九下第27章相似单元测试
精品解析:人教新版九年级下学期《第27章相似》单元测试卷(解析版)
《第27章相似》单元测试卷一.选择题1. 已知32xy=,那么下列等式中一定正确的是()A. 392xy= B.33xy++=65C.3322x xy y-=⋅-D.52x yx+=【答案】A【解析】分析:根据比例的基本性质,两内项之积等于两外项之积来判断.详解:A.3x•2=9y,则2x=3y,所以A选项正确;B.5(x+3)=6(y+3),则5x﹣6y=3,所以B选项错误;C.2y(x﹣3)=3x(y﹣2),则xy﹣6x+6y=0,所以C选项错误;D.2(x+y)=5x,则3x=2y,所以D选项错误.故选A.点睛:本题考查了比例的基本性质,两内项之积等于两外项之积,即a cb d=,则ad=bc;反之如果ad=bc,则a cb d =.2. 已知a:b=3:2,则a:(a﹣b)=()A. 1:3B. 3:1C. 3:5D. 5:3【答案】B【解析】试题分析:利用分比性质进行计算.解:∵=,∴==3.故选B.考点:比例的性质.3. 在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A. 320cmB. 320mC. 2000cmD. 2000m【答案】D【解析】【分析】首先设它的实际长度是xcm ,然后根据比例尺的定义,即可得方程:1:800025:x =,解此方程即可求得答案,注意统一单位.【详解】设它的实际长度是xcm ,根据题意得:1:800025:x =,解得:200000x =,2000002000cm m =,∴它的实际长度为2000m .故选D .【点睛】此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.4. 已知线段AB =1,C 是AB 的黄金分割点,AC >BC ,则BC 的长为( )A. 1B. C. 35D. 【答案】C【解析】【分析】 把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分)叫做黄金比. 【详解】解:根据黄金分割的概念得:AC=12AB=12 ∴BC=AB-AC=32. 故选C . 【点睛】本题考查黄金分割定理,解题关键是理解黄金分割的概念,熟悉黄金比的值.5. 如图,若////DC FE AB ,则有( )A. OD OCOF OE= B.OF OBOE OA= C.OA ODOC OB= D.CD ODEF OE=【答案】D【解析】根据平行线分线段成比例定理,根据题意直接列出比例等式,对比选项即可得出答案.解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选D.6. 我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A. ①③ B. ①② C. ①④ D. ②③【答案】C【解析】试题分析:根据相似形的定义,对选项进行一一分析,排除错误答案.解:①两个圆,形状相同,而大小不一定相同,符合相似形的定义,故正确;②两个菱形,属于不唯一确定图形,不一定相似,故错误;③两个长方形,属于不唯一确定图形,不一定相似,故错误;④两个正六边形,形状相同,而大小不一定相同,符合相似形的定义,故正确.故选C.考点:相似图形.点评:本题考查的是相似形的识别,相似图形的形状相同,但大小不一定相同.7. 如图所示的两个四边形相似,则α的度数是( )A. 60°B. 75°C. 87°D. 120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.8. 若两个相似三角形的面积之比为1:4,则它们的周长之比为()A. 1:2B. 2:1C. 1:4D. 4:1【答案】A【解析】∵两个相似三角形的面积之比为1:4,∴它们的相似比为1:2,(相似三角形的面积比等于相似比的平方)∴它们的周长之比为1:2.故选A.【点睛】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.9. 如图,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射线BC上动点(点E与点B不重合),M是线段DE的中点,连接BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,则线段BE的长为A. 3B. 6C. 3或8D. 2或8【答案】D【解析】【分析】因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论.【详解】设线段BE的长为x.如果三角形ADN和BME相似,因为AD∥BC,所以∠ADN和∠MBE一定不相等,故应分两种情况进行讨论.①如图1,当∠ADN=∠BEM时,那么∠ADB=∠BEM,过点D作DF⊥BE,垂足为F,tan∠ADB=tan∠BEM.AB:AD=DF:FE=AB:(BE–AD).即2:4=2:(x–4).解得x=8.即BE=8.②如图2,当∠ADB=∠BME,而∠ADB=∠DBE,∴∠DBE=∠BME,∵∠E是公共角,∴△BED∽△MEB,∴DE BE BE EM,∴BE2=DE•EM=12DE2,∴BE2=x2=12[22+(4–x)2],∴x1=2,x2=–10(舍去),∴BE=2.综上所述线段BE的长为8或2,故选D.【点睛】考查相似三角形的判定和性质、锐角三角函数、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题.10. 如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A. 3:2:1B. 5:3:1C. 25:12:5D. 51:24:10【答案】D【解析】【分析】【详解】连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣35)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5 设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=512K,∴BH:HG:GM=512k:12k:5k=51:24:10故选:D.11. 1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是()A. 80米B. 85米C. 120米D. 125米【答案】D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解:设电视塔的高度应是x,根据题意得:=,解得:x=125米.故选D.命题立意:考查利用所学知识解决实际问题的能力.12. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=3,BD=1,则BC的值是()A. 3B. 3C. 2D. 4【答案】C【解析】【分析】利用射影定理得到BC2=BD•BA,然后把AD=3,BD=1代入计算即可.【详解】解:根据射影定理得BC2=BD•BA,即BC2=1×(1+3),所以BC=2.故选C.【点睛】本题考查射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13. 如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A. 4:9B. 2:5C. 2:323【答案】A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.二.填空题14. 已知线段a=10cm,b=2m,则ba=__.【答案】201.【解析】【分析】根据比例的定义即可直接写出(注意保持单位一致).【详解】解:根据题意,b=2m=200cm,则ba=20010=201.故答案为201. 【点睛】本题考查求线段的比,解题关键是求线段的比的时候,要统一单位. 15. 若 x y z 0234==≠ ,则 2x 3y z+ =________. 【答案】134 【解析】【分析】【详解】设234x y z k ===, 即x=2k, ,y=3k , z=4k .代入2322331313444x y k k k z k k +⨯+⨯===. 考点:比例的应用.16. 已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a=_____.【答案】4【解析】2a bc = 即216a =,则a=4.17. 黄金分割比是=510.61803398-=⋯,将这个分割比用四舍五入法精确到0.001的近似数是 .【答案】0.618【解析】根据四舍五入的原则将510.61803398-=⋯用四舍五入法精确到0.001的近似数是0.618 18. 如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.【答案】3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 19. 利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是________.【答案】1:4【解析】【分析】根据是相似三角形周长的比等于三角形边长的比解答即可.【详解】因为原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4.故答案为1:4.【点睛】本题考查了相似三角形的性质,关键是根据相似三角形周长的比等于三角形边长的比解答. 20. 已知两个相似多边形的相似比为5:7,若较小的一个多边形的周长为35,则较大的一个多边形的周长为__;若较大的一个多边形的面积是4,则较小的一个多边形的面积是___.【答案】 (1). 49, (2).10049. 【解析】【分析】根据相似多边形的对应边的比相等,周长的比等于相似比,面积的比等于相似比的平方.【详解】解:∵两个相似多边形的相似比为5:7,较小的一个多边形的周长为35.∴较大的一个多边形的周长为35×75=49; ∵面积之比等于相似比的平方,即(75)2=2549. 较大的一个多边形的面积是4,则较小的一个多边形的面积是4×2549=10049. 故答案为(1). 4; (2).10049. 【点睛】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.21. 如图,在钝角三角形ABC 中,6AB cm =,12AC cm =,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1/cm 秒,点E 运动的速度为2/cm 秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是___.【答案】3秒或4.8秒 【解析】 【分析】如果以点A 、D 、E 为顶点的三角形与△ABC 相似,由于A 与A 对应,那么分两种情况:①D 与B 对应;②D 与C 对应.再根据相似三角形的性质分别作答.【详解】解:根据题意得:设当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是x 秒, ①若△ADE ∽△ABC ,则AD :AB=AE :AC , 即x :6=(12-2x ):12, 解得:x=3;②若△ADE ∽△ACB ,则AD :AC=AE :AB , 即x :12=(12-2x ):6, 解得:x=4.8;所以当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是3秒或4.8秒. 故答案为:3秒或4.8秒.【点睛】此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.22. 如图,已知点B 、E 、C 、F 在同一条直线上,∠A =∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是______.(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEC(不唯一) 【解析】试题解析:答案不唯一,如.B DEC ∠=∠ 可添加.B DEC ∠=∠ B DEC A D ∠=∠∠=∠,,.ABC DEF ∴∽故答案为.B DEC ∠=∠点睛:两角分别相等的两个三角形相似.23. 如图,四边形ABCD 中,AD∥BC ,CM 是∠BCD 的平分线,且CM⊥AB ,M 为垂足,AM=AB .若四边形ABCD 的面积为,则四边形AMCD 的面积是 .【答案】1. 【解析】试题分析:如图所示:延长BA 、CD ,交点为E .∵CM 平分∠BCD ,CM⊥AB ,∴MB=ME . 又∵AM=AB ,∴AE=AB ,∴AE=BE . ∵AD∥BC ,∴△EAD∽△EBC ,∴,∴S 四边形ADBC =S △EBC =,∴S △EBC =,∴S △EAD =×=,∴S 四边形AMCD =S △EBC ﹣S △EAD =﹣=1.故答案为1.考点:相似三角形的判定与性质;等腰三角形的判定与性质.24. 如图,某水平地面上建筑物的高度为AB ,在点D 和点F 处分别竖立高是2米的标杆CD 和EF ,两标杆相隔52米,并且建筑物AB 、标杆CD 和EF 在同一竖直平面内,从标杆CD 后退2米到点G 处,在G 处测得建筑物顶端A 和标杆顶端C 在同一条直线上;从标杆FE 后退4米到点H 处,在H 处测得建筑物顶端A 和标杆顶端E 在同一条直线上,则建筑物的高是__________米.【答案】54 【解析】设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴CD DGAB BG=,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得EF FHAB BH=,即24x BH=,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.25. 在方格纸中,每个小格的顶点称为格点,以格点的连线为边的三角形称为格点三角形,如图所示的5×5的方格纸中,如果想作格点△ABC与△OAB相似(相似比不能为1),则C点坐标为.【答案】(4,4)或(5,2).【解析】【分析】要求△ABC与△OAB相似,因为相似比不为1,由三边对应相等的两三角形全等,知△OAB的边AB不能与△ABC的边AB对应,则AB与AC对应或者AB与BC对应并且此时AC或者BC是斜边,分两种情况分析即可.【详解】根据题意得:OA=2,OB=1,5∴当AB与AC对应时,有AB OAAC AB=或者AB OBAC AB=,∴AC=52或AC=5,∵C在格点上,∴AC=52(不合题意),则AC=5,∴C点坐标为(5,2),同理当AB与BC对应时,可求得BC=52或者BC=5,也是只有后者符合题意,此时C点坐标为(4,4),∴C点坐标为(5,2)或(4,4).故答案为(4,4)或(5,2).26. 如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AD=4,BD=1,则CD的长为_____.【答案】2.【解析】【分析】根据射影定理得到:CD2=BD•AD,代入求值即可.【详解】∵如图,在Rt△ABC中,∠C=90°,CD⊥AB,AD=4,BD=1,∴由射影定理得:CD2=BD•AD=1×4=4,∴CD=2(舍去负值).故答案是:2.【点睛】本题考查了射影定理.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.27. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,B的坐标是(4,2),那么点B′的坐标是___.【答案】(2,1)或(﹣2,﹣1).【解析】【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴两矩形面积的相似比为:1:2,∵B的坐标是(4,2),∴点B′的坐标是:(2,1)或(-2,-1).故答案为(2,1)或(-2,-1).【点睛】本题考查位似变换的性质,得出位似图形对应点坐标特点是解题关键.28. 如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA=2.OC=1,则矩形AOCB的对称中心的坐标是___;在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的3 2倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大32倍,得到矩形A2OC2B,…,按此规律,则矩形A4OC4B4的对称中心的坐标是___.【答案】(1). (﹣1,12),(2). (﹣8116,8132).【解析】【分析】先利用矩形的性质写出B点坐标,则根据线段中点坐标公式可写出矩形AOCB的对称中心的坐标;再利用以原点为位似中心的对应点的坐标之间的关系分别写出B1、B2、B3、B4的坐标,然后矩形A4OC4B4的对称中心的坐标.【详解】解:∵OA=2.OC=1,∴B(-2,1),∴矩形AOCB的对称中心的坐标为(-1,12),∵将矩形AOCB以原点O为位似中心放大为原来的32倍,得到矩形A1OC1B1,∴B 1(-3,32), 同理可得B 2(-92,94),B 3(-274,278),B 4(-818,8116),∴矩形A 4OC 4B 4的对称中心的坐标是(﹣8116,8132).故答案为(-1,12),(﹣8116,8132).【点睛】本题考查作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.三.解答题29. 若x 、y 、z 满足y z x+=z x y +=x yz +=k ,求k 的值.【答案】k =﹣1;k =2. 【解析】 【分析】可分x+y+z=0和x+y+z ≠0两种情况代入求值和利用等比性质求解. 【详解】①当x+y+z =0时,y+z =﹣x , ∴k =y z x -=xx-=﹣1; ②x+y+z≠0时,k =y z z x x y x y z +++++++=()2x y z x y z++++=2.即k 的值为:-1或2.【点睛】考查比例性质的应用;分两种情况探讨此题是解题关键. 30. 已知:2a =3b =4c ,求a bb c++的值. 【答案】57. 【解析】 【分析】设2a =3b =4c=k (k≠0),则a =2k ,b =3k ,c =4k ,代入求值即可. 【详解】设2a =3b =4c=k (k≠0),则a =2k ,b =3k ,c =4k ,则a bb c + +=2334k kk k++=57.【点睛】本题考查了比例的性质.31. 如图1,点C将线段AB分成两部分,如果AC BCAB AC=,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为1S,2S,如果121S SS S=,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在ABC中,若点D为AB边上的黄金分割点(如图2),则直线AB是ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点D,再过点D 作直线DF CE,交AB 于点D ,连接AB(如图3),则直线AB也是ABC的黄金分割线.请你说明理由.(4)如图4,点D是ABCD的边AB的黄金分割点,过点D作DF CE,交AB于点D ,显然直线AB 是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.【答案】(1)对,理由见解析(2)不可能(3)理由见解析(4)见解析【解析】【分析】【详解】(1)直线CD是ABC的黄金分割线.理由如下:设ABC的边AB上的高为h.12ADCS AD h=△,12BDCS BD h=△,12ABCS AB h=△,所以,ADCABCS ADS AB=△△,BDCADCS BDS AD=△△.又因为点D 为边AB的黄金分割点,所以有AD BD AB AD =.因此ADC BDC ABC ADCS S S S =△△△△. 所以,直线CD 是ABC 的黄金分割线.(2)因为三角形的中线将三角形分成面积相等的两部分,此时1212s s s ==,即 121s s s s ≠,所以三角形的中线不可能是该三角形的黄金分割线. (3)因为DFCE ,所以DEC 和FCE △的公共边CE 上的高也相等,所以有DGE FGC S S =△△.设直线EF 与CD 交于点G .所以DGE FGC S S =△△. 所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =四边形△.又因为ADC BDC ABC ADC S S S S =△△△△,所以BEFCAEF ABC AEFS S S S =四边形△△△.因此,直线EF 也是ABC 的黄金分割线. (4)画法不惟一,现提供两种画法;画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,EF 于M ,G 点,则直线DC 就是ABCD 的黄金分割线.画法二:如答图2,在EF 上取一点G ,连接EF ,再过点G 作FM NE ∥交AB 于点M ,连接DC ,则直线DC 就是ABCD 的黄金分割线. (1)由于,,ACDBCDABCSSS是同高,而点D 为边AB 的黄金分割点,则AD BDAB AD=,所以ADC BDCABC ADCS S S S =△△△△,故直线CD 是ABC 的黄金分割线(2)只需判断它们面积比是否相等,若相等则中线是三角形的黄金分割线,否则不是(3)根据平行线间的距离相等,则DGE FGC S S =△△,通过图形面积的转化,直线EF 分三角形的图形面积有BEFCAEFABC AEFSSS S=四边形△△△,故直线EF也是ABC的黄金分割线(4)画法不惟一,只需分成图形面积比相等即可32. 