高等数学4-4函数的单调性与极值
高等数学自考3.3函数的单调性与极值
上单调增加; 在 上单调增加 (i)如果在 b)内f ′(x) > 0,则f (x)在[a, b]上单调增加; )如果在(a, 内 , 上单调减少。 (ii)如果在 b)内f ′(x) <0,则f (x)在[a, b]上单调减少。 )如果在(a, 内 , 在 上单调减少
例1 讨论函数 y = e x − x − 1的单调性 . 的单调性 解 Q y′ = e x − 1. 又 Q D : ( −∞ ,+∞ ).
的极值点与极值。 例4 求 f (x) = (x −1) x 的极值点与极值。
3 2
解
定义域( 定义域(−,+)
2 5x − 2 f ′( x) = x + ( x −1) x = 3 , 3 3 x 2 当 x = 时 , f ′( x ) = 0; 5 当 x = 0时 , f ′( x )不存在
4 3
′(x) = 12x3 −12x2 = 12x2 ( x −1), 解 f
令 得驻点: f ′( x) = 0 得驻点 x = 0, 1.
′′( x) = 36x2 − 24x = 12x(3x − 2) f
f ′′(0) = 0, f ′′(1) = 12 > 0.
由极值第二判别法, 由极值第二判别法 ξ=1时, 时 f (ξ)有极小值 f (1)=4. 有极小值: ξ 有极小值 由于 f ′′( 0 ) = 0 所以,需用极值第一判别法判定 所以 需用极值第一判别法判定: 需用极值第一判别法判定
O x
y = x3
定理2 极值存在的一阶充分条件) 定理2(极值存在的一阶充分条件) 在该邻域( 可除外)可导, 在该邻域(x0可除外)可导, 设f (x)在x0的某邻域内连续, 在 的某邻域内连续, 不存在的点。 x0为f (x)的驻点或使 ′(x) 不存在的点。 的驻点或使f 的驻点或使 (i) 若当 < x0 时,f ′(x) > 0;当x > x0 时,f ′(x) < 0, 若当x ; , 则 f (x0) 是f (x)的极大值; 的极大值; 的极大值 (ii) 若当 < x0 时,f ′(x) < 0; 当x > x0 时,f ′(x) >0, 若当x ; , 的极小值; 则 f (x0) 是f (x)的极小值; 的极小值 (iii) 若在 0的两侧,f ′(x)不变号, 若在x 的两侧, 不变号, 不变号 不是极值。 则f (x0)不是极值。 不是极值
大学高等数学上册:4-1单调性与极值
(非严格意义的) 注意
闭区间[a, b]上上述结论不一定成立. o a
bx
y
y
oa
bx o a
bx
1.闭区间上连续函数的最值
闭区间[a, b]上连续函数f (x) 的最大最小值 M,m 的求法. (1) 求出f (x) 在(a, b) 内的所有临界点:x1, x2 , , xn. (2) 求出函数值 f ( x 1), f ( x 2), , f ( x n) 及 f (a),f (b). (3) 比较以上这些函数值的大小即可得:
令 f ( x) 0 得驻点x = -1, 0, 1. f ( x) 6( x2 1)(5 x2 1)
x ( ,1) 1 (1,0) 0 (0, 1) 1
(1, )
f ( x) -
0
-
0
+
0
+
f ( x)
0
+
0
f (x)
非极值
极小值 f (0) = 0
非极值
三、最值
最值是整体概念而极值是局部概念. 结论:若f (x) 在 (a, b) 内有最值点 x0,则 x0 必是极值点.
例如
y x3
y x
x = 0 是驻点但非极值点 x = 0 是极小值点但 y (0) 不存在
结论:极值点必是临界点
极值点的必要条件
问题:如何判别临界点是否为极值点?
3.极值点的充分条件
y x2
y x3
y 3 x2
(1)一阶充分条件:
设 x0 是f ( x )的临界点, f ( x )在某N ( x0 )内连续,在
f ( x )的驻点.
(4) 函数的单调性是一个区间上的性质,不能用一点
高等数学函数的单调性和凹凸性
连续曲线 y ? f ( x) 的拐点.
y
y ? x4
例如 ,
o
x
(2) 若 f ??( x0 ) 不存在 ,点 ( x0 , f ( x0 )) 也可能
是连续曲线 y ? f ( x ) 的拐点 .
y
例如 ,
o
25x
注意 改变凹凸性的点只可能是二阶导数为零及二阶 导数不存在的点 .
