勾股定理的应用1课件(大白菜)
合集下载
1勾股定理的应用PPT课件(华师大版)
分析:由于车宽1.6米,所以卡车能否
通过,只要比较距厂门中线0.8米处的
高度与车高即可.如图所示,点D在离厂
门中线0.8米处,且CD⊥AB,与地面相
交于点H.
讲授新课
解:在Rt△OCD中,由勾股定理,可得
CD OC 2 OD2 12 0.82 0.6,
CH=CD+DH=0.6+2.3=2.9>2.5.
的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸
边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解: 设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得:BC2+AC2=AB2
即
52+x2=(x+1)2
25+x2= x2+2x+1,
可见高度上有0.4米的余量,因此卡
车能通过厂门.
讲授新课
2、有一根高为16米的电线杆在A处断裂,如图所示,电线杆的
顶部C落在离电线杆底部B处8米远的地方,求电线杆断裂处A到
地面的距离.
根据题意可知在Rt△ABC中,
∠ABC =90°,BC=8米,AB+
AC=16米.若设AB=x米,则
AC=(16-x)米,然后根据勾股定理
90°.∴S四边形ABCD=S△ABC+S△ACD= AB·BC+
AC·AD= ×4×3+ ×5×12=36.
∵36×30=1080(元),
∴这块地全部种草的费用是1080元.
讲授新课
练一练
1、一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示
勾股定理的应用-课件
02
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
勾股定理的应用课件
勾股定理的发展
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
在后来的几千年中,勾股定理经历了许多数学家的研究和证明,不断得到完善和发展。如今, 勾股定理已经成为中学数学课程中的重要内容之一,也是数学竞赛中的常见考点之一。
勾股定理的证明方法
基础证明方法
勾股定理可以通过多种方法进行证明,其中最基础的方法是利用相似三角形的性质进行证明。此外,还有利用代 数方法、微积分方法和几何方法等证明方法。
03 结构分析
在建筑结构分析中,勾股定理用于计算结构的承 载力和稳定性,确保建筑物的安全可靠。
航空航天领域中的应用
01 飞机设计
在飞机设计中,勾股定理用于计算机翼的弯度和 长度,以及机身的垂直度和水平度。
02 航天器设计
在航天器设计中,勾股定理用于确定卫星轨道的 参数和火箭发射角度等。
03 导航定位
物理学领域
在物理学中,勾股定理也具有广泛的应用。例如,在力学中,勾股定理可以用于解决与力的合 成和分解相关的问题。在电磁学中,勾股定理可用于计算电磁波的传播路径和强度。 物理学中的许多现象和规律都与勾股定理有关,如光的反射和折射、电场和磁场等。
日常生活中的应用
勾股定理在日常生活中也有很多应用,如建筑测量、航海导 航、道路桥梁设计等。通过勾股定理可以确定建筑物的垂直 度和水平度,保证建筑物的安全性和稳定性。
勾股定理在日常生活中的应用案例
家具制作
在家具制作中,勾股定理 用于确定家具的尺寸和比 例,保证家具的美观和实 用性。
航海导航
在航海导航中,勾股定理 用于计算航行距离和方向 ,确保航行的准确性和安 全性。
音乐艺术
在音乐艺术中,勾股定理 用于确定音符的频率和音 高,保证音乐的和谐性和 美感。
如何提高勾股定理的应用能
勾股定理的表述
勾股定理的应用ppt课件
1.3 勾股定理的应用
● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;
读
(2)根据“两点之间线段最短”构造直角三角形;
(3)利用勾股定理求距离.
1.3 勾股定理的应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程解决问题.
1.3 勾股定理的应用
返回目录
考
对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨
单 树的顶部落在离白杨树根部 8 m 处,已知白杨树高 16 m, 解
读 则白杨树是在离根部_____ m 的位置折断的.
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
AB 上建一个土特产收购站 E,使得 C,D 两村到收购站 E
的距离相等,请求出 E 站到 A 地的距离.
1.3 勾股定理的应用
返回目录
重 [答案] 解:由题意得 CE=DE,在 Rt△DAE和 Rt
难 题
△CBE
中
,DE2
=AD2
● 考点清单解读 ● 重难题型突破
1.3 勾股定理的应用
返回目录
考 ■考点一 立体图形上的最短路线
点 清 1. 确定圆柱侧面上两点之间的最短距离,其步骤如下:
单 解
(1)将侧面展开为长方形;
读
(2)根据“两点之间线段最短”构造直角三角形;
(3)利用勾股定理求距离.
