数学物理方程与特殊函数课后答案
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方程与特殊函数第五版
数学物理方程与特殊函数第五版1量子力学方程和特殊函数量子力学方程和特殊函数是数学物理学中非常重要的概念,它们被用来表达物理系统的运动方式以及物理里面的函数运算。
它们是现代数学物理的基础和重要的概念,从相对论到量子化认识的物理理论,数学物理学家都使用这些方程和函数。
2量子力学方程无论使用什么物理理论,量子力学方程都是免不了的。
它的出现可以说是相对论的另一个重要突破,它模拟了量子效应,在显微镜下认识微观世界,有助于科学家们进行更深入的研究。
量子力学方程主要有Schrödinger方程、Heisenberg方程、Pauli方程、Fermi–Dirac方程等等,用于描述物理里面的粒子之间的相互作用、以及物理系统的动态演变。
3特殊函数特殊函数是指在数学物理学中定义的函数,它们中有很多是现代数学物理学家发明的,如对数函数、指数函数、分式函数、圆函数、椭圆函数等等。
这些函数以简单的公式来定义某种类型的函数,可以用来解决相关的理论物理学问题和方程,用来计算物理量与动作等。
特殊函数也可以用来表示物理学里面某个系统的特殊性能,如量子级数和分子振动频率等。
4《数学物理方程与特殊函数》《数学物理方程与特殊函数》是现代数学物理的一本重要的参考书,主要介绍了量子力学方程以及更多的特殊函数,如对数函数、指数函数、泊松分布、玻尔兹曼分布等。
书中深入浅出的介绍了这些函数的原理和运用,对数学物理学家有很大的帮助,其内容不仅仅是广受欢迎的数学物理理论,同样也包括了实际应用,有助于理解这些理论和函数的实际用途。
5总结量子力学方程和特殊函数在现代数学物理学里非常重要的概念,通过他们,我们研究物理系统的运动,模拟量子效应,了解微观世界,进一步深入物理实验,进而让物理学发展出更多不同的方向和理论。
《数学物理方程与特殊函数》是一本重要的参考书,介绍量子力学和特殊函数,并结合实际应用,为我们探求物理真理之路提供重要依据。
西安邮电大学期末数理方程试题+答案
数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===춶=ﶶﶶï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=춶=-<<>ﶶïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。
1-2_初始条件与边界条件chen
练习题: 考虑长为 l 的均匀杆的导热问题. 若 1.杆的两端温度保持零度;
2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案: u
= 0, u = 0;
u = 0, u x = 0;
x=0
x=l
x=0
x=l
数学物理方程与特殊函数 主页 上一页 下一页
退出
退出
偏微分方程要给出 n 个初始条件才能确定一个特 解.
初始条件的个数的确定:关于时间 t 的 n 阶
边界条件的个数的确定:关于空间变量 x 的 n 阶 偏微分方程不一定要给出 n 个边界条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出
练习题: 若 考虑长为 l 的均匀杆的导热问题. 1.杆的两端温度保持零度; 2.杆的一端为恒温零度,另一端绝热. 写出杆在上面两种情况下的边界条件. 答案:
∂u = f . 外法线方向的方向导数,即 ∂n s 2
第二类边界条件.
第一类边界条件. 三是在边界 S 上给出了未知函数 u 及其沿 S
的外法线方向的方向导数某种线性组合的
⎛ ∂u ⎞ + σ u ⎟ = f3 . 值,即 ⎜ ∂n 第三类边界条件. ⎝ ⎠s
数学物理方程与特殊函数 主页 上一页 下一页
M
初始条件:
u(M ,t)
t=0
= ϕ (M )
退出
数学物理方程与特殊函数 主页 上一页 下一页
泊松方程与拉 普拉斯方程
泊松方程与拉 普拉斯方程都是描 述稳恒状态的,与初 始状态无关,不提初 始条件.