判断曲线的凹凸性和拐点的步骤:
x2
?
2,
3
对应
y1
(0,1)
(
2
3
,
11
27
)
?
1,
y2
?
2
11 27
3) 列表判别
3
x (?? ,0)
0
(0,
2 3
)
2
3
(
2 3
,
?
?
)
y?? ? 0 ? 0 ?
y凹
1
凸 11
27
凹
故该曲线在
(??
, 0)
及
(
2
3
,
?
?
) 上向上凹 , 在(0,
2) 上
3
向上凸
, 点(0,1)及
(2
3
,
11 27
1 (1 , 2)
0?
2 (2, ? ? ) 0?
f (x)
2
1
y
故
的单调增区间为
(??
, 1), (2, ? ? );
2
1
的单调减区间为 (1 , 2).
o 12 x
11
练习 确定 f ( x ) ? ( x ? 1) ?3 x 2 的单调区间 .
函数的单调性及凹凸性
x 的增大而增大,即 f (x) 是单调增加的
则
f (x) 0
当曲线弧是凸时,切线的斜率随着 x 的 增大而减小,即 f (x) 是单调减少的
则
f (x) 0
高等数学应用教程
3.1.3 函数的凹凸性
讨论函数 f (x) 凹凸性的问题时, 可先求出使 f (x) 0 的点及 f (x) 不存在的点,这些点把 f (x) 的定
高等数学应用教程
3.1 函数的单调性与凹凸性
3.1 函数的单调性与凹凸性
上面图形的形状可以通过导数的知识加以 研究解决,为此先介绍拉格朗日中值定理
高等数学应用教程
3.1.1 拉格朗日中值定理
3.1.1 拉格朗日中值定理
拉格朗日中值定理几何意义
曲 线 y f (x) 上 至 少 有 一 点
M (, f ( )) 的切线的斜率 f () 等 于 线 段 AB 的 斜 率
义域划分为若干个区间,确定各个 区间上二阶导数 f (x) 的符号,即 可得出函数 f (x) 的凹凸区间及拐点.
高等数学应用教程 例4 解
列表讨论如下
3.1.3 函数的凹凸性
由表 3-2 可知,曲线在区间 (,0] 和 区间 [1, ) 上是凹的,在区间[0,1] 上 是凸的,拐点为点 (0,1) 和 (1,0) .
反之,也有类似结论,从而有以下函数单调性的判定定理
高等数学应用教程
3.1.2 函数的单调性
而 即
高等数学应用教程
例2 解
3.1.2 函数的单调性
这两点把定义域分成3个小区间,列表讨论如下
高等数学应用教程 例3 解
3.1.2 函数的单调性
高等数学应用教程
3.1.2 函数的单调性
函数单调性和求极值点、最值(知识点及相关练习)
函数单调性和求极值点、最值(知识点及相关练习)本文档将介绍函数的单调性以及如何求函数的极值点和最值。
这些概念是在研究高等数学中非常重要的一部分。
函数的单调性函数的单调性描述了函数图像在定义域内的变化趋势。
一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某个区间内既递增又递减。
判断函数的单调性需要观察函数的导数。
如果函数的导数恒大于零(导函数递增),则函数单调递增;如果导数恒小于零(导函数递减),则函数单调递减。
如果导数在某个区间内既大于零又小于零,则函数在该区间内既递增又递减。
下面是一些相关联系。
练题:1. 设函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的单调区间。
- 解答:- 首先求导数:$f'(x)=3x^2-6x$- 然后求解 $f'(x)=0$ 的解,即 $3x^2-6x=0$ ,解得 $x=0, 2$- 将 $x=0$ 和 $x=2$ 代入 $f'(x)$ 的导数符号表,得到如下结果:| $x$ | $(-\infty,0)$ | $(0,2)$ | $(2,+\infty)$ |- 由上表可以看出,函数 $f(x)$ 在区间 $(-\infty, 0)$ 上递减,在区间 $(0,2)$ 上递增,而在区间 $(2,+\infty)$ 上递增,所以函数的单调区间分别为 $(-\infty, 0)$ 和 $(2,+\infty)$。
求函数的极值点和最值函数的极值点是函数某一段上的极大值或极小值点。
函数的最大值和最小值是函数在整个定义域上的最大值和最小值。
为了求函数的极值点和最值,我们需要找到函数的临界点和边界点。
- 临界点:函数定义域内导数为零或不存在的点。
- 边界点:函数定义域的端点。
对于一个函数,如果它有极值点,那么极值点一定在函数的临界点和边界点处。
下面是一些相关练。
练题:1. 设函数 $g(x)=x^3-6x^2+9x+2$,求 $g(x)$ 的极值点和最值。
高等数学:函数的单调性及其极值
函数的单调性及其极值单调性是函数的重要性态之一,它既决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。
本节将以导数为工具,给出函数单调性的判别法及极值的求法。
一、函数的单调性1、函数单调性的判定为利用导数研究函数的单调性,我们首先来看图133--)(a 、)(b 。
图133--)(a 中函数)(x f y =的图像在),(b a 内沿x 轴的正向上升,除点))(,(ξξf 处的切线平行于x 轴外,)(a )(b 图133--曲线上其余点处的切线与x 轴的夹角均为锐角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为正;而图133--)(b 中函数)(x f y =的图像在),(b a 内沿x 轴的正向下降,除个别点外,曲线上其余点处的切线与x 轴的夹角均为钝角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为负。
由此可见函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来讨论。