如果一个矩形ABCD(AB<BC)中,512ABBC-=≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.【答案】矩形ABFE是黄金矩形.说明见解析.【解析】【分析】只需求得其宽与长的比是否符合黄金比即可.【详解】矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴511151AE AD DE BC AB BCAB AB AB AB---===-=-=-.∴矩形ABFE是黄金矩形.【点睛】本题考查黄金分割定理,解题关键是根据已知条件和正方形的性质进行分析求解.33. 如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC 于G.(1)说明点G是线段BC的一个三等分点;(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据矩形对角线的性质可以判断E 为BC 的二等分点,再由OE ∥CD ,OE=12CD ,得出EG=12GC ,从而得出GC=23CE=13BC . (2)依题意,根据平行线分线段成比例定理直接在图中作图即可. 【详解】(1)解:∵OE⊥BC,CD⊥BC,∴OE∥CD. ∵△OEF∽△CDF, ∴12EF OE OB FD CD BD === . ∵四边形ABCD 是矩形, ∴AD∥BC. ∴12CG CE EF BG AF FD === . ∴G 是BC 的三等分点 (2)解:依题意画图所示,【点睛】本题考查的知识点是平行线分线段成比例, 矩形的性质,解题的关键是熟练的掌握平行线分线段成比例, 矩形的性质.34. 如图,在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O . 某学生在研究这一问题时,发现了如下的事实:(1)当BC FE =时,有22321AO AD ==+,如图(1) (2)当11312AE AC ==+时,有113222n nn n b b -+-=⋅=,如图(2) (3)当11413AE AC ==+时,有数与式,如图(3)在图(4)中,当11AEAC n=+时,参照上述研究结论,请你猜想用n表示AOAD的一般结论,并给出证明(其中n是正整数)【答案】AOAD=22n+,证明见解析.【解析】【分析】作DF∥BE交AC于F,如图4,根据平行线分线段成比例定理,由DF∥BE得到CFEF=CDBD,则EF=CF,再利用比例性质由AEAC=11n+得到AEEF=2n,再由OE∥DF得到AOOD=AEEF=2n,然后根据比例性质求解.【详解】过D作DF∥BE交AC于F,∴AO:AD=AE:AF.∵D为BC边的中点,∴CF=EF=0.5EC.∵AEAC=11n+,∴AE:(AE+2EF)=1:(1+n),AE+2EF=AE+AEnAEn=2EF,∴AE:EF=2:n.∴AE:AF=2:(n+2).∴AOAD=22n+.【点睛】本题考查平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.35. 下列每组图形状是否相同?若相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.【答案】(1)形状相同.它们的对应角相等,都是60°.对应边的比相等;(2)形状相同.它们的对应角相等,都是90°.对应边的比相等.【解析】【分析】(1)两个正三角形的形状相同,对应角相等,对应边的比相等.(2)两个正方形的形状相同,对应的角相等,对应边的比相等.【详解】(1)正△ABC与正△DEF的形状相同.它们的对应角相等,都是60°.根据正三角形的边长相等可以得到对应边的比相等.(2)正方形ABCD与正方形EFGH的形状相同.它们的对应角相等,都是90°.根据正方形的边长相等可以得到对应边的比相等.【点睛】本题考查相似图形,相似图形是指形状相同的图形,判断两个正多边形的形状是否相同,就看它们的对应角是否相等,对应边的比是否相等.36. 下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m 的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB与A′B′、BC 与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【答案】(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由;(2)a cb d++=2.【解析】【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以由已知条件求出矩形蔬菜种植区域的长与宽的关系即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得A DA B''''=ADAB,然后利用比例的性质.【详解】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵23111xx----=242xx--=2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要A DA B''''=ADAB,即()()AD a cAB b d-+-+=21,即()()2AB a c AB b d -+-+=21, 即2AB -2(b +d )=2AB -(a +c ),∴a +c =2(b +d ), a c b d即++=2.【点睛】本题考查了相似多边形的性质及比例的性质,如果两个多边形相似,那么它们对应边的比相等,对应角相等,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.37. 如图,四边形ABCD 为平行四边形,AE 平分∠BAD 交BC 于点E ,过点E 作EF ∥AB ,交AD 于点F ,连接BF .(1)求证:BF 平分∠ABC ;(2)若AB =6,且四边形ABCD ∽四边形CEFD ,求BC 长.【答案】(1)证明见解析;(2)BC =5【解析】【分析】(1)首先证明四边形ABEF 是平行四边形,再由平行线的性质和角平分线证出∠BAE=∠AEB ,证出AB=EB ,得出四边形ABEF 是菱形,即可得出结论;(2)由相似多边形的性质得出对应边成比例,即可得出BC 的长.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FAE =∠AEB ,∵EF ∥AB ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD ,∴∠FAE=∠BAE,∴∠BAE=∠AEB,∴AB=EB,∴四边形ABEF是菱形,∴BF平分∠ABC;(2)解:∵四边形ABEF为菱形;∴BE=AB=6,∵四边形ABCD∽四边形CEFD,∴AB BCCE CD=,即666BCBC=-,解得:BC=3±35(负值舍去),∴BC=3+35.【点睛】本题考查菱形的判定与性质、相似多边形的性质、平行四边形的判定与性质、等腰三角形的判定;熟练掌握平行四边形的判定与性质,证明四边形ABEF是菱形是解题关键.38. 将两块全等的含30°角的三角尺如图①摆放在一起,它们的较短直角边长为6(1)将△DCE沿直线l向右平移到图②的位置,使E点落在AB上,求平移的距离;(2)将△DCE绕点C按顺时针方向旋转到图③的位置,使点E落在AB上,则△DCE旋转了多少度数;(3)将△DCE沿直线AC翻折到图④的位置,ED′与AB相交于点F,求证:BF=EF.【答案】(1)CC′=6﹣3;(2)△DCE旋转的度数是30度;(3)见解析.【解析】【分析】(1)根据三角函数求得AC的长,易证△BEC′∽△BAC,根据相似三角形对应边的比相等,即可求得BC′,则可得CC′的长;(2)根据旋转的定义得到:CE=CB,易证△BCE是等边三角形,则∠BCE可得,则△DCE旋转的度数即可求解;(3)证明△AEF≌△DBF即可证得.【详解】(1)在直角△ABC中,AC=BC•tan60°=63.∵△BEC′∽△BAC,∴'BCBC='C EAC即'6BC=63,解得:BC′=23,∴CC′=BC﹣BC′=6﹣23;(2)∵△BCE中,CE=CB,∠EBC=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠ACE=90﹣60=30°,即△DCE旋转的度数是30度.(3)∵AC=CD,CE=CB,∴AE=BD,又∵∠AFE=∠DFB,∠A=∠EDC,∴△AEF≌△DBF,∴BF=EF.【点睛】本题考查旋转的定义,注意先确定旋转角,并且在证明线段相等的问题时,一般是转化为证明三角形全等的问题来解决.39. 如图,在△ABC中,∠ACB=90°,CD⊥AB,(1)图1中共有对相似三角形,写出来分别为(不需证明);(2)已知AB=10,AC=8,请你求出CD的长;(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)3对,分别是:△ABC∽△ACD,△ABC∽△CBD ,△ACD∽△CBD;(2)4.8;(3)存在,(1.35,3)或(3.15,1.8).【解析】【分析】(1)根据两角对应相等的两三角形相似即可得到3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD;(2)先在△ABC中由勾股定理求出BC的长,再根据△ABC的面积不变得到12AB•CD=12AC•BC,即可求出CD的长;(3)由于∠B公共,所以以点B、P、Q为顶点的三角形与△ABC相似时,分两种情况进行讨论:①△PQB∽△ACB;②△QPB∽△ACB.【详解】解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD.故答案为3,△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD;(2)如图1,在△ABC中,∵∠ACB=90°,AB=10,AC=8,∴==6.∵△ABC的面积=12AB•CD=12AC•BC,∴CD=6810AC BCAB⋅⨯==4.8;(3)存在点P,使以点B、P、Q为顶点的三角形与△ABC相似,理由如下:在△BOC中,∵∠COB=90°,BC=6,OC=4.8,∴==3.6.分两种情况:①当∠BQP=90°时,如图2①,此时△PQB∽△ACB,。
九下第27章相似单元测试
第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BC DE 的值为( )A .32 B .41ﻩC.31 D.212.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2, 则下列结论中正确的是( )D.的周长的周长ABC ADE ∆∆31= A .21=BC DE B .21=∆∆的周长的周长ABC ADE C.的面积的面积ABC ADE ∆∆31=3.如图所示,在△ABC 中∠B AC =90°,D 是BC 中点,AE ⊥AD 交CB延长线于E 点,则下列结论正确的是( )A .△AED ∽△ACB B.△A EB ∽△ACD C.△BAE ∽△A CE ﻩD.△AE C∽△DAC 4.如图所示,在△ABC 中D为AC 边上一点,若∠DBC =∠A ,6=BC ,AC=3,则CD 长为( )A .1 B .23ﻩC.2 D .255.若P 是Rt △A BC 的斜边BC 上异于B ,C的一点,过点P 作直线截△ABC ,截得的三角形与原△AB C相似,满足这样条件的直线共有( ) A.1条ﻩB.2条ﻩC.3条ﻩD .4条 6.如图所示,△ABC 中若DE ∥B C,E F∥AB ,则下列比例式正确的是( )A .BC DE DB AD = B .ADEF BC BF = C.FC BF EC AE = D .BC DEAB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( ) A.PA ·AB =PC ·PB ﻩB.P A·PB =PC ·PD C .P A ·AB=P C·CD D.P A ∶PB =PC ∶PD8.如图所示,△ABC 中,A D⊥BC 于D ,对于下列中的每一个条件①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ﻩ④AB 2=B D·BC其中一定能判定△ABC 是直角三角形的共有( ) A.3个 B.2个ﻩC.1个 D.0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处, 测得她在灯光下的影长C D为2.5m,则路灯的高度AB为______.10.如图所示,△ABC 中,AD 是BC边上的中线,F是AD 边上一点,且61=EB AE ,射线CF 交A B于E 点,则FD AF等于______. 11.如图所示,△ABC 中,DE ∥BC ,AE ∶E B=2∶3,若△AED 的面积是4m 2,则四边形DE BC 的面积为______.12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.三、解答题 13.已知,如图,△AB C中,A B=2,BC =4,D 为BC 边上一点,BD=1.(1)求证:△ABD ∽△CBA ;(2)作DE∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC ,试在这个网格上画一个与△A BC相似,且面积最大的△A 1B 1C 1(A 1,B 1,C 1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系, A (1,0),B (0,2),试以5×5的格点为顶点作△ABC 与△OAB 相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC 中,∠BAC =45°,∠ABC=15°,AD ∥OC 并交BC 的延长线于D点,O C交AB 于E 点. (1)求∠D 的度数;(2)求证:AC 2=A D·CE .18.已知:如图,△ABC 中,∠BAC =90°,AB =AC=1,点D 是B C边上的一个动点(不与B ,C点重合),∠ADE =45°. (1)求证:△ABD ∽△DC E;(2)设BD =x,AE =y ,求y关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△A BC 中,AB =4,D 是A B边上的一个动点,DE ∥B C,连结DC ,设△ABC 的面积为S,△DC E的面积为S ′. (1)当D 为AB 边的中点时,求S′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x的取值范围.20.已知:如图,抛物线y =x2-x -1与y轴交于C 点,以原点O为圆心,O C长为半径作⊙O,交x 轴于A ,B 两点,交y轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△P MB ∽△ADB 时的点P 的坐标.22.如图所示,在平面直角坐标系x Oy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P从点A开始在线段A O上以每秒1个单位长度的速度向点O移动,同时动点Q 从点B 开始在线段B A上以每秒2个单位长度的速度向点A移动,设点P ,Q移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△A BO 相似?(3)当t 为何值时,△AP Q的面积为524个平方单位?选做题23.已知:如图,□A BCD 中,AB =4,B C=3,∠B AD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F,FE ,DC 的延长线交于点G,设BE =x ,△DEF 的面积为S .(1)求证:△BE F∽△CEG ;(2)求用x 表示S的函数表达式,并写出x 的取值范围; (3)当E点运动到何处时,S 有最大值,最大值为多少?。
人教版数学九年级下《第27章相似》单元检测题有答案
ABCPD(第6题图)(第3题图)(第4题图)A BCDEF人教版数学九年级下《第27章相似》单元检测题有答案一、选择题1.已知△ABC ∽△A ′B ′C ′,且BC ∶B ′C ′= AC ∶A ′C ′,若AC =3,A ′C ′=1.8,则△ABC与△A ′B ′C ′的相似比是( ).A .2∶3B .3∶2C .5∶3D .3∶5 2. 下列说法正确的是( ).A .所有的矩形都是相似形B .所有的正方形都是相似形C .对应角相等的两个多边形相似D .对应边成比例的两个多边形相似 3. 若两个相似三角形的面积之比为1:4,则它们的周长之比为( ).A . 1:2B . 1:4C . 1:5D . 1:16 4. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( ). A .12m B .10m C .8m D .7m5.如图,已知△ABC 与△ADE 中,则∠C =∠E , ∠DAB =∠C A E,则下列各式①∠D =∠B , ② AF AC = AD AB , ③DEBC=AE AC ,④ AD AE = ABAC中,成立的个数是( ). A .1个 B .2个 C .3个 D .4个 6.如图, AB ∥CD ,AD 与BC 相交于点P ,AB =4, CD =7,AD =10,则AP 的长等于 ( ). A .7011 B .407 C .704D .40117.如图,若∠1=∠2=∠3,则图中相似的三角形有( ).A .1对B .2对C .3对D .4对(第7题图)(第13题图)ACBD E (第11题图) DCB A(第12题图) (第7题图)8.如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,则CD的长为( )A .43B . 34C .2D .3二、填空题9.若///C B A ABC ∆∆∽,且∠A =45°,∠B =30°,则∠C ′=_________ .10.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为________.10.在一张比例尺为1∶20的图纸上,某矩形零件的面积为12cm 2;则这个零件的实际面积为 cm 2.11.如图,在Rt △ABC 中,∠B =90°,点D 是AB 边上的一定点,点E 是AC 上的一个动点,若再增加一个条件就能使△ADE 与△ABC 相似,则这个条件可以是___________.12.如图,BC 平分∠ABD ,AB =12,BD =15,如果∠ACB =∠D ,那么BC 边的长为 .13.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.三、解答题(本大题共5小题,共44分)15. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 为角平分线,DE ⊥AB ,垂足为E .写出图中一对相似比不为1的相似三角形并加以证明.16.已知△ABC ∽△ADE ,AB =30cm ,AD =18cm ,BC =20cm ,∠BAC =75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数;D EA(2)求DE 的长.18.如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点. (1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.19.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =6,AF =4,求AE 的长.九年级数学单元检测题答案(第27章)一、选择题(本大题共8小题.每小题4分,共32分) 1.C 2.B 3.A 4. A 5.C 6.D 7.D 8.B 二、填空题(本大题共6小题.每小题4分,共24分)•9.105 ° 10.2:3 11. 4800 12. DE AC 13.14. 22.5三、解答题(本大题共5小题,共44分) 15. (6分)解:△ABC ∽△BCD ;证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°. ∵BD 为角平分线,∴∠DBC =12∠ABC =36°=∠A . 又∵∠C =∠C ,∴△ABC ∽△BCD .16. (8分)解:(1)∵∠BAC =75°,∠ABC =40°,∴∠C =180°﹣∠BAC ﹣∠ABC =180°﹣75°﹣40°=65°, ∵△ABC ∽△ADE ,∴∠ADE =∠ABC =40°,∠AED =∠C =65°;(2)∵△ABC ∽△ADE ,∴∠A =∠BCD .在△ACD 中,∠ADC =90°, ∴∠A +∠ACD =90°.∴∠BCD +∠ACD =90°,即∠ACB =90°.18. (10分)(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1);(2)符合条件△A 2B 2C 2有两个,如图所示.∥CD ,AD ∥BC , ∴∠C +∠B =180°,∠ADF =∠DEC . ∵∠AFD +∠AFE =180°,∠AFE =∠B , ∴∠AFD =∠C . ∴△ADF ∽△DEC .(2)解:∵□ABCD ,∴CD =AB =8. 由(1)知△ADF ∽△DEC ,∴DE AD =CD AF ,∴DE =AFCDAD ∙==12.在Rt △ADE 中,由勾股定理得:AE =22AD DE -=22)36(12-=6.。
人教新版九年级(下)第27章-相似单元测试卷含解析
,
,
当 时, ,
,
解得 .