1.3 勾股定理的应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程解决问题.
1.3 勾股定理的应用
返回目录
考
对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨
单 树的顶部落在离白杨树根部 8 m 处,已知白杨树高 16 m, 解
读 则白杨树是在离根部_____ m 的位置折断的.
1.3 勾股定理的应用
考 [答案] 6 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
重 ■题型 勾股定理中的方案设计问题
难 题
例 一路上 A,B 两地(视为直线上的两点)相距 25
型 突
km,C,D为两村庄(视为两点),DA⊥AB
于点
A,CB⊥AB
破 于点 B(如图),已知 DA=10 km,CB=15 km,现要在路
AB 上建一个土特产收购站 E,使得 C,D 两村到收购站 E
的距离相等,请求出 E 站到 A 地的距离.
1.3 勾股定理的应用
返回目录
重 [答案] 解:由题意得 CE=DE,在 Rt△DAE和 Rt
难 题
△CBE
中
,DE2
=AD2
勾股定理的应用(一)PPT课件
2020年10月2日
1
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中,
∠C=90º,AB=c,AC=b,BC=a,
a2+b2=c2.
A
cb
2020年10月2日
B aC 2
逆定理 如果三角形的三边长a、b、c满足 a²+b²=c²,那么这个三角形是直角三角形。
西
O
东
2020年10月2日
乙(B)
南
4
例2 如图所示,有一个高为12cm,底面半 径为3cm的圆柱,在圆柱下底面的A点有一 只蚂蚁,它想吃到圆柱上底面上与A点相对 的B点处的食物,问这只蚂蚁沿着侧面需要 爬行的最短路程为多少厘米?(的值取3)
B
2020年10月2日
A
5
BC
B
A
A
2020年10月2日
9
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;1来自(3)经过左面和上底面.
A
3
C
B
B
A
3
1 2C
B 2
A
2020年10月2日
A1
3
C
10
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
B
B
2
1
A
3
C
A
AB= AC2 BC2 = 32 32 = 18
∵ △ABC中,AB=c,AC=b,BC=a,且a2+b2=c2,
∠C=90º (△ABC是直角三角形) . A
2020年10月2日
1
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中,
∠C=90º,AB=c,AC=b,BC=a,
a2+b2=c2.
A
cb
2020年10月2日
B aC 2
逆定理 如果三角形的三边长a、b、c满足 a²+b²=c²,那么这个三角形是直角三角形。
西
O
东
2020年10月2日
乙(B)
南
4
例2 如图所示,有一个高为12cm,底面半 径为3cm的圆柱,在圆柱下底面的A点有一 只蚂蚁,它想吃到圆柱上底面上与A点相对 的B点处的食物,问这只蚂蚁沿着侧面需要 爬行的最短路程为多少厘米?(的值取3)
B
2020年10月2日
A
5
BC
B
A
A
2020年10月2日
9
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;1来自(3)经过左面和上底面.
A
3
C
B
B
A
3
1 2C
B 2
A
2020年10月2日
A1
3
C
10
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
B
B
2
1
A
3
C
A
AB= AC2 BC2 = 32 32 = 18
∵ △ABC中,AB=c,AC=b,BC=a,且a2+b2=c2,
∠C=90º (△ABC是直角三角形) . A
2020年10月2日
勾股定理的应用ppt
勾股定理公式
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
《勾股定理的应》课件
勾股定理与微积分的关系
勾股定理在微积分中也有广泛的应用 ,如在解决曲线的长度、面积和体积 等问题时,可以利用勾股定理进行计 算。
在微积分中,勾股定理常常与积分、 微分等概念结合使用,用于解决一些 复杂的几何问题。
勾股定理与线性代数的关系
在线性代数中,勾股定理可以用于解决一些向量和矩阵的问 题,如向量的模长、向量的点积和叉积等。
进阶练习题
01
总结词
提升应用能力
02
03
04
练习1
利用勾股定理解决实际问题, 如建筑测量、航海定位等。
练习2
结合三角函数,利用勾股定理 求角度。
练习3
在给定条件下,构造满足勾股 定理的直角三角形。
高阶练习题
总结词
挑战难题和综合应用
练习1
解决较复杂的几何问题,如求 多边形的面积、求解多边形的 勾股定理问题等。
力学
在物理学中,勾股定理可以用来解决一些与力矩和转动惯量有关的问题,如在确 定物体的重心和转动轴时可以利用勾股定理。
电磁学
在电磁学中,勾股定理可以用来确定电场线和磁感线的分布,以及计算电场强度 和磁感应强度等。
03
CATALOGUE
勾股定理的实际应用案例
建筑行业中的应用
建筑设计
勾股定理在建筑设计中有着广泛的应 用,如确定建筑物的垂直角度、计算 建筑物的斜梁长度等。
勾股定理公式
a² + b² = c²,其中a和b是直角 三角形的两条直角边,c是斜边。
勾股定理的历史背景
毕达哥拉斯学派
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和推理发现了这个定理。
中国古代数学家
在中国,商高在周朝初年提出“勾三 股四弦五”的勾股定理特例,为人类 探索勾股定理提供了重要线索。
勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
北师大版八年级上册数学《勾股定理的应用》勾股定理PPT教学课件
由勾股定理得AE2+CE2=AC2, 即(x-1)2+32=x2,
解得x=5. 故滑道AC的长度为5 m.