设函数)(x f 在区间I 内可导,在I 内任取两点1x 和2x (21x x <),在区间],[21x x 上应用拉格朗日中值定理,得)()()()(1212x x f x f x f -'=-ξ (21x x <<ξ) (1)由于在(1)式中012>-x x ,因此,若在I 内导数)(x f '的符号保持为正,即0)(>'x f ,那么也有0)(>'ξf ,于是0)()()()(1212>-'=-x x f x f x f ξ即 )()(21x f x f <表明函数)(x f 在区间I 上单调增加。
同理,若在I 内导数)(x f '的符号保持为负,即0)(<'x f ,那么也有0)(<'ξf ,于是0)()()()(1212<-'=-x x f x f x f ξ即 )()(21x f x f > 表明函数)(x f 在区间I 上单调减少。
关于大学高等数学函数极限和连续
第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=fx, x ∈D定义域: Df, 值域: Zf.2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y 3.隐函数: Fx,y= 04.反函数: y=fx → x=φy=f -1y y=f -1 x定理:如果函数: y=fx, Df=X, Zf=Y 是严格单调增加或减少的; 则它必定存在反函数:y=f -1x, Df -1=Y, Zf -1=X且也是严格单调增加或减少的;㈡ 函数的几何特性1.函数的单调性: y=fx,x ∈D,x 1、x 2∈D 当x 1<x 2时,若fx 1≤fx 2,则称fx 在D 内单调增加 ;若fx 1≥fx 2,则称fx 在D 内单调减少 ;若fx 1<fx 2,则称fx 在D 内严格单调增加 ;若fx 1>fx 2,则称fx 在D 内严格单调减少 ;2.函数的奇偶性:Df 关于原点对称 偶函数:f-x=fx 奇函数:f-x=-fx3.函数的周期性:周期函数:fx+T=fx, x ∈-∞,+∞ 周期:T ——最小的正数4.函数的有界性: |fx|≤M , x ∈a,b ㈢ 基本初等函数1.常数函数: y=c , c 为常数2.幂函数: y=x n , n 为实数3.指数函数: y=a x , a >0、a ≠14.对数函数: y=log a x ,a >0、a ≠15.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=fu , u=φxy=f φx , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算加、减、乘、除和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限; 或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:⑵当0x x →时,)(x f 的极限:左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:AxfxfAxfxxxxxx==⇔=+-→→→)(lim)(lim)(lim㈡无穷大量和无穷小量1.无穷大量:+∞=)(lim xf称在该变化过程中)(xf为无穷大量;X再某个变化过程是指:2.无穷小量:)(lim=xf称在该变化过程中)(xf为无穷小量;3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim)(lim≠+∞=⇔=xfxfxf4.无穷小量的比较:lim,0lim==βα⑴若lim=αβ,则称β是比α较高阶的无穷小量;⑵若c=αβlimc为常数,则称β与α同阶的无穷小量;⑶若1lim=αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量; 定理:若:;,2211~~βαβα则:2121limlim ββαα=㈢两面夹定理1. 数列极限存在的判定准则:设:n n n z x y ≤≤ n=1、2、3…且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 点x 0除外有:且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§ 连续一、主要内容㈠ 函数的连续性 1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o 0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续;在端点a 和b 连续是指:)()(lim a f x f ax =+→ 左端点右连续;)()(lim b f x f b x =-→ 右端点左连续;a + 0b - x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点;间断点有三种情况:1o)(x f在0x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f在0x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→;两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在;可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义;2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在;无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o)()()()(lim 000x g x f x g x f x x =→ ⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2. 