当 时, ,
,
解得 ,
故答案为3或 .
三.解答题(共8小题)
21.已知: , ,求: (化成最简整数比)
解: , ,
.
22.如图,在 中, , ,
(1)求 的长;
(2)若点 在 的直角边上,点 在斜边 上,当 时,求 的长.
解:(1)在 中, ,
,
设 , ,则 ,
四边形 是平行四边形,
, ,
是 的中点,
, ,
, ,
,
与 等高,
,
设 , ,则
是 中点,
故选: .
6.如图,直线 ,直线 、 、 分别和直线 交于点 、 、 ,和直线 交于点 、 、 ,若 , , ,则线段 的长为
A.2B.3C.4D.6
解: ,
,
即 ,
,
.
故选: .
7.如图,已知 ,任取一点 ,连 , , ,并取它们的中点 , , ,得 ,则下列说法正确的个数是
A.1B.1.2C.2D.2.5
解: ,
,即 ①,
,
,即 ②,
① ②,得 ,
解得 .
故选: .
9.如图,正方形 边长为6, 是 的中点,连接 ,以 为边在正方形内部作 ,边 交 于 ,连接 .则下列说法正确的有
① ② ③ ④
A.①②③B.②④C.①④D.②③④
【解答】证明:延长 到 ,使 ,连接 .如图所示:
① 与 是位似图形;
② 与 是相似图形;
③ 与 的周长比为 ;
④ 与 的面积比为 .
A.1B.2C.3D.4
解:根据位似性质得出① 与 是位似图形,
人教版九年级数学下册《第27章相似》单元测试题【含答案】
人教版九年级数学下册《第27章相似》单元测试题【含答案】学校:___________姓名:___________班级:___________考号:___________第Ⅰ卷(选择题)评卷人得分一.选择题(每小题3分,共10小题)1.已知a=2b,则下列选项错误的是()A.a+c=c+2b B.a﹣m=2b﹣m C.D.2.如图,在△ABC中,点D、E分不在边AB、AC上,联结DE,如果AD:BD=2:3,那么下列条件中能判定DE∥BC的是()A.=B.=C.=D.=3.若△ABC∽△DEF,相似比为3:2,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:94.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM:MC等于()A.1:2 B.1:3 C.1:4 D.1:55.如图,BE,CF为△ABC的两条高,若AB=6,BC=5,EF=3,则AE的长为()A.B.4 C. D.6.下列讲法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比7.如图,在菱形ABCD中,E为CD上一点,连接AE、BD,交于点O,若S△AOB:S△DOE=25:9,则C E:BC等于()A.2:5 B.3:5 C.16:25 D.9:258.如图,l1∥l2∥l3,BC=1,=,则AB长为()A.4 B.2 C.D.9.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,则S△ABE:S△ECF等于()A.1:2 B.4:1 C.2:1 D.1:410.如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分不交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是()A.①②③B.②③④C.①③④D.①②③④第Ⅱ卷(非选择题)评卷人得分二.填空题(每小题3分,共8小题)11.如图,在△ABC中,点D、E分不在AB、AC边上,DE∥BC,若=,AE=4,则EC等于.12.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.13.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分不在边AB、AC上,如果BC= 5,△ABC的面积是10,那么那个正方形的边长是.14.如图,△ABC中,D在BC上,F是AD的中点,连CF并延长交AB于E,已知=,则等于.15.从美学角度来讲,人的上身长与下身长之比为黄金比时,能够给人一种和谐的美感.某女老师上身长约61. 8cm,下身长约94cm,她要穿约cm的高跟鞋才能达到黄金比的美感成效(精确到1cm).16.如图,矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,延长AE与BC延长线交于点F,则F C:FB=.17.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D到线段AB的距离等于(结果保留根号).18.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.评卷人得分三.解答题(共7小题)19.已知如图所示,AF⊥BC,CE⊥AB,垂足分不是F、E,试证明:(1)△BAF∽△BCE.(2)△BEF∽△BCA.20.已知:△ABC在直角坐标平面内,三个顶点的坐标分不为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)四边形AA2C2C的面积是平方单位.[来源:学科网ZXXK]21.如图,实验中学某班学生在学习完《利用相似三角形测高》后,利用标杆BE测量学校体育馆的高度.若标杆BE的高为1.5米,测得AB=2米,BC=14米,求学校体育馆CD的高度.22.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分不在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.23.如图,在正方形ABCD中,E、F分不是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.24.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)若AB=12,BE=3,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.25.已知:正方形ABCD中,AB=4,E为CD边中点,F为AD边中点,AE交BD于G,交BF于H,连接D H.(1)求证:BG=2DG;(2)求AH:HG:GE的值;(3)求的值.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、因为a=2b,因此a+c=c+2b,正确;B、因为a=2b,因此a﹣m=2b﹣m,正确;C、因为a=2b,因此,正确;D、因为a=2b,当b≠0,因此,错误;故选:D.2.【解答】解:只有选项B正确,理由是:∵AD:BD=2:3,∴=,∵=,∴=,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,按照选项A、C、D的条件都不能推出DE∥BC,故选:B.3.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应面积的比为()2=9:4,[来源:学#科#网Z#X#X#K][来源:学科网]故选:C.4.【解答】解:∵DE是△ABC的中位线,M是DE的中点,∴DM∥BC,DM=ME=BC.∴△NDM∽△NBC,==.∴=.故选:B.5.【解答】解:∵BE,CF为△ABC的两条高,∴∠AEB=∠AFC=90°,∵∠A=∠A,∴△AEB∽△AFC,∴=,∵∠A=∠A,∴△AEF∽△ABC,∴=,∵AB=6,BC=5,EF=3,∴=,∴AE=,故选:A.6.【解答】解:若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④对应面积的比等于相似比的平方,故选:D.7.【解答】解:∵四边形ABCD是菱形∴AB=BC=CD,CD∥AB∴△AOB∽△EOD∴S△AOB:S△DOE=(AB)2:(DE)2=25:9∴AB:DE=5:3∴设AB=5a,则DE=3a∴BC=CD=5a,EC=2a故选:A.8.【解答】解:∵l1∥l2∥l3,BC=1,=,∴==,∴AB=,故选:C.9.【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠CEF,∴△BAE∽△CEF,∴S△ABE:S△ECF=AB2:CE2,∵E是BC的中点,∴BC=2CE=AB∴==,即S△ABE:S△ECF=4:1故选:B.10.【解答】解:①错误,假设∠BAD=∠ABC,则=,∵=,∴==,明显不可能,故①错误.②正确.连接OD.∵GD是切线,∴DG⊥OD,∴∠GDP+∠ADO=90°,∵OA=OD,∴∠ADO=∠OAD,∵∠APF+∠OAD=90°,∠GPD=∠APF,∴∠GPD=∠GDP,∴GD=GP,故②正确.③正确.∵AB⊥CE,∴=,∵=,∴=,∴∠CAD=∠ACE,∴PC=PA,∵AB是直径,∴∠ACQ=90°,∴∠ACP+∠QCP=90°,∠CAP+∠CQP=90°,∴∠PCQ=∠PQC,∴PC=PQ=PA,∵∠ACQ=90°,∴点P是△ACQ的外心.故③正确.④正确.连接BD.∵∠AFP=∠ADB=90°,∠PAF=∠BAD,∴△APF∽△ABD,∴=,∴AP•AD=AF•AB,∵∠CAF=∠BAC,∠AFC=∠ACB=90°,∴△ACF∽△ABC,可得AC2=AF•AB,∵∠ACQ=∠ACB,∠CAQ=∠ABC,∴△CAQ∽△CBA,可得AC2=CQ•CB,∴AP•AD=CQ•CB.故④正确,故选:B.二.填空题(共8小题)11.【解答】解:∵DE∥BC,=,∴AE:AC=AD:AB=2:3,∴AE:EC=2:1.∵AE=4,∴CE=2,故答案为:2.12.【解答】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.13.【解答】解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是10,∴BC•AH=10,∴AH=4,设正方形DEFG的边长为x,则GF=x,MH=x,AM=4﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.14.【解答】解:作DG∥CE,如图,∵DG∥CE,∴==,设BG=2x,则GE=3x,∵EF∥DG,∴==1,∴AE=EG=3x,∴==.故答案为:.15.【解答】解:设她要穿xcm的高跟鞋,由题意得,=0.618,解得x=6,故答案为:6.16.【解答】解:作EH⊥AB于H.∵四边形ABCD是矩形,∴∠D=∠DAH=∠EHA=90°,∴四边形AHED是矩形,∴AD=BC=EH,DE=AH,∵AB=2BC,设AD=BC=a,则AB=CD=2a,在Rt△AEH中,AE=AB=2a,EH=AD=a,∴AH==a,∴EC=BH=2a﹣a,∵EC∥AB,∴△FEC∽△FAB,∴===,故答案为17.【解答】解:∵△ABC∽△ADE,AB=2AD,∴=()2=4,∵S△ABC=,∴S△ADE=,∵△ABC是等边三角形,△ABC∽△ADE,∴△ADE是等边三角形,∴AD2=,∴AD=1.[来源:学科网ZXXK]如图,过点D作DH⊥AB于H.在△ADH中,∵∠HAD=45°,∴DH=AD•sin∠HAD=1×=.故答案为.18.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,∵点M是AB边的中点,∴AM=BM=1,在Rt△ADM中,DM==,∵AM∥CD,∴=,∴DP=,∵PF=,∴DF=DP﹣PF=﹣=,∵∠EDF=∠PDC,∠DFE=∠DCP=45°,∴△DEF∽△DPC,∴,∴,∴DE=,∴CE=CD﹣DE=2﹣=.故答案为:,.三.解答题(共7小题)19.【解答】解:(1)∵AF⊥BC,CE⊥AB,∴∠AFB=∠CEB=90°,∵∠B=∠B,∴△BAF∽△BCE.(2)∵△BAF∽△BCE,∴=,∴=,∵∠B=∠B,∴△BEF∽△BCA.20.【解答】解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,(3)四边形AA2C2C的面积是=;故答案为:(1)(2,﹣2);(2)7.521.【解答】解:依题意得BE∥CD,∴△AEB∽△ADC,∴,即,则CD=12.22.【解答】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为x.∵△AEF∽△ABC,AD⊥BC,∴=,∴=,∴x=8,∴正方形的边长为8cm.23.【解答】(1)证明:设正方形的边长为4a,∵E为AD的中点,∴AE=ED=2a,∵FC=3DF,∴DF=a,FC=3a,∴=,=,∴=,又∠A=∠D=90°,∴△ABE∽△DEF;(2)∵AD=4,∴DE=2,∵AD∥BC,∴△EDF∽△GCF,∴==3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=×BG×AB=20.24.【解答】解:(1)设BF=x,则FC=BC﹣BF=12﹣x,∵BE=3,且BE+BF+EF=BC,∴EF=9﹣x,在Rt△BEF中,由BE2+BF2=EF2可得32+x2=(9﹣x)2,解得:x=4,则EF=9﹣x=5;(2)如图,在FC上截取FM=FE,连接OM,∵C△EBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,∴BE=MC,∵O为正方形中心,∴OB=OC,∠OBE=∠OCM=45°,在△OBE和△OCM中,∵,∴△OBE≌△OCM,∴∠EOB=∠MOC,OE=OM,∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,在△OFE与△OFM中,∵,∴△OFE≌△OFM(SSS),∴∠EOF=∠MOF=∠EOM=45°.(3)证明:由(2)可知:∠EOF=45°,∴∠AOE+∠FOC=135°,∵∠EAO=45°,∴∠AOE+∠AEO=135°,∴∠FOC=∠AEO,∵∠EAO=∠OCF=45°,∴△AOE∽△CFO.∴===,∴AE=OC,AO=CF,∵AO=CO,∴AE=×CF=CF,∴=.25.【解答】(1)证明:∵四边形ABCD是正方形,∵AB∥CD,AB=CD,∵DE=CE,∴==,∴BG=2DG.(2)解:∵∵AB∥CD,AB=CD,∵DE=CE,∴===,在Rt△ADE中,∵AD=4,DE=2,∴AE=2,∴EG=,同法可得BF=2,∵AB=AD,∠BAF=∠ADE,AF=DE,∴△BAF≌△ADE,∴∠ABF=∠DAE,∵∠DAE+∠BAH=90°,∴∠ABF+∠BAH=90°,∴∠AHB=90°,∴AE⊥BF,∴AH===,∴HG=2﹣﹣=,∴AH:HG:GE=::=6:4:5.(3)作DM⊥AE于M.由(2)可知:DM=AH=,∴EM==,∴HM=EH﹣EM=,∴DH=,∵BH==,∴==.。
人教新版 九年级下学期 第27章 相似 单元测试卷 含解析
