保险精算习题剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.确定10000元在第3年年末的积累值:

(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6

t t

δ=

积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?

第二章:年金

练习题

1.证明()

n m

m n v v i a a -=-。

√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 √3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 √5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10

1

2

v =

,计算K 。

√6. 化简()

1020101a v v ++ ,并解释该式意义。

√7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。

√8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为

1

8k

+,计算

V(2)。

√9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )

A.

1

1

3

n

⎛⎫

⎝⎭

B.

1

3n C.

1

3

n

⎛⎫

⎝⎭

D.3n

11. 延期5年连续变化的年金共付款6年,在时刻t时的年付款率为()21

t+,t时刻的利息强度为1/(1+t),该年金的现值为()

A.52

B.54

C.56

D.58

第三章:生命表基础

练习题

1.给出生存函数()

2 2500 x

s x e-

=,求:

(1)人在50岁~60岁之间死亡的概率。

(2)50岁的人在60岁以前死亡的概率。

(3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

2. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求

60

q。

3. 已知

800.07

q=,

803129

d=,求

81

l。

4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。

5. 如果

22

1100

x x x

μ=+

+-

,0≤x≤100, 求

l=10 000时,在该生命表中1岁到4岁

之间的死亡人数为()。

A.2073.92

B.2081.61

C.2356.74

D.2107.56

6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则

|20

1

q为()。

A. 0.008

B. 0.007

C. 0.006

D. 0.005

第四章:人寿保险的精算现值

练 习 题

1. 设生存函数为()1100

x

s x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元):

(1)趸缴纯保费130:10

Ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么?

3. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算: (1) 1

:20x A 。

(2) 1

:20x A 。

4. 试证在UDD 假设条件下: (1) 1

1::x n x n i

δ

=

A A 。

(2) 1

1:::x x n n x n

i

δ

=+

ĀA A 。 5. (x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元,()0.5,0,0.1771x q i Var z === ,试求

1x q +。

6

767677770.8,400,360,0.03,D D i ====求A A 。

7. 现年30岁的人,付趸缴纯保费5 000元,购买一张20年定期寿险保单,保险金

于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。

8. 考虑在被保险人死亡时的那个1

m

年时段末给付1个单位的终身寿险,设k 是自保单生效起存活的完整年数,j 是死亡那年存活的完整1

m

年的时段数。

(1) 求该保险的趸缴纯保费 ()

m x A 。

(2) 设每一年龄内的死亡服从均匀分布,证明()

()

m x

x m i i

=

A A 。

相关文档
最新文档