复合函数的连续性:则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值;fx0 a b xm-M0 ab x2.有界定理:) (xf在],[ba上连续⇒)(x f在],[b a上一定有界;3.介值定理:) (xf在],[ba上连续⇒在),(b a内至少存在一点ξ,使得:cf=)(ξ,其中:Mcm≤≤y yCfx0 a ξm0 a ξ1 ξ2 b x 推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf ;4.初等函数的连续性:初等函数在其定域区间内都是连续的; 第二章 一元函数微分学 § 导数与微分 一、主要内容 ㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义, 2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:00)()(lim )(0x x x f x f x f x x --='+→+ 定理:)(x f 在0x 的左或右邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-或:)(lim )(00x f x f x x '='+→+3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在;5.导函数: ),(x f y '=' ),(b a x ∈)(x f 在),(b a 内处处可导; y )(0x f '6.导数的几何性质: y ∆)(0x f '是曲线)(x f y =上点 ∆()00,y x M 处切线的斜率; o x 0㈡求导法则 1.基本求导公式: 2.导数的四则运算: 1o v u v u '±'='±)(2ov u v u v u '⋅+⋅'='⋅)(3o2v v u v u v u '⋅-⋅'='⎪⎭⎫⎝⎛ )0(≠v 3.复合函数的导数:dxdu du dy dx dy ⋅=,或 )()]([})]([{x x f x f ϕϕϕ'⋅'=' ☆注意})]([{'x f ϕ与)]([x f ϕ'的区别:})]([{'x f ϕ表示复合函数对自变量x 求导;)]([x f ϕ'表示复合函数对中间变量)(x ϕ求导;4.高阶导数:)(),(),()3(x f x f x f 或'''''函数的n 阶导数等于其n-1导数的导数; ㈢微分的概念 1.微分:)(x f 在x 的某个邻域内有定义,其中:)(x A 与x ∆无关,)(x o ∆是比x ∆较高阶的无穷小量,即:0)(lim 0=∆∆→∆x x o x 则称)(x f y =在x 处可微,记作:2.导数与微分的等价关系: 定理:)(x f 在x 处可微)(x f ⇒在x 处可导,且:)()(x A x f ='3.微分形式不变性:不论u 是自变量,还是中间变量,函数的微分dy 都具有相同的形式;§ 中值定理及导数的应用 一、主要内容 ㈠中值定理1.罗尔定理: )(x f 满足条件:y)(ξf ' )(x fa o ξb x a o x2.拉格朗日定理:)(x f 满足条件:㈡罗必塔法则:∞∞,型未定式 定理:)(x f 和)(x g 满足条件:1o)或)或∞=∞=→→(0)(lim (0)(lim x g x f ax ax ;2o 在点a 的某个邻域内可导,且0)(≠'x g ;3o)(或∞=''∞→,)()(lim )(A x g x f a x则:)(或∞=''=∞→∞→,)()(lim )()(lim )()(A x g x f x g x f a x a x☆注意:1o 法则的意义:把函数之比的极限化成了它们导数之比的极限; 2o若不满足法则的条件,不能使用法则;即不是型或∞∞型时,不可求导;3o 应用法则时,要分别对分子、分母 求导,而不是对整个分式求导; 4o 若)(x f '和)(x g '还满足法则的条件,可以继续使用法则,即: 5o 若函数是∞-∞∞⋅,0型可采用代数变形,化成或∞∞型;若是0,0,1∞∞型可采用对数或指数变形,化成或∞∞型;㈢导数的应用 1.切线方程和法线方程:设:),(),(00y x M x f y =切线方程:))((000x x x f y y -'=-法线方程:)0)((),()(10000≠'-'-=-x f x x x f y y 2. 曲线的单调性:⑴),(0)(b a x x f ∈≥'内单调增加;在),()(b a x f ⇒⑵),(0)(b a x x f ∈>'内严格单调增加;在),(b a ⇒3.函数的极值: ⑴极值的定义:设)(x f 在),(b a 内有定义,0x 是),(b a 内的一点;若对于x 的某个邻域内的任意点x x ≠,都有:则称)(0x f 是)(x f 的一个极大值或极小值,称x 为)(x f 的极大值点或极小值点;⑵极值存在的必要条件:定理:)()(.2)()(.1=⇒⎭⎬⎫'xfxfxfxf存在。
(完整版)高等数学上册知识点
高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
《高等数学(上册)》课件 第三章
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例7
求
ln x
lim
x
xn
(n 0).