九年级(下)第二学期第27章相似单元测试卷一、选择题1.若,则A.B.C.D.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,3.如图,下列条件中不能判定的是A.B.C.D.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.177.如图,在矩形中,点是边的中点,则A.B.C.D.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.9.如图,在中,,且,则等于A.B.C.D.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为千米.13.若点是线段的黄金分割点,,则较长线段的长是.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.23.如图,在中,为上一点,为延长线上一点,且,,求证:.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.参考答案一.选择题(共10小题)1.若,则A.B.C.D.解:,,,,故选:.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,解:与△相似,且对应中线之比为,其相似比为,与△周长之比为,与△面积比为,故选:.3.如图,下列条件中不能判定的是A.B.C.D.解:、由,可得,此选项不符合题意;、由不能判定,此选项符合题意;、由,可得,此选项不符合题意;、由,即,且可得,此选项不符合题意;故选:.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.解:四边形和是以点为位似中心的位似图形,,,四边形与四边形的面积比为:.故选:.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.解:,,,,,又,,,,,即,解得,,,解得,,,故选:.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.17解:,,,,,即,解得.故选:.7.如图,在矩形中,点是边的中点,则A.B.C.D.解:点是边的中点,,四边形是矩形,,,,,;故选:.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.解:,,,,,.故选:.9.如图,在中,,且,则等于A.B.C.D.解:,,,,设的面积是,则和的面积分别是,,则和分别是,,.故选:.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.解:过点作于点,如图所示:四边形是正方形,,,,,在与中,,,,在与中,,,,即,延长交于点,作,,,,,,在中,,.,,,.在与中,,,,,,.在等腰直角与等腰直角中,,,在和中,,△,,,四边形是正方形,,为的中位线,,,,,,故选:.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为9.解:已知,,,是成比例线段,根据比例线段的定义得:,代入,,,解得:,故答案为:9.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为19千米.解:设它们之间的实际距离为,,解得.千米.所以它们之间的实际距离为19千米.故答案为19.13.若点是线段的黄金分割点,,则较长线段的长是.解:是线段的黄金分割点,,,而,;故答案为:.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.解:矩形沿折叠,使点落在边上的点处,,,,,当时,与相似,则,不合题意舍去;当时,与相似,,此时,在中,,,在中,,,四边形为矩形,,,.故答案为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于15.解:,,,,,,,,,故答案为15.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是或.解:,,,,,,三点组成的三角形与相似,或,,或,或,解得:,或,故答案为:或.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.解:,,,,,故答案为.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.解:如图,过点作,垂足为,交于.,.,,,,.设,则有:,解得,故答案为:.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.解:是等边三角形,,,,,,,,,,,过作于,,,,,,,中,,故答案为:.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则2或3.解:设.则以,,为顶点的三角形与以,,为顶点的三角形相似,①当时,解得或3.②当时,,解得,当,,为顶点的三角形与以,,为顶点的三角形相似,的值为2或3.故答案为2或3.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.解:,△,△是全等的等边三角形,,,,△,,,同理:,,,,故答案为:.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.解:边长为6的正方形中,,,,,,作,交于,,,,,,,,即,.23.如图,在中,为上一点,为延长线上一点,且,,求证:.【解答】证明:,,,,,,,,四边形平行四边形,.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.【解答】(1)解:,为边上的中线,,,,,,,,,,,即图中所有与相似的三角形有,,;(2)解:,由(1)得,,,.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.【解答】(1)证明:,,,,即;(2),,,,;(3),,,,即,解得,,由(1)得,,则.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.解:(1),,,,,,又,,,,.(2),,,.,,又,.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.解:(1),,点从点出发,速度为4个单位每秒,,,,的面积为:.答:的面积为8.(2)始终平行于始终平行于不妨取解得:答:的值为3.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.解:(1)将,分别代入抛物线解析式,得.解得.故该抛物线解析式是:;(2)设直线的解析式是:,把,分别代入,得.解得,.则该直线方程为:.故设,.则,.,.,...又,.于是,即.解得,(舍去).;(3)由两点间的距离公式知,,,.①若,,解得,(舍去).即符合题意.②若,,解得,(舍去).即符合题意.③若,,解得.综上所述,的值为1或或2.。
[精品]人教版九年级下册数学《第27章相似》单元测试有答案
第27章相似一、选择题1.如果a=3,b=2,且b是a和c的比例中项,那么c=()A. B. C. D.2.已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A. 3:4B. 2:3C. 9:16D. 3:23.已知△ABC∽△A′B′C′,sinA=m,sinA′=n,则m和n的大小关系为()A. m<nB. m>nC. m=nD. 无法确定4.已知△ABC∽△DEF,且相似比为2:3,则△ABC与△DEF的对应高之比为()A. 2:3B. 3:2C. 4:9D. 9:45.三角尺在灯泡的照射下在墙上形成的影子如图所示。
若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A. 5:2B. 2:5C. 4:25D. 25:46.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:27.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A. B.C. D.8.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D.9.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1, S2, S3。
若S1+ S3=20,则S2的值为 ( )A. 8B. 10C. 12D.10.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A. 10B. 11C. 12D. 1311.如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A. ∠D=∠BB. ∠E=∠CC.D.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A. 0.6mB. 1.2mC. 1.3mD. 1.4m二、填空题13.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是________ .14.已知线段a=2cm,b=8cm,那么线段a和b的比例中项为________ cm.15. 已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出与△ABC相似(与图形同向),且相似比是3的三角形,它的三个对应顶点的坐标分别是________.16.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段BE的长为________ .17.如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是________ .18.在比例尺为1:6000的地图上,图上尺寸为1cm×2cm的矩形操场,实际尺寸为________.19.已知△ABC中的三边a=2,b=4,c=3,h a, h b, h c分别为a,b,c上的高,则h a:h b:h c=________.20.有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm221.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.22. 勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉.生活中到处可见黄金分割的美.如图,线段AB=1,点P1是线段AB的黄金分割点(AP1<BP1),点P2是线段AP1的黄金分割点(AP2<P1P2),点P3是线段AP2的黄金分割点(AP3<P2P3),…,依此类推,则AP n的长度是________.三、解答题(共3题;共15分)23.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G (1)求证:△AMF∽△BGM;(2)连接FG,如果α=45°,AB=4, BG=3,求FG的长.24.如图,学校旗杆附近有一斜坡,小明准备测量旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影子长BC=20米,斜坡坡面上的影子CD=8米,太阳光AD与水平地面BC成30°角,斜坡CD与水平地面BC成45°的角,求旗杆AB的高度.(=1.732,=1.414,=2.449,精确到1米).25.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.6m;乙:我们相距36m.请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)26. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.27. 如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当a为何值时,△DOE与△ABC相似?参考答案一、选择题C D C A B B B D A D D D二、填空题13. 1:314. 415. (﹣6,0)、(3,3)、(0,﹣3)16. 317. 6或818. 60m×120m19. 6:3:420. 5421. 222.三、解答题23. 证明:(1)∵∠DME=∠A=∠B=α,∴∠AMF+∠BMG=180°﹣α,∵∠A+∠AMF+∠AFM=180°,∴∠AMF+∠AFM=180°﹣α,∴∠AFM=∠BMG,∴△AMF∽△BGM;(2)解:当α=45°时,可得AC⊥BC且AC=BC,∵M为AB的中点,∴AM=BM=2,∵△AMF∽△BGM,∴,∴AF===,AC=BC=4•cos45°=4,∴CF=AC﹣AF=4﹣=,CG=BC﹣BG=4﹣3=1,∴FG== =.24. 解:延长AD交BC于E点,则∠AEB=30°,作DQ⊥BC于Q,在Rt△DCQ中,∠DCQ=45°,DC=8,∴DQ=QC=8sin45°=8×=4,在Rt△DQE中,QE=≈9.8(米)∴BE=BC+CQ+QE≈35.5(米)在Rt△ABE中,AB=BEtan30°≈20(米)答:旗杆的高度约为20米.25. 解:如图,CD=EF=BH=1.6m,CE=DF=36m,∠ADH=30°,∠AFH=30°,在Rt△AHF中,∵tan∠AFH=,∴FH=,在Rt△ADH中,∵tan∠ADH=,∴DH=,而DH﹣FH=DF,∴﹣=36,即﹣=36,∴AH=18,∴AB=AH+BH=18+1.6≈33(m).答:纪念塔的高度约为33m.26. (1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴=1.27. (1)解:△DOE是等腰三角形.理由如下:过点A作AM⊥BC于M,∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,AC=AB= a,∴S△ABC= BC•AM= a2,∴P在边AB上时,y= •S△ABC= ax,P在边AC上时,y= •S△ABC= a2﹣ax,作DF⊥OE于F,∵AB=AC,点P以1cm/s的速度运动,∴点P在边AB和AC上的运动时间相同,∴点F是OE的中点,∴DF是OE的垂直平分线,∴DO=DE,∴△DOE是等腰三角形(2)解:由题意得:∵AB=AC,BC=acm,∠B=30°,∴AM= × = a,∴AB= a,∴D(a,a2),∵DO=DE,AB=AC,∴当且仅当∠DOE=∠ABC时,△DOE∽△ABC,在Rt△DOF中,tan∠DOF= = = a,由a=tan30°= ,得a= ,∴当a= 时,△DOE∽△ABC.。
人教版九年级数学下册第27章相似 章节 基础检测含答案
27.1 图形的相似一、基础训练1.在比例尺为1:5000的地图上,量得甲、乙两地的距离为25cm,则甲、乙两地的实际距离是()A.1250kmB.125kmC.12.5kmD.1.25km2.下列四个结论:①两个菱形相似;②两个矩形相似;③两个正方形相似;④两个等腰梯形相似.其中正确的结论的个数是()A.1个B.2个C.3个D.4个3.下列说法正确的是()A.相似三角形一定全等B.不相似的三角形不一定全等C.全等三角形不一定是相似三角形D.全等三角形一定是相似三角形4.已知△AB C∽△A1B1C1,顶点A、B、C的对应点分别是A1、B1、C1,∠A=55°,∠B=100°,则∠C1的度数是()A.55°B.100°C.25°D.不能确定5.要做甲、乙两种形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm、60cm、80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有()A.1种B.2种C.3种D.4种6.把△ABC的各边分别扩大为原来3倍,得到△A1B1C1,下列结论不能成立的是()A.△AB C∽△A1B1C1B.△AB C与△A1B1C1的各对应角相等C.△AB C与△A1B1C1的相似比为3:1D.△AB C与△A1B1C1的相似比为1:37.已知线段3、4、6与x成比例线段,则x=_________________.8.两个三角形相似,其中一个三角形两个内角分别是40°、60°,那么另一个三角1 / 31形的最大角为__________,最小角为______________.二、能力训练.9.如图△ABC与△DEF相似,求未知边x、y的长度10.如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,线段的长度如图所示,求证:△ABC∽△ADE.2 / 313 / 3111.如图,若56DE BC AE AC AD AB ===,且△ABC 与△ADE 周长差为4,求△ABC 与△ADE 的周长.12.一个矩形截去一个边长与宽相等的正方形后,所得的矩形仍与原矩形相似,求原矩形与宽的比.27.2《相似三角形性质与判定》一、选择题1.已知△ABC 与△A 1B 1C 1相似,且相似比为3:2,则△ABC 与△A 1B 1C 1的面积比为( )A.1:1B.3:2C.6:2D.9:42.若△ABC ∽△DEF ,AB=2DE ,△ABC 面积为8,则△DEF 的面积为( )A.1B.2C.4D.83.如图,在△ABC 中,DE ∥AB ,且CD:BD=3:2,则CE:CA 的值为( )A.0.6B.2/3C.0.8D.1.54.一个三角形支架三条边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm,120cm的两根木条,要求以其中一根为一边,从另一根上截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种5.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2B.3C.6D.546.已知△ABC∽△DEF,S△ABC:S△DEF=1:9,若BC=1,则EF的长为()A.1B.2C.3D.97.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,若AE=1,CE=AD=2,则AB的长是()A.6B.5C.4D.28.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为A.40mB.60mC.120mD.180m4 / 3110.如图,是一种雨伞的轴截面图,伞骨AB=AC,支撑杆OE=OF=40 cm,当点O沿AD滑动( )时,雨伞开闭.