数学物理方程与特殊函数 主页 上一页 下一页
退出
数学物理方程与特殊函数老师给题答案汇总
1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。
解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。
4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。
数学物理方程与特殊函数第二三章作业
习 题 2.14. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由题意可知定解问题为:⎪⎪⎩⎪⎪⎨⎧<<-=-<<===========)(,)/(,)0(,0,00,0)/(000002L x L I u L x u u u u u a u Y u t t t t t x x x xx xxtt εερερ习 题 2.23. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数 ),,,(t z y x ϕ。
试写出边界条件。
解:由题意可知:dsdt u dsdt nuk)(44ϕσ-=∂∂- ∴边界条件为:)(44ϕσ--=∂∂u knu s习 题 2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=⋅VSV S E d 1d 0ρε,求证:0▽ερ=⋅E ,并由此导出静电势u 所满足的Poisson 方程。
证明:由题意可知由静电场高斯定理:⎰⎰⎰⎰⎰⎰⎰⎰==⋅VSVV V divE S E d 1d d 0ρε∴ 00▽ερερ=⋅⇒=E divE 习 题 2.42. (1) 032=-+yy xy xx u u u 解:由题意可知:△=12-1×(-3)=4﹥0 => 双曲型03d d 2d d 2=--⎪⎭⎫⎝⎛x y x y => 3d d =x y 或 -1 令 ⎩⎨⎧+=-=yx yx ηε3则 ⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=1113 y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )()3()()(016y x g y x f g f u u ++-=+=⇒=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知:△=82-16×3=16﹥0 => 双曲型03d d 16d d 162=+-⎪⎭⎫⎝⎛x y x y =>43d d =x y 或 41 令 ⎩⎨⎧-=-=y x yx 443ηε则 ⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡=4143y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )4()43()()(064y x g y x f g f u u -+-=+=⇒=-ηεεη习 题 2.52.试证明:若),,(τt x V 是定解问题⎪⎩⎪⎨⎧====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt的解,则⎰=td t x V t x u 0);,(),(ττ是定解问题⎪⎩⎪⎨⎧====><<=-====0,00,00,0),,(0002t t t L x x xx tt u u u u t L x t x f u a u的解。
数理方程与特殊函数(10-11-2A)参考答案
10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。
由此得积分曲线:13C t x =-,2C t x =+。
作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。
代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。
因此原方程通解为: ()()()t x f t x f t x u ++-=213,。
由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。
由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。
数学物理方程2-3章课后部分习题答案
数学物理方程 李明奇主编 电子科技大学出版社2-3章部分习题答案习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。
化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x I u u u u u a u Y u t t t L x x x xx xx tt δρρ。
习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。
试写出边界条件。
解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。
可得dSdt u k dSdt n uk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。
习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。
由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:02ερ-=∇u 。
习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u 解:(2):特征方程:03)(2)(2=--dxdydx dy 解得:1-=dx dy 和3=dxdy。
数学物理方程课后参考答案第二章
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程第二版答案(平时课后习题作业)
数学物理方程第二版答案第一章. 波动方程§1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为)()(x l g x T -=ρ且)(x T 的方向总是沿着弦在x 点处的切线方向。
仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ∆+则弦段两端张力在u 轴方向的投影分别为)(sin ))(();(sin )(x x x x l g x x l g ∆+∆+--θρθρ其中)(x θ表示)(x T 方向与x 轴的夹角又 .sin x u tg ∂∂=≈θθ 于是得运动方程x ux x l tu x ∂∂∆+-=∂∂∆)]([22ρ∣x u x l g x x ∂∂--∆+][ρ∣g x ρ利用微分中值定理,消去x ∆,再令0→∆x 得])[(22x ux l x g t u ∂∂-∂∂=∂∂。
5. 验证 2221),,(y x t t y x u --=在锥222y x t -->0中都满足波动方程222222y u x u t u ∂∂+∂∂=∂∂证:函数2221),,(yx t t y x u --=在锥222y x t -->0内对变量t y x ,,有二阶连续偏导数。
且t y x t tu⋅---=∂∂-23222)(2252222322222)(3)(t y x t y x t tu⋅--+---=∂∂--)2()(22223222y x t y x t++⋅--=-x y x t xu⋅--=∂∂-23222)(()()22522223222223x y x t y xt xu ----+--=∂∂()()222252222y x t y x t -+--=-同理 ()()22225222222y x t y x t yu+---=∂∂-所以 ()().222222252222222t uyx ty x t yu xu ∂∂=++--=∂∂+∂∂-即得所证。
数理方程课后习题(带答案)
u0 X0T0 B0A0 C0
0
Tn
a2n22
l2
Tn
0
a2n22 t
Tn Ane l2
un XnTn
ABea2nl222t nn
cons l
xCea2nl222t n
cosn
l
x
un 0unC 0n 1Cnea2n l2 22tconlsx
数学物理方程与特殊函数
第2章习题选讲
u(uutx(,0x0,)at)2xx,20u2,,u(lx,t) 0,
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
0xl1,0yl2 0yl2
u(x,0)0,u(x,l2)(x), 0xl1
uXY
XX0,
X(0)X(l1)0
0xl1
YY0
n n2 nl1 2,n1,2,3,L
n
Xn An sin l1 x
Yn
n2 2
l12
Yn
0
ny
ny
Yn Cnel1 Dne l1
数学物理方程与特殊函数
第2章习题选讲
un 1unn 1Cnenl1 yD nenl1 ysinnl1 x u(x,0)n 1CnDnsinnl1x0 u(x,l2)(x)n 1 C nenl1l2D nenl1l2 sinn l1x
数学物理方程课后参考答案第一章
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
数学物理方程练习题第九版(学生用)汇编
8
= ∆u 0, (x, y, z) ∈ KR \ Kr ,
= u Γr 1,= u ΓR 2, 证明:在 KR \ Kr 内, 1 < u < 2.