解 此题属于“ ”型未定式,应用洛必达法则有
1
xl im ln xnxxl im nxxn1
1 lim
xnxn
0
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
在使用洛必达法则时,应注意如下几点:
0
0
lim f ( x ) g ( x )
lim f ( x ) g (x)
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
推论2 如果对(a,b)内的任意x,均有f ’(x)= g ’(x) ,那么 在(a,b)内f(x)与g(x)之间只差一个常数,即f(x)= g(x) +C〔 C 为 常数〕.
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例1 函数f(x)=1-x2在区间[-1,2]上是否满足拉格朗日 中值定理条件?假设满足,找出点.
解 函数f(x)=1-x2在区间[-1,2]上连续,在(-1,2)上可
导,因此,满足拉格朗日定理的条件,即至少存在一点
ξ ,使
高等数学-导数-第四节 函数的单调性和极值
函数单调减少; 在(0,)内, y 0, 函数单调增加. 注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
注意:
(1)把定理中的使f(x)连续的闭区间换成其它 各类区间(包括无穷区间),则函数的单调性 结论在相应的区间上也是成立的.
( x) f ( x0 ( x x0 )4
)
f (4) ( x0 ) a 4! 4!
若a 0, 由极限的局部保号性,可知
f
( x) f ( x0 ( x x0 )4
)
0
有 f ( x) f ( x0 ) 0,即f ( x) f ( x0 )
x0是f ( x)的极小值点。
若a 0, 同理可证 x0是f ( x)的极大值点。
三、最大值与最小值问题 1.求闭区间[a,b]上连续函数y=f(x)的最值 (1)求出f(x)的导数f'(x),令f'(x)=0,求 出驻点;以及使得导数f'(x)不存在的点.
(2)求出(1)中点处的函数值以及端点处的 函数值;
(3)比较这些值的大小,其中最大的就是函 数的最大值,最小的就是最小值.
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
2. 函数极值的求法
定理1(必要条件) 设 f ( x)在点 x0处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0.(费马定 理) 定义 使导数为零的点(即方程 f ( x) 0 的实根)叫 做函数 f ( x) 的驻点.
高数 函数的单调性与极值
(x) (x)
2xarcx tlan 1n (x2)2arctxan
式中 在 0 与 x 之间,由于 arctan与 x 同号,
则无论 x为什么值,总有 fБайду номын сангаас(x)0
则不等式 2xarcxt aln 1 (x2) 成立
9
例5 证明 f (x) (1 1)x 在 (0, ) 内单调增加。
x 证明 此函数为幂指函数,两边取对数
定理2告诉我们,可导函数的极值点必定是驻点, 但驻点未必是极值点。寻求函数的极值点首先要找 y f (x) 的驻点以及不可导的点,再判断其是否为
极值点。
14
定理 3 (极值第一判别法)
设函f数 (x)在x0的某邻域,内 且在连 空心续 邻域 内有导数, 当x由小到大x通 0时,过
(1) (2)
f f
高等数学
第十八讲
主讲教师: 王升瑞
1
第九节
第二章
函数的单调性与极值
一、函数的单调性 二、函数的极值及其求法
2
一、 函数的单调性
定理 1. 设函数 f (x) 在开区间 I 内可导, 若 f(x)0
(f(x)0),则 f (x) 在 I 内单调递增 (递减) .