若AB=3AE,AD=3AO,此时B,D两点间的距离为A.60 cmB.80 cmC.100 cmD.120 cm11.如图,D、E是AB的三等分点,DF∥EG∥BC,图中三部分的面积分别为S1,S2,S3,则S1:S2:S3=()A.1:2:3B.1:2:4C.1:3:5D.2:3:412.如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是()A.5:8B.25:64C.1:4D.1:16二、填空题.13.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为是 .5 / 316 /3115.如图,在平行四边形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若CF=6,则AF 的长为_____.16.如图,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F.若AD=1,BD=2,BC=4,则EF=________.17.如图,在平行四边形ABCD 中,点E 在边DC 上,△DEF 的面积与△BAF 的面积之比为9:16,则DE :EC=_____.18.如图,AG ∥BC ,如果AF :FB=3:5,BC :CD=3:2,那么AE :EC=_____.三、解答题19.如图所示,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上,判断△ABC 和△DEF 是否相似,并说明理由.7 /3120.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A ,在近岸分别取点B 、D 、E 、C ,使点A 、B 、D 在一条直线上,且AD ⊥DE ,点A 、C 、E 也在一条直线上,且DE ∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB 为多少米?21.如图,一块直角三角板的直角顶点P 放在正方形ABCD 的BC 边上,并且使条直角边经过点D ,另一条直角边与AB 交于点Q.请写出一对相似三角形,并加以证明.(图中不添加字母和线段)22.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.23.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG//BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AG:DF的值.8 / 3124.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD 分别交于点G、F.DF=2CF,AB=6,求DG的长.25.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.9 / 31参考答案1.答案为:D2.答案为:B3.答案为:A4.答案为:B5.答案为:C6.答案为:C7.答案为:A8.答案为:B9.答案为:C.10.答案为:D11.答案为:C12.答案为:D13.答案为:1:4.14.答案为:1:4.15.答案为:316.答案为:2/3.17.答案为:3:118.答案为:3:2;10 / 3119.△ABC和△DEF相似,理由如下:20.解析根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE ,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.21.△BPQ∽△CDP,证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠QPD=90°,∴∠QPB+∠BQP=90°,∠QPB+∠DPC=90°,∴∠DPC=∠PQB,∴△BPQ∽△CDP.22.解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如图,即为所作图形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP =∠ABC,11 / 31∴∠BAP=∠CPD=∠ABC,即∠CPD =∠ABC,∴PD∥AB.23.解:24.解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP ∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG 的长为.25.解:(1)证明:∵ED2=EA•EC,12 / 31∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.27.3位似1.下列说法中,正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A′B′C′D′E′位似,则其中△ABC与△A′B′C′也是位似的,且位似比相等.A.1B.2C.3D.42.位似图形的中心可能在两个图形__________,也可能在两个图形__________,还可能在两个图形的__________.3.指出下列各组位似图形的位似中点.13 / 3114 / 314.如图,△ACB 与△DFE 是位似图形,则)()()(ABBP AP ==.4题图 互动训练知识点一:位似图形的概念及性质 1.下列说法错误的是( ) A. 相似图形不一定是位似图形 B. 位似图形一定是相似图形 C. 同一底版的两张照片是位似图形D. 放幻灯时,底片上的图形和银幕上的图形是位似图形2.两个位似多边形一对对应顶点到位似中心的距离比为1∶2,且它们面积和为80,则较小的多边形的面积是( )A.16B.32C.48D.643.按如下方法,将△ABC 的三边缩小为原来的21,如图,任取一点O ,连结AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF . 则下列说法中正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 的周长比为2∶1 ④△ABC 与△DEF 的面积比为4∶1 A.1 B.2 C.3 D.415 /313题图 4题图4.如图,五边形ABCDE 与五边形A′B′C′D′E′位似,对应边CD =2,C′D′=3. 若位似中心P 点到点A 的距离为6,则P 到A′的距离为________________.5.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,△ADE 和△ABC 是位似图形,DE =1,BC =3,AB =6,求AD 的长.5题图知识点二:利用位似图形进行作图6.画出图中位似图形的位似中心..7.利用位似的方法把下图缩小一倍,要求所作的图形在原图内部8.如图,已知O是四边形ABCD的边AB上的任意一点,且EH∥AD,HG∥DC,GF∥BC.试说明四边形EFGH与四边形ABCD是否位似,并说明你的理由.16 / 3131 8题图9. 如图,在△ABC中,BC=1,AC=2,∠C=90°.9题图(1)在方格纸①中,画△A′B′C′,使△A′B′C′∽△ABC,且相似比为2∶1;(2)若将(1)中△A′B′C′称为“基本图形”,请你利用“基本图形”,借助旋转、平移或轴对称变换,在方格纸②中设计一个以点O为对称中心,并且以直线l为对称轴的图案.17 /知识点三:位似图形的应用10.一般室外放映的电影胶片上,每一个图片的规格为3.5 cm×3.5 cm,放映的银幕的规格是2 m×2 m,若影机的光源距胶片20 cm时,问银幕应拉在离镜头多远的地方,放映的图像刚好布满整个银幕?11.如图,已知矩形ABCD与矩形EFGH是位似图形,OB∶OF=3∶5,求矩形.ABCD与矩形EFGH的面积比12.在直角坐标系中,有一个Rt△AOB,且两直角边长分别为OA=4,OB=3,如图.(1)请直接写出A、B两点的坐标.(2)将△AOB作下列运动,画出相应的图形,指出3个顶点的坐标发生的变化(不必写计算过程).①关于原点对称;18 / 3119 / 31②将△AOB 以O 点为位似中心,缩小1倍.12题图课时达标1.如图,BC ∥ED ,下列说法不正确的是( )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .B 与D 、C 与E 是对应位似点 D .AE ︰AD 是相似比1题图 2题图2.如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( ) A. 61 cm B .31 cm C. 21cm D.1 cm3.在图中,①中的两个图形是位似图形,③中的两个图形也是位似图形,②中的两个图形不是位似图形.(1)分别指出图①③各自的位似中心.(2)在图①中任取一对对应点,度量这两个点到位似中心的距离.它们的比与位似比有什么关系?在图③中再试一试,还有类似的规律吗?4.如图,已知△ABC与△A′B′C′是位似图形,则AB∥A′B′,BC∥B′C′吗?说明理.由5.如图中的图案是由A字图案(虚线图案)经过变换后得到的,试问该变换是位似变换吗?为什么?20 / 3131 5题图6.如图,△ABC和△A′B′C′为位似图形,写出六个顶点的坐标,并指出△ABC和△A′B′C′的位似比.6题图7.已知图,作出一个新图形,使新图形与原图形的位似比为2∶1.7题图21 /8.如图,在水平桌面上的两个“E”,当点P1、P2、O在一条直线上时,在点O 处用①号“E”测得的视力与用②号“E”测得的视力相同.(1)图中b1,b2,l1,l2满足怎样的关系式?(2)若b1=3.2 cm,b2=2 cm,①号“E”的测试距离l1=8 m,要使测得的视力相同,?则②号“E”的测试距离l2应为多少9.印刷一张矩形的张贴广告如图所示,它的印刷面积为32 dm2,上下空白各1 dm,两边空白各0.5 dm,设印刷部分从上到下的长为x dm,四周空白处的面积为S dm2.(1)求S与x的关系式;(2)当要求空白处的面积为18 dm2时,求用来印刷这张广告的纸张的长和宽各是多少?.(3)内外两个图形是位似图形吗?如果是,请说明理由22 / 31拓展探究1.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQR的是( )A.①②B.①③C.②③D.①②③1题图2题图2.如图,在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.3.正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8,如图所示,23 / 3124 /313题图解答下列问题:(1)⊙A 的半径为__________;(2)请在图中将⊙A 先向上平移6个单位,再向左平移8个单位得到⊙D ,观察你所画的图形知⊙D 的圆心D 点的坐标是__________;⊙D 与x 轴的位置关系是__________;⊙D 与y 轴的位置关系是__________;⊙D 与⊙A 的位置关系是__________.(3)画出以点E(-8,0)为位似中心,将⊙D 缩小为原来的21的⊙F.27.3位似(第1课时)答案自主预习1. C. 解析:位似图形是相似图形,但相似图形不一定是位似图形,因而①对,②错.若两个位似图形全等,则其对应线段的比为1,因而位似中心到任意一对对应25 / 31点的距离之比等于1,即位似中心在两个图形之间,因而③对.相似多边形中的对应三角形相似,因而△ABC ∽△A′B′C′.又因为过这两个相似三角形对应点的直线都经过位似中心,所以△ABC 与△A′B′C′也是位似的,且位似比为B A AB '',即为原多边形的位似比.因而④对.答案:C2. 之间,同侧,内部. 解析:根据位似图形的意义.3. (1) P 点;(2) P 点. 解析:由位似图形意义.4. DP 、EP 、DE . 解析:对应点到位似中心的距离的比等于相似比. 互动训练1. C. 解析:位似是相似的特例,选项A 、B 都正确;选项C 不能确定两张照片的位置,它们不一定位似;选项D 是正确的.答案:C2. A. 解析:位似形必定相似,具备相似形的性质,其相似比等于一对对应顶点到位似中心的距离比. 相似比为1∶2,则面积比为1∶4,由面积和为80,得到它们的面积分别为16,64.答案:A3. D. 解析:此题缩小图形的根据是位似图形的性质.这样作出的图形与原图形位似,位似比为OB OE =21,即△ABC ∽△DEF,且相似比为12=OE OB .因而周长为2∶1,面积比为4∶1. 答案:D4. 9. 解析:由位似中心到两图形对应点的比等于相似比可求得答案.5.解:∵△ADE 与△ABC 是位似图形,∴△ADE ∽△ABC .所以BCDE AB AD =. ∵DE =1, BC =3, AB =6, ∴316=AD . ∴AD =2,即AD 的长为2. 6.如图所示26 /317. 解:(1)在五边形ABCDE 内部任取一点O .(2)以点O 为端点作射线OA 、OB 、OC 、OD 、OE .(3)分别在射线OA 、OB 、OC 、OD 、OE 上取点A′、B′、C′、D′,使OA ∶OA′=OB ∶OB′=OC ∶OC′=OD ∶OD′=OE ∶OE′=2.(4)连接A′B′、B′C′、C′D′、D′E′、E′A′.得到所要画的多边形A′B′C′D′E′(如图).7题图8. 解:四边形EFGH ∽四边形ABCD .理由:∵EH ∥AD ,∴△OEH ∽△OAD .∴∠1=∠A ,∠2=∠3,OD OH AD EH OA OE ==. 同理∠4=∠5,∠6=∠7,OCOG DC HG OD OH ==,27 / 31∠8=∠9,∠10=∠B,OB OF BC FG OC OG ==. ∴∠2+∠4=∠3+∠5,即∠EHG =∠ADC .∴∠6十∠8=∠7+∠9,即∠HGF =∠DCB .∴k ADEH OB OF OA OE ===. ∴OE =k·OA ,OF =k·OB .∴k OB OA OB OA k OB OA OF OE =++=++)(,即k ABEF =. ∴∠1=∠A ,∠EHG =∠ADC ,∠HGF =∠DCB ,∠10=∠B ,BCFG DC HG AD EH AB EF ===. ∴四边形EFGH ∽四边形ABCD .∵两个四边形各对应顶点的连线交于同一点O ,不经过点O 的其它三边平行,∴四边形EFGH 与四边形ABCD 是位似形.9. 如图,9题图10. 解:位似比为k=74005.3200=,设出银幕应拉在离镜头x m 的地方,则由位似图形的性质得740020=x,所以x=780m,故银幕应拉在离镜头780m的地方.11. 解:由位似可得,两个矩形相似,∴S矩形ABCD∶S矩形EFGH=(OB∶OF)2.∴S矩形ABCD∶S矩形EFGH=9∶2512. 解:(1) A (4, 0), B(0,3).(2) ①A1(-4,0), B1(0,-3), O(0,0). 如图:②如图, A2(2,0), B2(0,23), O(0,0).课时达标1. D.2. D. 解析:易得△ABO∽△CDO, 所以212=CDAB. 所以CD=1(cm).答案:D 3. (1)①③的位似中心分别为O、P点.(2)经过测量计算可推测得到对应点到位似中心的距离等于相似比.4. 解:AB∥A′B′,BC∥B′C′.理由如下:因为△ABC和△A′B′C′是位似图形,所以△ABC∽△A′B′C′.所以OAAO'=ABBAOBBO''='. 所以△OA′B′∽△OAB.所以∠OA′B′=∠OAB.所以A′B′∥AB.同理可得BC∥B′C′.28 / 315. 解:不是位似变换,原因一是看形状不同,二是4∶8≠4∶4,所以对应边不成比例.所以不是位似变换.6.解:六个顶点坐标为A(-1,4),A′(-0.5,2),B(6,2),B′(3,1),C(2,1),C′(1,0.5),位似比为2∶1.7. 解法一:(1)取关键点A、B、C、D,在图外取点P,作射线AP、BP、CP、DP;(2)在它们上面分别取A′、B′、C′、D′,使得P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD.(3)顺次连结A′、B′、C′、D′,四边形A′B′C′D′即为所求.如图(1),(1) (2) (3)解法二:(1)如图(2),在原图上取关键点A、B、C、D,在图形外取一点P,作出射线P A、PB、PC、PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A′=2P A,PB′=2PB,PC′=2PC,PD′=2PD;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.解法三:(1)如图(3),在原图上取关键点A,B,C,D,在图内取一点P,作射线P A,PB,PC,PD;(2)在这些射线上依次取点A′,B′,C′,D′,使P A=AA′,PB=BB′,PC=CC′,PD=DD′;(3)顺次连结A′,B′,C′,D′,则四边形A′B′C′D′即为所求作的新图形.8. 解:(1)∵△OD2P2∽△OD1P1, ∴b1∶b2=l1∶l2.29 / 3130 / 31 (2)由b 1∶b 2=l 1∶l 2, 得l 2=5 m.9. 解:(1)根据题意,得S=2×x×0.5+2×x 32×1+4×1×0.5=x+x 64+2, 即S=x+x64+2. (2)根据题意,得x+x64+2=18,整理,得x 2-16x+64=0.所以(x-8)2=0. 所以x=8.所以x+2=10.所以这张广告纸的长为10(dm),宽为832+2×0.5=5(dm). (3)内外两矩形是位似图形,理由如下:因为内,外两矩形的长,宽的比都为2, 所以45=''=''=''=''A D DA D C CD C B BC B A AB . 因为矩形的各角都为90°,所以矩形ABCD ∽矩形A′B′C′D′.因为AC 和BD ,A′C′和B′D′都相交于O 点,所以矩形ABCD 与矩形A′B′C′D′是位似图形.拓展探究1. D. 解析:本题考查图形变换的各种特征. 答案:D2. (5,4).3. (1)5. (2)如图,(-5,6),相离,相切,外切.(3)连接DE ,取DE 的中点F ,以F 为圆心,2.5为半径作圆.解析:本题用到圆的性质和在坐标系中图形变换的坐标变化.(1)连接AC ,根据垂径定理,有勾股定理可以计算;(2)⊙A 的平移实质是圆心的平移,因此点D 的坐标为(-5,6),由点D 的坐标看,⊙D 与x 轴相离,与y 轴相切,与⊙A 外切;(3)圆都可以看作是位似图形,位似中心在两圆圆心的连线上.31 /31。