数学思想: 实际问题
转化 建模
数学问题
例3 如图,在一次夏令营中,小明从营地A出发,沿北偏东53°方向走了400m到 达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距 离.
C
D
Ⅰ、如图,有一个圆柱,它的高等于12cm,底面圆的周长为 18cm,在圆柱下底面的A点有一只蚂蚁,它想吃到地面上与A 点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?
(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面 画几条路线,你觉得哪条路线最短?
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B 的最短路线是什么?你画对了吗?
当堂练习
1.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将
△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为( B )
A.4 cm B.5 cm
C.6 cm D.10 cm
C D
A
B
E
2.有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近边的地方有一小孔, 从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒有多长?
第一章 勾股定理
1.3 勾股定理的应用
目录
Con
01 诊断练习
02 问题情境一
03 问题情境二
04 例题讲解
05 巩固练习
06 课堂小结
1、圆柱的底面半径为3cm,高为12cm,求圆柱的 侧面积。
C
C
C`
12
A3
A
12
6π
解得x=5. 故滑道AC的长度为5 m.
数学思想: 实际问题
转化 建模
数学问题
例3 如图,在一次夏令营中,小明从营地A出发,沿北偏东53°方向走了400m到 达点B,然后再沿北偏西37°方向走了300m到达目的地C.求A、C两点之间的距 离.
C
D
Ⅰ、如图,有一个圆柱,它的高等于12cm,底面圆的周长为 18cm,在圆柱下底面的A点有一只蚂蚁,它想吃到地面上与A 点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?
(1)在你自己做的圆柱上,尝试从点A到点B沿圆柱侧面 画几条路线,你觉得哪条路线最短?
(2)如图,将圆柱侧面剪开展成一个长方形,点A到点B 的最短路线是什么?你画对了吗?
当堂练习
1.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,将
△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为( B )
A.4 cm B.5 cm
C.6 cm D.10 cm
C D
A
B
E
2.有一个高为1.5 m,半径是1 m的圆柱形油桶,在靠近边的地方有一小孔, 从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m,问这根铁棒有多长?
第一章 勾股定理
1.3 勾股定理的应用
目录
Con
01 诊断练习
02 问题情境一
03 问题情境二
04 例题讲解
05 巩固练习
06 课堂小结
1、圆柱的底面半径为3cm,高为12cm,求圆柱的 侧面积。
C
C
C`
12
A3
A
12
6π
初中数学八年级上册《14.2勾股定理的应用》PPT课件 (1)
B
18
C
30
A
一个3m长的梯子AB,斜
靠在一竖直的墙AO上,
A
这时AO的距离为2.5m,
0.5
C
如果梯子的顶端A沿墙 2.5
下滑0.5m,那么梯子底 端B也从外题移目0和.5图m吗形?中, O 你能得到哪些信息?
B
D
分析: DB=OD-OB, 要求BD,可以先求OB,OD.
在Rt△AOB中,
在Rt△COD中,
C
a
b
B
c
a2 c2 b2
A
例 在Rt△ABC中,∠C=90°, ∠A、∠B、∠C的
对边分别为a、b、c,若 a﹕b=3﹕4, c=15.求a、b.
分析:通过设未知数,根据勾股定理列出方程求出a、b.
解: 设 a=3x, b=4x . 在Rt△ABC中,∠C=90°,
B 由勾股定理,得:a2+b2=c2
a
c
即:9x2+16x2=225
解得:x2=9 ∴x=3 (负值舍去)
C
b
A ∴a=9, b=12.