I 称为单调递增(递减) 区间。
证: 无妨设 f(x) 0 ,x I,任取 x 1 ,x 2 I(x 1 x 2 )
例4 求证 2xarcxt aln 1 (x2) 证法一:设 f(x)2xarcx tlan 1n (x2) f (0)0
f(x)2arcx t1 a 2x x n 21 2x x22arcxtan
当 x0 时 f(x)0 f(x)
f(x)f(0)0
当 x0 时 f(x)0 f(x)
高等数学f教材答案
高等数学f教材答案一、导数与微分导数的定义:对函数y=f(x),若极限lim[(f(x+Δx)-f(x))/Δx]存在,则称该极限为函数f(x)在点x处的导数,记作f'(x),即f'(x)=lim[(f(x+Δx)-f(x))/Δx]。
常见函数求导法则:1. 常数函数求导法则:若f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数求导法则:若f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。
3. 指数函数求导法则:若f(x)=a^x,其中a为常数且a>0且a≠1,则f'(x)=a^x·lna。
4. 对数函数求导法则:若f(x)=log_a(x),其中a为常数且a>0且a≠1,则f'(x)=1/(x·lna)。
5. 三角函数求导法则:若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx。
6. 反三角函数求导法则:若f(x)=arcsinx,则f'(x)=1/√(1-x^2);若f(x)=arccosx,则f'(x)=-1/√(1-x^2)。
二、微分中值定理与导数应用微分中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在一点c∈(a,b),使得f'(c)=0。
导数应用:1. 函数的单调性与极值:若函数f(x)在区间(a,b)上可导,且f'(x)≥0,则f(x)在区间(a,b)上单调递增;若f'(x)≤0,则f(x)在区间(a,b)上单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)>0,则f(x)在区间(a,b)上严格单调递增;若f'(x)<0,则f(x)在区间(a,b)上严格单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)在x=x0处由正变负,则称f(x0)为函数f(x)在区间(a,b)上的极大值点;若f'(x)在x=x0处由负变正,则称f(x0)为函数f(x)在区间(a,b)上的极小值点。
高等数学函数讲解大学教材
高等数学函数讲解大学教材高等数学是大学数学学科中一门重要的课程,其中函数是一个关键概念。
函数是数学中的一种映射关系,它在数学和实际问题中都有广泛应用。
本文将对大学教材中关于高等数学函数的讲解进行介绍,帮助读者更好地理解和掌握这一概念。
一、函数的定义与性质函数是一种特殊的关系,它将一个集合中的元素映射到另一个集合中的元素。
在大学教材中,函数的定义通常是这样的:设A和B是两个非空集合,如果按照某种确定的对应关系f,对于A中的每个元素x,都恰好有一个唯一的元素y与之对应,那么就称f是从A到B的一个函数。
函数通常用符号表示,如f(x)或者y = f(x)。
函数具有以下几个重要的性质:1. 定义域与值域:函数的定义域指的是自变量x的取值范围,值域指的是因变量y的取值范围。
2. 单调性:函数的单调性描述了函数在自变量增大时,因变量的变化趋势。
有增函数、减函数、严格增函数、严格减函数等概念。
3. 奇偶性:奇函数和偶函数是函数特殊的分类,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
4. 周期性:周期函数具有一定的周期,即f(x+T) = f(x),其中T是正常数。
二、常见的函数类型在大学教材中,常见的函数类型包括多项式函数、有理函数、指数函数、对数函数、三角函数、反三角函数等。
1. 多项式函数:多项式函数是由常数和自变量的幂次方乘积所组成的函数。
多项式函数的最高次项的次数决定了函数的阶数。
2. 有理函数:有理函数是多项式函数除以另一个多项式函数得到的函数。
有理函数的定义域为所有使得分母不为零的实数。
3. 指数函数:指数函数是以指数为变量的函数,形式为f(x) = a^x,其中a是一个正实数。
4. 对数函数:对数函数是指数函数的反函数,形式为f(x) = loga(x),其中a是一个大于0且不等于1的实数。
5. 三角函数:三角函数根据单位圆上点的坐标定义,包括正弦函数、余弦函数、正切函数等。
大一高等数学第三章第四节函数单调性的判定法
y
y
B
o
a
f ( x ) 0
b
x
o a
f ( x ) 0
b x
定理 设函数 y f ( x )在[a, b]上连续,在( a, b )内可 导(1) . 如果在( a, b )内f ( x ) 0,那末函数 y f ( x ) 在[a, b]上单调增加; ( 2) 如果在( a, b )内 f ( x ) 0, 那末函数 y f ( x ) 在[a, b]上单调减少.