新人教版九年级下第27章《相似》单元测试题
新人教版九年级下第27章《相似》单元测试题第27章《相似》单元测试题一、多项选择题(每个子题3分,共30分)1、如图,已知ab∥cd∥ef,那么下列结论正确的是()a、 ADBCDFDF=ceb.ce=adc.cd=bcd.cdefbeef=adaf2.如果△ 基础知识≓△ DEF已知且ab:de=1:2,则△ 基础知识与△def的面积之比为()(a) 1:2(b)1:4(c)2:1(d)4:13。
如图所示,小方块的边长均为1,因此下图中的三角形(阴影部分)类似于△ ABC是()abca.b.c、 D.4。
如图所示,在△ ABC,a和B的两个顶点位于x轴上方,C点的坐标为(-1,0)。
以C点为定位中心,绘制△ ABC在x轴下方,放大△ ABC将原稿翻一番,并记录所获得的图像是否正确△ a′B′C.如果对应点B′的横坐标是a,那么点B的横坐标是()a.?12ab.?12(a?1)c、 ?。
?12(a?1)d.?12(a?3)5.如图所示,在长8cm、宽4cm的矩形中,剪下一个矩形,使左矩形(图中阴影部分)与原矩形相似,则左矩形的面积为()a.2cm2b.4cm2c.8cm2d.16cm26.如图所示,在菱形ABCD中,对角线AC和BD在点O处相交,m和N分别是边AB和ad的中点,连接OM、on和Mn。
那么下面的陈述是正确的:(AA)△ AOM和△ AON是等边三角形MNB。
四边形mbon和四边形MODN是钻石c.四边形amon与四边形abcd是位似图形生化需氧量d.四边形mbco和四边形ndco都是等腰梯形7.如图所示,在RT中△ ABC公司,?acb?公元前90度?3,空调?4,abc的垂直平分线de交bc的延长线于点e,则ce的长为()a.32b.7256c.6d.28.美是一种感觉。
当下半身长与身高之比接近0.618时,给人一种美感。
如图所示,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()a.4cmb.6cmc.8cmd.10cm9、如图(5),正方形abcd 中,e为ab的中点,af⊥de于点o,那么aodo等于()DCa.253b.13Fc.23d.1o2A10。
九年级数学(下)第二十七章《相似》单元测试含答案
c b a 第2题图n m F E D C B A 第3题图E D C B A第4题图F E D C B A 第7题图PD C BA E 第8题图DC B A九年级数学(下)第二十七章《相似》单元测试一、 选择题:(本大题共12小题,每小题2分,共24分)1.下列四组线段中,不能成比例的是.A. a =3,b =6,c =2,d =4B. a =1,b =3,c =4,d =12C. a =4,b =6,c =5,d =10D. a =2,b =3,c =4,d =62.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于A 、C 、E 、B 、D 、F , AC =4,CE =6,BD =3,则BF =.A. 7B. 7.5C. 8D. 8.53.如图,在△ABC 中,已知DE ∥BC ,AD =3,DB =6,DE =2,则BC =. A. 4 B. 6 C. 10 D. 84.如图,E 是□ABCD 的边BC 的延长线上的一点,连接AE 交CD 于F ,则图中共有相似三角形.A. 1对B. 2对C. 3对D. 4对 5.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是. A. ∶1 B. 4∶1 C. 3∶1 D. 2∶1 6.已知a 、b 、c 为正数,且===k ,下列四个点中,在正比例函数y =k x 的图像上的是. A.(1,) B.(1,2) C.(1,-) D.(1,-1)7.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB =4,CD =7,AD =10,则AP 的长等于. A. B. C. D.8.如图,在△ABC 中,∠BAC =90°,D 是BC 中点, AE ⊥AD 交CB 的延长线于E ,则下列结论正确的是 A.△AED ∽△ACB B. △AEB ∽△ACDC.△BAE ∽△ACED.△AEC ∽△DAC9.要作一个多边形与已知多边形相似,且使面积 扩大为原来16倍,那么边长为原来.A. 2倍B. 3倍C. 4倍D. 5倍10.在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,则下列结论:①AC 2=AD ·AB ; ②CD 2=AD ·BD ;③BC 2=BD ·AB ;④CD ·AD =AC ·BC ;⑤=.第10题图D C BA 第11题图第12题图F ED C B A第14题图E D C B A第16题图ED C B A 第15题图E D C B A QKGF D AG D A E D A正确的个数有.A.2个B.3个C.4个D.5个11.如图,△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C为位似中心,在x 轴的下方作△ABC 的位似图形△A /B /C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B /的横坐标是a ,则点B /的横坐标是. A. -a B. - C. - D. -12.如图,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC于点F ,设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,关于x 的函数图像是二、填空题:(本大题共10小题,每小题2分,共20分)13.如果两个相似三角形的面积比是1∶2,那么它们对应边的比是. 14.如图,DE 是△ABC 的中位线,已知=2,则四边形BCED 的面积为.15.如图,在矩形ABCD 中,AB =2,BC =1,E 是DC 上一点,∠DAE =∠BAC , 则EC 长为.16.顶角为36°的等腰三角形称为黄金三角形,如图,△ABC 、△BDC 、△DEC 都是黄金的三角形,已知AB =1,则DE =.17.如图,Rt △ABC 内有三个内接正方形,DF =9cm ,GK =6cm ,则第三个正方形的边长PQ 的长是.第22题图P E D C B A 第23题图D C B A P M F D C18.如图,已知△ABC 中,若BC =6,△ABC 的面积为12,四边形DEFG 是△ABC 的内接的正方形,则正方形DEFG 的边长是.19.如图,以A 为位似中心,将△ADE 放大2倍后,得位似形△ABC ,若S 1表示△ADE的面积,S 2表示四边形DBCE 的面积,则S 1∶S 2=.20.直角三角形的两条直角边的长分别为a 和b ,则它的斜边上的高与斜边比为21.如图,直角坐标系中,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,OC 在y轴上,如果矩形OA /B /C /与矩形OABC 关于点O 位似,且矩形OA /B /C /的面积等于矩形OABC 面积的,那么点B /的坐标是.22.△ABC ≌Rt △ADE ,∠A =90°,BC 和DE 交于点P ,若AC =6,AB =8, 则点P 到AB 边的距离是. 三、解答题:(本大题共56分)23.(6分)如图,点C 、D 在线段AB 上,△PCD 是等边三角形. ⑴当AC 、CD 、DB 满足怎样的关系式时,△ACP ∽△PDB ? ⑵当△ACP ∽△PDB 时,求∠APB 的度数.24.(10分)如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,E 、F 分别是AB 、BC 的中点,EF 与BD 相交于点M. ⑴求证:△EDM ∽△FBM ; ⑵若DB =9,求BM.第26题图B25.(10分)已知△ABC 的三边长分别为20cm 、50cm 、60cm ,现要利用长度分别为30cm和60cm 的细木条各一根,做一个三角形木架与△ABC 相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,求另外两边的长度(单位:cm )26.(10分)如图,在△ABC 中,∠ACB =90°,以BC 上一点O 为圆心,OB 为半径的圆交AB 于点M ,交取于点N , ⑴求证:BA ·BM =BC ·BN ;⑵如果CM 是⊙O 的切线,N 是OC 的中点,当AC =3时,求AB 的值.第27题图F E D C BAC27.(10分)如图,已知△ABC ,延长BC 到D ,使CD =BC ,取AB 的中点F ,连结FD 交AC于点E. ⑴求AE ∶AC 的值;⑵若AB =a ,FB =EC ,求AC 的长.28.(10分)如图,在△ABC 中,AB =10cm ,BC =20cm ,点P 从点A 开始沿AB 边向B点以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度移动,如果点P 、Q 分别从A 、B 同时出发,问经过几秒钟,△PBQ 与△ABC 相似.F第22题图PE DC B A第23题图DC BA P D C第11题图第12题图F EDCBA参考答案:一、 选择题:1.C ;2.B ;3.B ;4.C ;5.A ;6.A ;7.C ;8.C ;9.C ;10.C ;11.D ;12.A ; 二、填空题:13. 1∶;14. 6;15. 25;16.;17. 4cm ;18. 2.4;19. 1∶3;20.;21.(3,2)或(-3,-2);22.;11.解:把图形向右平移1个单位长度,则点C 的坐标 与原点O 重合,与B /的对应点B //的横坐标变为a +1,此时△ABC 以原点O 为位似中心的位似图形是△A //B //C ,则与点B //对应的点的横坐标为-(a +1) 一个单位,则得到B 的横坐标为-(a +1.选择D.12.解:特别的,当BE =0和4时,FC =0.当0<BE <4时,易证: Rt △ABE ∽Rt △ECF ∴= ∴=∴y =x 2+x ∴y 是x 的函数.当x =2时,y 有最大值,最大值是1. 选择A. 22题:解:作PF ⊥AB 于点F设PF =x ,由题意:BE =CD =2, ∴Rt △EFP ∽Rt △EAD. ∴=∴EF =x∴Rt △BFP ∽Rt △BAC ∴=∴=∴x =三、解答题:23.解:⑴∵△PCD 是等边三角形∴∠PCD =∠PDC =60°PC =PD =CD ∴∠PCA =∠PDB =120° ∴当AC 、CD 、DB 满足 CD 2=AC ·BD即 = 时,△ACP ∽△PDB⑵当△ACP ∽△PDB 时由∠A =∠BPD ,∠B =∠APC∴∠PCD =∠A +∠APC =60°=∠A +∠B ∠PDC =∠B +∠BPD =60°∴∠APB =60°+∠APC +∠BPD =60°+60°-∠A +∠60°-∠B =180°-(∠A +∠B )=180°-60°=120° 24.解:⑴∵AB =2CD AE =BEB G第27题图F E D C B APA ∴CD =BE又∵AB ∥CD ∴CD ∥BE 且CD =BE ∴四边形EBCD 是平行四边形 ∴DE ∥BC∴△EDM ∽△FBM ⑵∵△EDM ∽△FBMFB =BC =DE ∴==∴=∴= ∴BM =3.25.解:⑴如果将长度为60cm 木条作为其中一边,把30cm 木条截成两段,其三角形不存在;⑵如果将长度为30cm 的木条作为其中一边,把60cm 的木条截成两边,则:①将30cm 的木条作最长边,于是有 == 三边成比例.此时三角形木架与△ABC 相似;②将30cm 的木条作为第二长的边,于是有 == 三边成比例,此时三角形木架与△ABC 相似;③将30cm 的木条作为最短边,则三边对应不成比例; 因此,另外两边的长度分别为10cm 、25cm 或12cm 、36cm.26.解:⑴证明:连NM∵NB 是⊙O 的直径 ∴NM ⊥BM 在△ACB 和△NMB 中∠ACB =∠NMB =90°∠ABC =∠NBM ∴△ACB ∽△NMB∴= 即 BA ·BM =BC ·BN ⑵连OM ∵CM 是⊙O 的切线 ∴CM ⊥OM ∴△CMO 是直角三角形 ∵CN =ON ∴MN =OC =ON ∵ON =OM ∴△OMN 是等边三角形 ∴∠MON =60°∵OM =OB ∴∠B =30°∴在Rt △ACB 中,AB =6. 27.解:⑴证明:过点C 作CG ∥AB 交DF 于G则 △EAF ∽△ECG △DCG ∽△DBF ∴==又∵AF =BF ∴= ∵BC =CD ∴= ∴= 即=⑵∵AB =a ,BF =AB =a ,又∵FB =EC ,∴EC =a ∵= ,∴AC =3EC =a.28.解:设经过t s 时,△PBQ ∽△ABC ,则 AP =2t ,BQ =4t ,BP =10-2t⑴ 如图①第28题图②QPCBA 当△PBQ ∽△ABC 时,有 =即 =∴t =2.5⑵ 如图②当△QBP ∽△ABC 时,有= 即 = ∴t =1综合以上可知:经过2.5秒或1秒时, △QBP 和△ABC 相似.。
第27章 相似 单元测试卷2022-2023学年人教九年级数学下册
