.0115 -0.0027 0.0145 0.9364 0.7752 0.0105 0.0013 0.0118 -0.0024 0.0148 0.9232 0.5530 0.0110 0.0013 0.0121 -0.0020 0.0149 0.9269 0.3319 0.0115 0.0013 0.0124 -0.0017 0.0150 0.9485 0.1069 0.0120 0.0012 0.0127 -0.0014 0.0150 0.9899 -0.1276 0.0125 0.0012 0.0130 -0.0010 0.0149 1.0530 -0.3773 0.0130 0.0012 0.0133 -0.0006 0.0147 1.1404 -0.6481 0.0135 0.0012 0.0136 -0.0002 0.0145 1.2544 -0.9455 0.0140 0.0012 0.0139 0.0002 0.0141 1.3967 -1.2743 0.0145 0.0012 0.0142 0.0008 0.0136 1.5677 -1.6368 0.0150 0.0012 0.0144 0.0013 0.0129 1.7648 -2.0314 0.0155 0.0012 0.0147 0.0020 0.0121 1.9807 -2.4495 0.0160 0.0013 0.0149 0.0027 0.0112 2.2018 -2.8735 0.0165 0.0013 0.0151 0.0035 0.0101 2.4071 -3.2754 0.0170 0.0014 0.0153 0.0044 0.0089 2.5697 -3.6186 0.0175 0.0015 0.0155 0.0053 0.0076 2.6616 -3.8650 0.0180 0.0016 0.0156 0.0063 0.0063 2.6609 -3.9849 0.0185 0.0018 0.0157 0.0072 0.0049 2.5591 -3.9674 0.0190 0.0019 0.0158 0.0080 0.0035 2.3638 -3.8244 0.0195 0.0021 0.0159 0.0088 0.0022 2.0959 -3.5866 0.0200 0.0023 0.0159 0.0095 0.0010 1.7823 -3.2931 0.0205 0.0025 0.0159 0.0100 -0.0001 1.4487 -2.9815 0.0210 0.0027 0.0159 0.0105 -0.0011 1.1152 -2.6809 0.0215 0.0029 0.0159 0.0108 -0.0020 0.7942 -2.4103 0.0220 0.0031 0.0158 0.0111 -0.0028 0.4916 -2.1794 0.0225 0.0033 0.0158 0.0112 -0.0035 0.2086 -1.9913 0.0230 0.0036 0.0157 0.0112 -0.0042 -0.0565 -1.8450 0.0235 0.0038 0.0156 0.0111 -0.0048 -0.3071 -1.7375 0.0240 0.0040 0.0155 0.0110 -0.0054 -0.5475 -1.6650 0.0245 0.0042 0.0154 0.0108 -0.0060 -0.7817 -1.6233 0.0250 0.0044 0.0153 0.0104 -0.0065 -1.0139 -1.6089 0.0255 0.0046 0.0151 0.0100 -0.0071 -1.2479 -1.6181 0.0260 0.0048 0.0150 0.0096 -0.0077 -1.4868 -1.6480 0.0265 0.0050 0.0148 0.0090 -0.0082 -1.7336 -1.6955 0.0270 0.0052 0.0146 0.0084 -0.0088 -1.9905 -1.7574 0.0275 0.0054 0.0145 0.0076 -0.0095 -2.2588 -1.8304 0.0280 0.0055 0.0143 0.0068 -0.0101 -2.5391 -1.9100 0.0285 0.0056 0.0141 0.0058 -0.0108 -2.8305 -1.9910 0.0290 0.0057 0.0138 0.0048 -0.0115 -3.1300 -2.0660 0.0295 0.0058 0.0136 0.0037 -0.0122 -3.4326 -2.1255 0.0300 0.0059 0.0133 0.0024 -0.0130 -3.7297 -2.15720.0305 0.0059 0.0131 0.0011 -0.0137 -4.0091 -2.14510.0310 0.0059 0.0128 -0.0004 -0.0145 -4.2538 -2.06960.0315 0.0059 0.0125 -0.0019 -0.0152 -4.4419 -1.90790.0320 0.0058 0.0122 -0.0035 -0.0158 -4.5473 -1.63520.0325 0.0058 0.0119 -0.0051 -0.0163 -4.5411 -1.22730.0330 0.0056 0.0115 -0.0066 -0.0166 -4.3954 -0.66610.0335 0.0055 0.0112 -0.0081 -0.0167 -4.0889 0.05510.0340 0.0053 0.0109 -0.0095 -0.0166 -3.6129 0.92430.0345 0.0051 0.0105 -0.0106 -0.0161 -2.9781 1.90580.0350 0.0049 0.0102 -0.0115 -0.0152 -2.2178 2.93950.0355 0.0047 0.0099 -0.0122 -0.0140 -1.3857 3.94730.0360 0.0044 0.0097 -0.0125 -0.0125 -0.5478 4.8458 图形输出:图2 连杆3的几个位置点图3 角位移线图图4 角加速度线图图5 角加速度线图3 基于MATLAB图形界面设计所谓图形用户界面, 简称为GU I (Graphic User Interface) , 是指包含了各种图形控制对象, 如图形窗口、菜单、对话框以及文本等内容的用户界面。