注意:区间内个别点导数为零,不影响区间的单调性.
y x 3 , y x 0 0, 但在( ,)上单调增加. 例如,
例4 当x 0时, 试证x ln(1 x )成立.
x . 证 设f ( x ) x ln(1 x ), 则 f ( x ) 1 x
f ( x )在[0,)上连续, 且(0,)可导,f ( x ) 0,
3 2
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例9 敌人乘汽车从河的北岸A处以1千米/分钟 的速度向正北逃窜,同时我军摩托车从河的 南岸B处向正东追击, 速度为2千米/分钟.
问我军摩托车何
时射击最好(相
距最近射击最好)?
点击图片任意处播放\暂停
解 (1)建立敌我相距函数关系 设 t 为我军从B处发起
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
单调区间为 ( ,1], [1,2], [ 2, ).
例3
确定函数 f ( x ) 3 x 2 的单调区间.
解 D : ( , ).
(完整版)高数上册知识点
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高数学公式和知识点笔记
高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。
以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。
一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。
函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。
2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。
(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。
极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。
2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。
二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。
函数单调性知识点
函数单调性知识点在函数单调性的研究中,常常会用到导数、若尔当定理、拉格朗日中值定理等数学知识。
下面我们将详细介绍函数单调性的知识点,包括单调性的定义、判定与应用。
一、函数的单调性定义对于给定的函数f(x),如果对于任意的x1和x2(x1<x2),有f(x1)<=f(x2),则称f(x)为递增函数;如果对于任意的x1和x2(x1<x2),有f(x1)>=f(x2),则称f(x)为递减函数。
函数的单调性有两种情况,递增和递减。
递增的函数在定义域内从左到右的方向递增,即y增大;递减的函数在定义域内从左到右的方向递减,即y减小。
举个例子,如果我们考虑函数f(x)=x^2,在定义域内,当x1<x2时,f(x1)=x1^2<x2^2=f(x2),所以函数f(x)是递增函数。
二、函数单调性的判定在判定函数的单调性时,我们可以通过求导数来判断。
若导数恒大于0,则函数在该区间上递增;若导数恒小于0,则函数在该区间上递减。
具体来说,对于一个可导的函数f(x),我们可以通过以下步骤来判定其单调性:1.求函数的导数f'(x);2.解方程f'(x)=0,求出导函数f'(x)的零点;3.根据导函数的符号表,分析函数的单调性。
举个例子,我们来判定函数f(x)=x^3的单调性:1.求导数f'(x)=3x^2;2.解方程3x^2=0,得到x=0;3.由于导函数f'(x)=3x^2恒大于0,所以函数f(x)在整个定义域上是递增的。
三、函数单调性的应用函数的单调性在数学中有广泛的应用。
以下是一些应用的例子:1.函数极值的判定:对于一个区间上的函数,如果函数是递增的,那么函数在这个区间的最小值就在区间的最小值点上;如果函数是递减的,那么函数在这个区间的最大值就在区间的最大值点上。
2.不等式求解:当我们在求解一个不等式f(x)≥0时,如果我们可以证明函数f(x)是递增的,那么不等式的解集就是x的取值范围;同样地,如果我们可以证明函数f(x)是递减的,不等式的解集也是x的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 y e x 1.又 D : (,).
5
4
在(,0)内, y 0, 函数单调减少;
3 2
-3
-2
-1
1
2
3
在(0,)内, y 0, 函数单调增加.
注1:要用导数在区间上的符号来判定,而不能用 一点处的导数符号来判别一个区间上的单调性.
注2:函数在定义区间上不是单调的,但在各 个部分区间上单调.
又 f x 在 0,1 上 连 续 , 且 f 0 1, f 1 3, 由 零 点 定 理 知,
3 3x 解得 x 1.而 x 0为 f (x) 不可导点.
当 x 0时, f x 0 ;当 0 x 1时, f x 0 ;当1 x 时, f x 0 . 可知(,0]和[1, ) 为单递区间;0,1为单递区间.
图4-4-2
2020/10/19
29-11
例 6 设 f (x) 连续, f (0) 0 ,则存在 0,使得( ).
第三节 函数的单调性与极值
一 函数的单调性 二 函数的极值
一、函数的单调性
y
y f (x) B
A
oa
bx
f ( x ) 0
yA y f (x) B
oa
bx
f ( x ) 0
若 y f ( x)在区间(a,b)上单调上升 若 y f ( x)在区间(a,b)上单调下降
f ( x) 0 f ( x) 0
因此 f (x) 在2,2上单调递减,所以 f (x) 的单增区间为 (,2] 与[2,) ,单减区间为2,2 .