第27章相似单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四个命题中:①所有等腰直角三角形都相似;②所有等边三角形都相似;③所有正方形都相似;④所有菱形都相似.其中真命题有( )A. 4个B. 3个C. 2个D. 1个2. 如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是( )A. EDEA =DFABB. DEBC=EFFBC. BCDE=BFBED. BFBE=BCAE3. 如图,已知△ABC与△DEF是位似图形,O是位似中心,若OA=2OD,则△ABC与△DEF的周长之比是( )A. 2:1B. 3:1C. 4:1D. 6:14. 如图,已知直线a//b//c,直线m,n与直线a,b,c分别交于点A,B,C,D,E,F,若DE=7,EF=10,则ABBC的值为A. 710B. 107C. 717D.10175. 如图,在矩形ABCD中,AB=√3,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP与AD交于点F,连接BP交AC 于点G,交AD于点E,下列结论不正确的是( )A. PGCG =13B. △PBC是等边三角形C. AC=2APD. S△BGC=3S△AGP6. 如图,△ADC是由等腰直角△EOG经过位似变换得到的,位似中心在x轴的正半轴,已知EO=1,D点坐标为D(2,0),位似比为1:2,则两个三角形的位似中心P点的坐标是( )A. (23,0) B. (1,0) C. (0,0) D. (13,0)7. 下列命题中,错误的命题是( )A. 所有的等边三角形都是彼此相似的三角形B. 所有的矩形都是彼此相似的四边形C. 所有的等腰直角三角形都是彼此相似的三角形D. 有两组对应边成比例的直角三角形相似8. 如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=2,则线段ON的长为( )A. √22B. √32C. 1D. √62二、填空题(本大题共8小题,共24分)9. △ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.10. 如图,AD//BE//FC,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB= 4,AC=9,那么DE的值是.EF11. 在平面直角坐标系中,△ABO三个顶点的坐标分别为A(−2,4),B(−4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的1,得到△CDO,则点A的对应点C的坐标是2______.12. 《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得AB=1.6米,BD=1米,BE=0.2米,那么井深AC为______米.13. 如图,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q.若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.14. 如图,小明在A时测得某树的影长为2m,在B时又测得该树的影长为8m.若两次日照的光线互相垂直,则树的高度为m.15. 如图,一个由8个正方形组成的“C”模板恰好完全放入一个矩形框内,模板四周的直角顶点M,N,O,P,Q都在矩形ABCD的边上,若8个小正方形的面积均为1,则边AB的长为.16. 如图,在矩形ABCD中,点E、F分别在AB、CD边上,AD=6,AB=8,将△CBE沿CE翻折,使B点的对应点B′刚好落在对角线AC上,将△ADF沿AF翻折,使D点的对应点D′也恰好落在对角线AC上,连接EF,则EF的长为.三、解答题(本大题共9小题,共72分。
九年级数学下册第27章相似测试题(含答案新人教版)
九年级数学下册第27章相似测试题(含答案新人教版)实用精品文献资料分享知识点3 相似多边形 6.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为(A) A.23 B.32 C.49 D.94 7.(2021?重庆A卷)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm,6 cm和9 cm,另一个三角形的最短边长为2.5 cm,则它的最长边为(C) A.3 cm B.4 cm C.4.5 cm D.5 cm 8.下列四组图形中,一定相似的是(D) A.正方形与矩形 B.正方形与菱形 C.菱形与菱形 D.正五边形与正五边形 9.如图是两个相似四边形,已知数据如图所示,则x=325,α=80°. 10.如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,判断四边形ABCD与四边形A′B′C′D′是否相似,并说明理由.解:四边形ABCD与四边形A′B′C′D′相似.理由:∵A′,B′分别是OA,OB的中点,∴A′B′∥AB,A′B′=12AB. ∴∠OA′B′=∠OAB,A′B′AB=12. 同理,∠OA′D′=∠OAD,A′D′AD=12. ∴∠B′A′D′=∠BAD,A′B′A B=A′D′AD. 同理,∠A′D′C′=∠ADC,∠D′C′B′=∠DCB,∠C′B′A′=∠CBA,A′B′AB=A′D′AD=D′C′DC=B′C′BC,∴四边形ABCD与四边形A′B′C′D′相似.易错点没有分情况讨论导致漏解 11.已知三条线段的长分别为1实用精品文献资料分享cm、2 cm、2 cm,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为2__cm,22__cm或22__cm.02 中档题 12.用一个10倍的放大镜看一个15°的角,看到的角的度数为(C) A.150° B.105° C.15° D.无法确定大小 13.已知四条线段的长度分别为2,x-1,x+1,4,且它们是成比例线段,则x的值为(B) A.2 B.3 C.-3 D.3或-3 14.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是(B)A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 15.(教材P28习题T5变式)如图,DE∥BC,DE=3,BC=9,AD=1.5,AB=4.5,AE=1.8,AC=5.4. (1)求ADAB,AEAC,DEBC的值; (2)求证:△ADE与△ABC相似. 解:(1)ADAB=1.54.5=13, AEAC=1.85.4=13, DEBC=39=13. (2)证明:∵DE∥BC, ∴∠D=∠B,∠E=∠C. 又∵∠DAE=∠BAC,ADAB=AEAC=DEBC,∴△ADE与△ABC相似.16.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.证明:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°. 又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG. ∴AE=EG=FG=AF. 又∵∠EAF=90°,∴四边形AFGE为正方形.∴AFAB=FGBC=GECD=AEAD,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC. ∴四边形AFGE与四边形ABCD相似.03 综合题 17.(教材P28习题T8变式)如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4. (1)求AD的长; (2)求矩形DMNC与矩形ABCD的相似比.解:(1)若设AD=x(x>0),则DM=x2. ∵矩形DMNC与矩形ABCD相似,∴ADAB=DCDM,即x4=4x2.解得x=42(舍负).∴AD的长为42. (2)矩形DMNC与矩形ABCD的相似比为 DCAD=442=22. 27.2 相似三角形 27.2.1 相似三角形的判定第1课时平行线分线段成比例 01 基础题知识点1 相似三角形的有关概念 1.如图所示,△ADE∽△ACB,∠AED=∠B,那么下列比例式成立的是(A) A.ADAC=AEAB=DEBC B.ADAB=AEAC C.ADAE=ACAB=DEBC D.AEEC=DEBC 2.已知△ABC和△A′B′C′相实用精品文献资料分享似,且△ABC与△A′B′C′的相似比为R1,△A′B′C′与△ABC的相似比为R2,则R1与R2的关系是(D) A.R1=R2 B.R1R2=-1 C.R1+R2=0 D.R1R2=1知识点2 平行线分线段成比例定理及推论 3.如图,AB∥CD∥EF,则下列结论不正确的是(C) A.ACCE=BDDF B.ACAE=BDBF C.BDCE=ACDF D.AECE=BFDF 4.(教材P31练习T2变式)如图,在△ABC中,DE∥BC.若ADDB=23,则AEEC=(C) A.13 B.25 C.23 D.35 5.(2021?临沂)如图,已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=4. 6.(2021?嘉兴)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F.已知ABAC=13,则EFDE=2. 7.如图,EG∥B C,GF∥CD,AE=3,EB=2,AF=6,求AD的值.解:∵EG∥BC,∴AEEB=AGGC. ∵GF∥CD,∴AGGC=AFFD. ∴AEEB=AFFD,即32=6FD. ∴FD=4. ∴AD=AF+FD=10. 知识点3 相似三角形判定的预备定理 8.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若BD=2AD,则(B) A.ADAB=12 B.AEEC=12 C.ADEC=12 D.DEBC=12 9.(2021?自贡)如图,在△ABC中,MN∥BC 分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为1. 10.如图,在△ABC中,点D在BC上,EF∥BC,分别交AB,AC,AD于点E,F,G,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG∽△ABD,△AGF∽△ADC,△AEF∽△ABC.易错点图形的不唯一导致漏解 11.在△ABC中,AB=6,AC=9,点P是直线AB上一点,且AP=2,过点P作BC边的平行线,交直线AC于点M,则MC的长为6或12.02 中档题 12.如图,在△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上,且DE=2AE,连接BE并延长交AC于点F,则线段AF长为(C) A.4 B.3 C.2.4 D.213.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=4 cm,则线段BC=12cm. 14.小明正在攀登一个如图所示的攀登架,DE和BC是两根互相平行的固定架,DE=10米,BC=18米,小明从底部固定点B开始攀登,攀行8米,实用精品文献资料分享遇上第二个固定点D,小明再攀行多少米可到达这个攀登架的顶部A? 解:∵DE∥BC,∴△ABC∽△ADE. ∴ADAB=DEBC,即ADAD+8=1018.∴AD=10. 答:小明再攀行10米可到达这个攀登架的顶部A. 15.如图,已知:AB=AD,AC=AE,FG∥DE.求证:△ABC∽△AFG. 证明:∵AB=AD,AC=AE,∠BAC=∠DAE,∴△ABC≌△ADE. ∴BC=DE,∠B=∠ADE,∠C=∠AED. ∵FG∥DE,∴△AFG∽△ADE. ∴AFAD=AGAE=FGDE. ∴AFAB=AGAC=FGBC. 又∵∠C=∠AED=∠G,∠B=∠ADE=∠F,∠BAC=∠FAG,∴△ABC∽△AFG.03 综合题 16.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.解:∵在△ABC中,EG∥BC,∴△AEG∽△ABC. ∴EGBC=AEAB,即EG10=35.∴EG=6. ∵在△BAD中,EF∥AD,∴△BEF∽△BAD.∴EFAD=BEBA,即EF6=5-35.∴EF=125. ∴FG=EG-EF=185. 第2课时相似三角形的判定定理1,2 01 基础题知识点1 三边成比例的两个三角形相似1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形(A) A.一定相似 B.一定不相似 C.不一定相似 D.无法判断 2.(教材P34练习T3变式)已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,当△DEF的另两边长是下列哪一组数据时,这两个三角形相似(C) A.2 cm,3 cm B.4 cm,5 cm C.5 cm,6 cm D.6 cm,7 cm 3.下列四个三角形中,与图甲中的三角形相似的是(B) 4.如图,在△ABC中,AB=25,BC=40,AC=20.在△ADE中,AE=12,AD=15,DE=24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵ACAE=2021=53,ABAD=2515=53, BCDE=4024=53,∴ACAE=ABAD=BCDE. ∴△ABC∽△ADE.知识点2 两边成比例且夹角相等的两个三角形相似 5.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是(C) 6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的(C) A.ACAD=ABAE B.ACAD=BCDE C.ACAD=ABDE D.ACAD=BCAE 7.在△ABC和△A′B′C′中,若∠B=∠B′,AB=6,实用精品文献资料分享BC=8,B′C′=4,则当A′B′=3时,△ABC∽△A′B′C′. 8.如图,已知AB?AD =AC?AE,∠B=30°,则∠E=30°. 9.如图,已知在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ∽△QCP. 证明:设正方形的边长为4a,则AD=CD=BC=4a. ∵Q是CD的中点,BP=3PC,∴DQ=CQ=2a,PC=a. ∴DQPC=ADCQ=21. 又∵∠D=∠C=90°,∴△ADQ∽△QCP.易错点对应边没有确定时容易漏解 10. (2021?随州)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=125或53时,以A,D,E为顶点的三角形与△ABC相似. 02 中档题 11.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在________处(C) A.P1 B.P2 C.P3 D.P4 12.如图,在等边△ABC中,D,E分别在AC,AB上,且AD∶AC=1∶3,AE=BE,则有(B) A.△AED∽△BED B.△AED∽△CBDC.△AED∽△ABD D.△BAD∽△BCD 13.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC=DFCG. (1)求证:△ADF∽△ACG; (2)若ADAC=12,求AFFG的值.解:(1)证明:∵∠AED=∠B,∠DAE=∠BAC,∴∠ADF=∠C. 又∵ADAC=DFCG,∴△ADF∽△ACG. (2)∵△ADF∽△ACG.∴ADAC=AFAG=12. ∴AFFG=1.14.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若以B,P,Q为顶点的三角形与△ABC相似,求t的值.解:由题意,得BP=5t,QC=4t,AB=10 cm,BC=8 cm. ①∵∠PBQ=∠ABC,∴若△BPQ∽△BAC,则还需BPBA=BQBC,即5t10=8-4t8.解得t=1. ②∵∠PBQ=∠CBA,∴若△BPQ∽△BCA,则还需BPBC=BQBA,即5t8=8-4t10.解得t=3241. 综上所述,当t=1或3241时,以B,P,Q为顶点的三角形与△ABC相似.03 综合题 15.如图,在△ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD. (1)通过计算,判断AD2与AC?CD 的实用精品文献资料分享大小关系; (2)求∠ABD 的度数.解:(1)∵AD=BC=5-12,∴AD2=(5-12)2=3-52. ∵AC=1,∴CD=1-5-12=3-52. ∴AD2=AC?CD. (2)∵AD2=AC?CD,∴BC2=AC?CD,即BCCD=ACBC. 又∵∠C=∠C,∴△ABC∽△BDC.∴ABBD=ACBC. 又∵AB=AC,∴BD=BC=AD. ∴∠A=∠ABD,∠ABC=感谢您的阅读,祝您生活愉快。
人教版九年级数学下册第27章《相似》单元检测及答案【Word版】
之比为
.
E D
A B
O
CF
15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点
P 处放一水平的平面镜,光
线从点 A 出发经过平面镜反射后刚好射到古城墙 CD 的顶端 C 处,已知 AB ⊥ BD ,CD⊥ BD ,且测
得 AB=1.2 米, BP=1.8 米, PD=12 米,那么该古城墙的高度是
14.【 答案 】∵以点 O 为位似中心,将△ ABC 放大得到△ DEF, AD=OA , ∴ AB : DE=OA : OD=1 : 2, ∴△ ABC 与△ DEF 的面积之比为: 1: 4.
故答案为: 1: 4.
15.【 答案 】由题意知:光线 AP 与光线 PC,∠ APB= ∠CPD,∴ Rt△ABP ∽ Rt△CDP , ∴ AB:BP=CD:PD,,∴ CD=1.2 × 12÷ 1.8=8(米). 故答案为: 8.
BC
A
D
E
B
C
18.(本题 8 分) 已知:平行四边形 ABCD , E 是 BA 延长线上一点, CE 与 AD 、 BD 交于 G、F. 求证: CF2=GF?EF .
E
G A
D
F
B
C
19.(本题 8 分) 如图,在△ ABC 中, AB=AC ,∠ A=36 °,BD 为角平分线, DE⊥ AB ,垂足为 E.
∵ DE∥ BC ,∴ AD AE BF , EF CE BC , AB AC BC AB AC DE
∵ EF∥ AB ,∴ AE BF EC FC
故选 C.