3. 用积分变换法求解定解问题:
7
= ut a2u xx +ku, -∞<x < +∞, t > 0, u(x,0) = ϕ(x).
练习十四
1.证明二维调和函数的积分表达式:
u(M 0 )
=
−
1 2π
∫ C u
∂ ∂n
ln
1 r
− ln
1 r
∂u ∂n
ds.
2.在下半平面 y < 0 内求解拉普拉斯方程的边值问
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
= u t a2u xx ,
x > 0, t > 0,
= u(0,t) u= 0 , u(x,0) 0, u(x,t)有界.
数学物理方程与特殊函数课后答案
29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。
数学物理方程课后参考答案第一章
第一章. 波动方程§1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程()⎪⎭⎫⎝⎛∂∂∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x u E x t u x t ρ其中ρ为杆的密度,E 为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ∆。
现在计算这段杆在时刻t 的相对伸长。
在时刻t 这段杆两端的坐标分别为:),();,(t x x u x x t x u x ∆++∆++其相对伸长等于 ),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆-+-∆++∆+θ令0→∆x ,取极限得在点x 的相对伸长为x u ),(t x 。
由虎克定律,张力),(t x T 等于),()(),(t x u x E t x T x =其中)(x E 是在点x 的杨氏模量。
设杆的横截面面积为),(x S 则作用在杆段),(x x x ∆+两端的力分别为x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-∆+∆+利用微分中值定理,消去x ∆,再令0→∆x 得tt u x s x )()(ρx∂∂=x ESu () 若=)(x s 常量,则得22)(tu x ∂∂ρ=))((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
工程数学——数学物理方程与特殊函数 (1)
1
1
v
r ( x x0 )2 ( y y0 )2 (z z0 )2
函 它为数三1r 除维点拉普M拉0 外斯处方处程满的足基拉本普解拉. 斯方程,通常称
数学物理方程与特殊函数 主页 上一页 下一页 退出
由于 v 1 在 Ω 内有奇
r
异点M0 ,于是如图所示,我们 作一个以 M0 为中心,以充分 小的正数 ε 为半径的球面,
上
1 r
1, a
(1) n r
(1) r r
1 a2
以及 Ka
1 u dS
r n
1
a Ka
u dS
n
0
即可证明该公式.
数学物理方程与特殊函数 主页 上一页 下一页 退出
4.拉普拉斯方程解的唯一性问题
狄利克莱问题在 C1( ) C 2( ) 内的解是唯一
确定的;牛曼问题的解除了相差一常数外也是唯一确定 的.
(u2v)dV
(uxvx uyv y uzvz )dV
uvndS
或 (u2v)dV uvndS grad u grad vdV
上式称为第一格林(Green)公式.
数学物理方程与特殊函数 主页 上一页 下一页 退出
交换u,v位置
(v2u)dV
vundS
grad v grad udV
以 u1 , u2表示定解问题的两个解,它们的差v u1 u2 必是原问题满足零边界条件的解.
对于狄氏问题 2v 0, 在内
v | 0
数学物理方程与特殊函数 主页 上一页 下一页 退出
对于牛曼问题 2v 0, 在内
vn | 0 利用调和函数的极值原理,可以证明狄氏问题在
C1( ) C 2 ( )内的解是唯一的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。