2020/10/19
29-8
从例4可见,可导函数 f (x) 在单调区间的分界点 x0 处,导数
f x0 0 .因此可利用 f x 0 的点将区间 I 分成若干个子区 间,然后由 f x 在各子区间内的符号判定 f (x) 在相应的子区间
2020/10/19
29-10
由此可见,导数等于零的点并不都是函数 f x 单调区间的
分界点,应该说是可能的分界点.另外,不可导点也可能是单
调区间的分界点.
例5 求函数 y (2x 5) 3 x2 的单调区间.
解 f (x) 的定义域为(,) ,当 x 0时, f (x) 10 x 1 .由 f x 0
证 x1, x2 (a,b), 且 x1 x2 , 应用拉氏定理,得
f ( x2 ) f ( x1 ) f ( )( x2 x1 ) ( x1 x2 )
x2 x1 0,
若在(a,b)内,f ( x) 0, 则 f ( ) 0,
f ( x2 ) f ( x1). y f ( x)在[a,b]上单调增加.
当 0 x 时 , 有 f (x) f (0) 0 , 从 而 当 x 0 时 ,
x
f (x) f (0) ,当 x 0 时, f (x) f (0) ,故选(C).
2020/10/19
29-12
2020/10/19
利用单调性,我们可以讨论方程根(或函数零点)的个数, 也可以利用单调性来证明某些不等式.
(1) x I, 有 f (x) 0 ( f (x) 0) ; (2) 在区间 I 的任何子区间, f (x) 不恒为 0 .
例如 根据单调性定义可知,函数 f (x) x3在 (, ) 内在单调递增的, 且仅在 x 0 处的导数 f (0) 3x2 |x0 0 (见图4-1-1).
图4-4-1
1 单调性的判别法
定理1
设函数y f ( x)在[a,b]上连续,在(a, b)内可导. (1)如果在(a, b)内f ( x) 0,那末函数y f ( x) 在[a, b]上 单 调 增 加 ; (2) 如果在(a,b)内 f ( x) 0,那末函数y f ( x) 在[a, b]上单调减少.
例7 证明方程 x3 x2 2x 1 0在0,1 内只有一个实根.
证 令 f (x) x3 x2 2x 1,则 f (x) 3x2 2x 2.当 x0,1 时, f x 0,故 f x 在0,1内单调增加,曲线 y f x在0,1 内与x 轴 至多有一个交点,即 x3 x2 2x 1 0在0,1 内最多有一个实根.
间和单减区间统称为单调区间.
2020/10/19
29-7
例4 求函数 f (x) 1 x3 4x 的单调区间. 3
解 函数的定义域为(,) ,且 f (x) x2 4 (x 2)(x 2).
当 x 2或2 x 时,f x 0 ,故在区间(,2] 和
[2,) 上 f (x) 单调递增;当2 x 2时, f (x) 0 .
例3 判定函数 f (x) x3 5x 1在 (, ) 内的单调性. 解 由 于 f (x) 3x2 5 0 , 所 以 由 定 理 1 知 , f (x) 在 (, ) 内单调增加.
如果函数 f x 在区间I 上(内)单调增加(单调减少), 就称区间 I 为函数 f x 的单增区间(单减区间),单增区
若在(a,b)内,f ( x) 0, 则 f ( ) 0,
f ( x2 ) f ( x1). y f ( x)在[a,b]上单调减少.
例1 判断函数 y ln x的单调性.
解 函数的定义域为0x
x
函数在 0, 内单调增加.
例2 判断函数 y e x x的单调性.
上的单调性.
值得注意的是,定理1只是判定函数在相应区间上的单调性 的充分条件,而不是充分必要条件.如果函数 f (x) 在 I 的某些
点处 f x 0 ,函数 f (x) 仍可能是单调递增(或单调递减).一
般地,有下列结论:
2020/10/19
29-9
推论1 函数 f (x) 在区间 I 可导,则 f (x) 在区间 I 单调递增(或 递减)的充分必要条件为
(A) f (x) 在 (0, ) 内单调增加
(B) f (x) 在 ( , 0) 内单调减小
(C) x (0, ) 有 f (x) f (0)
(D) x ( , 0) 有 f (x) f (0) 解 由导数的定义知 f (0) lim f (x) f (0) 0,故 0 ,
x0 x 0