6.【答案】 ∵ AD 1 ,∴ AD 1 ,
DB 2
AB 3
∵在△ ABC 中, DE∥ BC,∴ DE
人教版九年级下数学《第27章相似》单元检测卷含答案
第27章相似单元检测卷姓名:__________ 班级:__________一、选择题(每小题3分;共36分)1.如果=,那么的值是()A. B. C. D.2.已知线段a=2,b=8,线段c是线段a、b的比例中项,则c=()A. 2B. ±4C. 4D. 83.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A. 10B. 11C. 12D. 164.如图,∠ABD=∠BDC=90°,∠A=∠CBD,AB=3,BD=2,则CD的长为()A. B. C. 2 D. 35.如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,A′B′与AB的相似比为,得到线段A′B′.正确的画法是()A. B.C. D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A. 30°B. 50°C. 40°D. 70°7.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm28.如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A. AE:EC=AD:DBB. AD:AB=DE:BCC. AD:DE=AB:BCD. BD:AB=AC:EC9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S为()四边形EFBCA. 2:5B. 4:25C. 4:31D. 4:3510.下列两个图形一定相似的是()A. 任意两个等边三角形B. 任意两个直角三角形C. 任意两个等腰三角形D. 两个等腰梯形11.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC 的面积为2,那么四边形ABED的面积是()A. B. C. D.12.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为()A. 16:9B. 4:3C. 2:3D. 256:81二、填空题(共9题;共27分)13.如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABC的面积为a,则△ACD的面积为________ .14.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为________ m.15.若= ,则=________.16.如图,在△ABC中,若DE∥BC ,,DE=4cm,则BC的长为________cm.17.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为________18.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD:DB=1:2,AE=2,则AC=________ .19. 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为________m.20.已知= ,则的值是________.21.如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC 的面积的一半,若AB=,则此三角形移动的距离AA′=________.三、解答题(共4题;共37分)22.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.23.已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?24.如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,已知EF:DF=5:8,AC=24.(1)求AB的长;当AD=4,BE=1时,求CF的长.25.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.参考答案一、选择题C C C BD A B A C A A B二、填空题13.14.9 15.16.12 17.618 . 6 19.9 20.21.-1三、解答题22.解:∵矩形ABCD∽矩形ECDF,∴,即∴BC2﹣BC•AB﹣CD2=0,解得,BC=CD,∵BC、CD是正数,∴23.解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.24.解:(1)∵l1∥l2∥l3,EF:DF=5:8,AC=24,∴,∴,∴BC=15,∴AB=AC﹣BC=24﹣15=9.(2)解:∵l1∥l2∥l3,∴,∴,∴OB=3,∴OC=BC﹣OB=15﹣3=12,∴,∴,∴CF=4.25.(1)证明:如图1所示,∴D,E分别为AB,BC中点,∴DE∥AC∵DM∥EF,∴四边形DEFM是平行四边形,∴DM=EF,如图2所示,∵D、E分别是AB、BC的中点,∴DE∥AC,∴∠BDE=∠A,∠DEG=∠C,∵∠AFE=∠A,∴∠BDE=∠AFE,∴∠BDG+∠GDE=∠C+∠FEC,∵∠BDG=∠C,∴∠GDE=∠FEC,∴△DEG∽△ECF;∴,∴,∴,∴DG•CF=DM•EG(2)解:如图3所示,∵∠BDG=∠C=∠DEB,∠B=∠B,∴△BDG∽△BED,∴,∴BD2=BG•BE,∵∠AFE=∠A,∠CFH=∠B,∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,又∵∠FEH=∠CEF,∴△EFH∽△ECF,∴= ,∴EF2=EH•EC,∵DE∥AC,DM∥EF,∴四边形DEFM是平行四边形,∴EF=DM=DA=BD,∴BG•BE=EH•EC,∵BE=EC,∴EH=BG=1.。
人教版初中数学九年级下册《第27章相似》整章测试题(含答案)
人教版初中数学九年级下册《第27章相似》整章测试题(含答案)(时间90分钟,满分120分)一、填空题(每小题3分,共30分)1、如图1,在△ABC 中,AD :DB=1:2,DE ∥BC ,若△ABC 的面积为9,则四边形DBCE 的面积为 。
2、如图2,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB 。
图23、如图3,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△的位似比为2:1。
图34、在△ABC 中,AB >BC >AC ,D 是AC 的中点,过D 作直线l ,使截得的三角形与原三角形相似,这样的直线l 有 条。
5、如图4,在矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连结CE ,则CE 的长 。
A BCDE图1图46、雨后天晴,一学生在运动场上玩耍,从他前面2m 远处的一块小积水里,他看到了旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m ,该学生的眼部高度为1.5m ,那么旗杆的高为 。
7、已知两个相似多边形的周长比为1:2,它们的面积和为25,则这两个多边形的面积分别是 和 。
8、如图5,已知在等腰直角三角形ABC 中,∠A=90°,四边形EFDH 为内接正方形,则AE :AB= 。
9、如果点C 是线段AB 靠近B 的黄金分割点,且AC=2,那么AB= 。
10、如图6,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为 cm 2。
二、选择题(每小题4分,共40分)11、如图7,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸上的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的( )A 、F B 、G C 、H D 、KABCDFEH图5ABCFED图6图712、已知△ABC ∽△DEF ,AB :DE=1:2,则△ABC 与△DEF 的周长比等于( )A 、1:2 B 、1:4 C 、2:1 D 、4:113、如图8,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形( )A 、4对B 、5对C 、6对D 、7对14、已知==,且a-b+c=10,则a+b-c 的值为( )4a 5b 6cA 、6B 、5C 、4D 、315、两个相似五边形,一组对应边的长分别为3cm 和4.5cm ,如果它们的面积之和是78cm 2,则较大的五边形面积是( )cm 2。
九数下册第27章相似单元达标训练(答案)
九数下册第27章相似单元达标训练(答案)九年级数学下册第27章相似单元达标训练(答案)九年级数学下册第27章相似单元达标训练一.选择题1.下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( )A.5∶4B.4∶5C.5∶2D.2∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4 C.6 D.46.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( )图K-6-3图K-6-48.如图K-10-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD =2OA=6,AD∶AB=3∶1,则点C的坐标是( )图K-10-6A.(2,7) B.(3,7) C.(3,8) D.(4,8)的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( ) 图K-14-4A.2∶3 B.3∶2C.4∶5 D.4∶910.观察图K-6-1中各组图形,其中相似的图形有( )图K-6-1A.3组 B.4组C.5组 D.6组二、填空题11.如图K-15-4,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的2(1),可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.12.如图K-9-5,D是△ABC内的一点,连接BD并延长到点E,连接AD,AE,若AB(AD)=BC(DE)=AC(AE),且∠CAE=29°,则∠BAD=________°.图K-9-513.如图K-7-2,已知在矩形ABCD中,AB=1,在BC上取一点E,沿AE 将△ABE向上折叠,使点B落在AD上的点F处.若四边形FDCE与矩形ABCD相似,则AD=________.图K-7-214.在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__________.15.如图K-11-8,Rt△AOB的一条直角边OB在x轴上,双曲线y=x(k)(x>0)经过斜边OA的中点C,与另一条直角边交于点D.若S△OCD=9,则S△OBD的值为________.16.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题17.如图K-6-6是用相似图形设计的图案.图K-6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).18.如图K-11-11所示,在▱ABCD中,E是CD延长线上的一点,BE与AD 交于点F,DE=2(1)CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.19.如图K-14-11,矩形ABCD与矩形AB′C′D′是位似图形,点A为位似中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,求AB,AD的长.图K-14-1120.如图K-12-8是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15 mm,DO=24 mm,DC=10 mm,我们知道铁夹的侧面是轴对称图形,请求出A,B两点间的距离.图K-12-821. 如图K-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似?(A′B′与AB是对应边)图K-7-422.如图K-12-9 所示,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K-12-9参考答案一、选择题1.下面给出了一些关于相似的命题,其中真命题有( C )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( B )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( A )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( B )A.5∶4B.4∶5C.5∶2D.2∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( B )A.4 B.4 C.6 D.46.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( A )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( D )图K-6-3图K-6-48.如图K-10-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD =2OA=6,AD∶AB=3∶1,则点C的坐标是( A )图K-10-6A.(2,7) B.(3,7) C.(3,8) D.(4,8)9.如图K-14-4所示,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△AB C的面积比是4∶9,则OB′∶OB为( A )图K-14-4C.4∶5 D.4∶910.观察图K-6-1中各组图形,其中相似的图形有( B )图K-6-1A.3组 B.4组C.5组 D.6组二、填空题11.如图K-15-4,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的2(1),可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K-15-4[答案] (1,2)12.如图K-9-5,D是△ABC内的一点,连接BD并延长到点E,连接AD,AE,若AB(AD)=BC(DE)=AC(AE),且∠CAE=29°,则∠BAD=________°.图K-9-5[答案] 2913.如图K-7-2,已知在矩形ABCD中,AB=1,在BC上取一点E,沿AE 将△ABE向上折叠,使点B落在AD上的点F处.若四边形FDCE与矩形ABCD相似,则AD=________.图K-7-2[答案].2(5+1)14.在平面直角坐标系中,点C,D的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为__________.[答案] (4,6)或(-4,-6)15.如图K-11-8,Rt△AOB的一条直角边OB在x轴上,双曲线y=x(k)(x>0)经过斜边OA的中点C,与另一条直角边交于点D.若S△OCD=9,则S△OBD的值为________.图K-11-8[答案] 616.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)[答案] 是不是三、解答题17.如图K-6-6是用相似图形设计的图案.图K-6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形.(2)答案不唯一,只要是用相似图形做的,都符合要求.如图:18.如图K-11-11所示,在▱ABCD中,E是CD延长线上的一点,BE与AD 交于点F,DE=2(1)CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.图K-11-11[解析] (1)由平行四边形的对角相等,对边平行,证得△ABF∽△CEB;(2)由△DEF∽△CEB,△DEF∽△ABF,根据相似三角形的面积比等于相似比的平方可以求出△ABF和△BCE的面积,从而▱ABCD的面积可求.解:(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB,∴△ABF∽△CEB.(2)∵四边形ABCD是平行四边形,∴AD∥BC,AB綊CD,∴△DEF∽△CEB,△DEF∽△ABF.∵DE=2(1)CD,∴EC=3DE,∴S△CEB(S△DEF)=(EC(DE))2=9(1),S△ABF(S△DEF)=(AB(DE))2=4(1).∵S△DEF=2,∴S△CEB=18,S△ABF=8,∴S四边形BCDF=S△CEB-S△DEF=16,∴S▱ABCD=S四边形BCDF+S△ABF=16+8=24.19.如图K-14-11,矩形ABCD与矩形AB′C′D′是位似图形,点A为位似中心,已知矩形ABCD的周长为24,BB′=4,DD′=2,求AB,AD的长.图K-14-11解:∵矩形ABCD的周长为24,∴AB+AD=12.设AB=x,则AD=12-x,AB′=x+4,AD′=14-x.∵矩形ABCD与矩形AB′C′D′是位似图形,∴AB′(AB)=AD′(AD),即x+4(x)=14-x(12-x),解得x=8,∴AB=8,AD=12-8=4.20.如图K-12-8是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15 mm,DO=24 mm,DC=10 mm,我们知道铁夹的侧面是轴对称图形,请求出A,B两点间的距离.图K-12-8解:如图,连接AB,同时连接OC并延长交AB于点E,∵铁夹的侧面是轴对称图形,故OE是对称轴,∴OE⊥AB,AE=BE.∵∠COD=∠AOE,∠CDO=∠AEO=90°,∴Rt△OCD∽Rt△OAE,∴OA(OC)=AE(CD),而OC===26,∴24+15(26)=AE(10),∴AE=26(39×10)=15,∴AB=2AE=30(mm).答:A,B两点间的距离为30 mm.21. 如图K-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似?(A′B′与AB是对应边)图K-7-4[解析] 若矩形A′B′C′D′与矩形ABCD相似,由相似多边形的性质可知,这两个矩形的对应边成比例,即可求出相似比,再由相似比求出x与y的比值.解:由题意可知,矩形A′B′C′D′与矩形ABCD相似(A′B′与AB是对应边),则应有A′B′(AB)=B′C′(BC),即20+2y(20)=30+2x(30),从而有20(30+2x)=30(20+2y),解得y(x)=2(3).22.如图K-12-9 所示,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K-12-9解:如图所示,过点D作DF⊥BC交BC的延长线于点F,延长AD交BC的延长线于点E.∵∠DCF=30°,∴DF=2(1)CD=2米,CF==2 米.根据已知条件,1米高的标杆的影长为2米,可求得EF=2DF=4米,∴BE=(14+2 )米.∵DF⊥BE,AB⊥BE,∴△DFE∽△ABE,∴AB(DF)=BE(EF),∴AB(2)=BE(4),∴AB=2(1)BE=7+≈8.7(米).即电线杆的高度约为8.7米.备注:以上内容仅显示部分,需完整版请下载!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十七章 相似全章测试
一、选择题
1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2, 则
BC DE 的值为( )A .32 B .41 C .3
1
D .21
2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2, 则下列结论中正确的是( )
D .的周长的周长ABC AD
E ∆∆3
1
= A .21
=BC DE B .2
1=∆∆的周长的周长ABC ADE C .的面积的面积ABC ADE ∆∆31=
3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交
CB 延长线于E 点,则下列结论正确的是( )
A .△AED ∽△AC
B B .△AEB ∽△ACD
C .△BAE ∽△ACE
D .△AEC ∽△DAC
4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,
6=BC ,AC =3,则CD 长为( )A .1 B .23
C .2
D .2
5
5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )
A .
BC DE DB AD = B .AD
EF BC BF = C .FC BF EC AE = D .BC DE
AB EF =
7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( ) A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD
8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件
①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个 D .0个
二、填空题
9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处, 测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.
10.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,
且
6
1=EB AE ,射线CF 交AB 于E 点,则FD AF
等于______. 11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面
积是4m 2,则四边形DEBC 的面积为______.
12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.
三、解答题
13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.
(1)求证:△ABD ∽△CBA ;
(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.
14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.
15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个
△ABC ,试在这个网格上画一个与△ABC 相似,且面积最大的
△A 1B 1C 1(A 1,B 1,C 1三点都在格点上),并求出这个三角形的面积.
16.如图所示,在5×5的方格纸上建立直角坐标系, A (1,0),B (0,2),试以5×5的格点为顶点作△ABC 与△OAB 相似(相似比不为1),并写出C 点的坐标.
17.如图所示,⊙O 的内接△ABC 中,∠BAC =45°,∠ABC
=15°,AD ∥OC 并交BC 的延长线于D 点,OC 交AB 于E 点. (1)求∠D 的度数; (2)求证:AC 2=AD ·CE .
18.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,
C 点重合),∠ADE =45°. (1)求证:△AB
D ∽△DC
E ;
(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.
19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,
连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′. (1)当D 为AB 边的中点时,求S ′∶S 的值;
(2)若设,,
y S
S x AD ='
=试求y 与x 之间的函数关系式及x 的取值范围.
20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O
为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.
22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点
P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式;
(2)当t 为何值时,△APQ 与△ABO 相似?
(3)当t 为何值时,△APQ 的面积为5
24
个平方单位?
选做题
23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC
上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;
(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少
?。