身边数学 :☞
如图,学校有一块长方形花园,有极少
数 出了人一为条了“避路开”拐,角仅走仅“少捷走径4了”_,__在__花步园路内, 走却
踩伤了花草。 (假设1米为2步)
4米 3米
C
4米 B
5米 “路”
C
B
正方形,在水池正中央有一根 芦苇,它高出水面1尺,如果
x x+1
把这根芦苇拉向水池一边的中
A
点,它的顶端恰好到达池边的 x2 52 (x 1)2
水面,请问这个水的深度与这
【基础训练】
北师大版八年级上册1.3勾股定理应用课件(共18张PPT)
如图为一圆柱体工艺品,其底面周长为60cm,高为25cm,从点A出发绕该工艺品侧面一周镶嵌一根装饰线到点B,则该装饰线最短长为
A B A A A 'B cm.
2
(一)小对子或小组长组织组员合作学习以下两个内容,
2
2
5如, 果2,小3;明只B有. 一个其20c中m 的A尺A子’是,思圆考又柱该如体何验的证A高D垂,直AA’BB?是底面圆周长的一半
第一章 勾股定理
§1.3 勾股定理的应用
学习目标
1、会用勾股定理解决立体图形中的最短路径问题; 2、能用勾股定理和逆定理,结合方程思想解决实际应用问题.
自主自研
(一)温故知新
1、平面内,两点之间 线段 最短;
2、圆的周长公式 C=2πR;圆的面积公式 S=πR2 ; 3、圆柱侧面的展开图是__矩__形____。
;
如图所示,有一个圆柱,它的高等于12厘米,底面上圆的周长等于18厘米,在圆柱的下底面A点有一只蚂蚁,它想吃到上底面上与A点
相对如的B图点B为处的一食物圆,需柱要爬体行的工最短艺路程品是多,少其? 底面周长为60cm,高为25cm,
(一)小对子或小组长组织组员合作学习以下两个内容,
从点A出发绕该工艺品侧面一周镶嵌一根装饰线到点B,则该 一个无盖的长方体盒子的长、宽、高分别为8cm、8cm、12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮蚂蚁设计一条最短的 线路吗?蚂蚁要爬行的最短行程是多少?(自己动手试一试)
若设滑道AC长为x米,
研读课本P13 “做一做”。
A 因为△ACE是直角三角形,所以AE2+CE2 AC2,
(3)如下图,将圆柱侧面过点A剪开并展开,则侧面展开图是
A
,CB= cm,AC= cm.
A B A A A 'B cm.
2
(一)小对子或小组长组织组员合作学习以下两个内容,
2
2
5如, 果2,小3;明只B有. 一个其20c中m 的A尺A子’是,思圆考又柱该如体何验的证A高D垂,直AA’BB?是底面圆周长的一半
第一章 勾股定理
§1.3 勾股定理的应用
学习目标
1、会用勾股定理解决立体图形中的最短路径问题; 2、能用勾股定理和逆定理,结合方程思想解决实际应用问题.
自主自研
(一)温故知新
1、平面内,两点之间 线段 最短;
2、圆的周长公式 C=2πR;圆的面积公式 S=πR2 ; 3、圆柱侧面的展开图是__矩__形____。
;
如图所示,有一个圆柱,它的高等于12厘米,底面上圆的周长等于18厘米,在圆柱的下底面A点有一只蚂蚁,它想吃到上底面上与A点
相对如的B图点B为处的一食物圆,需柱要爬体行的工最短艺路程品是多,少其? 底面周长为60cm,高为25cm,
(一)小对子或小组长组织组员合作学习以下两个内容,
从点A出发绕该工艺品侧面一周镶嵌一根装饰线到点B,则该 一个无盖的长方体盒子的长、宽、高分别为8cm、8cm、12cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,你能帮蚂蚁设计一条最短的 线路吗?蚂蚁要爬行的最短行程是多少?(自己动手试一试)
若设滑道AC长为x米,
研读课本P13 “做一做”。
A 因为△ACE是直角三角形,所以AE2+CE2 AC2,
(3)如下图,将圆柱侧面过点A剪开并展开,则侧面展开图是
A
,CB= cm,AC= cm.
北师大版八年级数学上册《勾股定理的应用》课件(24张PPT)
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/72021/11/72021/11/72021/11/7
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
3 勾股定理的应用
1.能运用勾股定理及直角三角形的判别条件(即勾股定 理的逆定理)解决简单的实际问题. 2.数学思考、解决问题:在将实际问题抽象为数学问题 的过程中,学会观察图形,提高分析问题、解决问题的 能力及渗透数学建模的思想.
1.你知道勾股定理的内容吗? 2.一个三角形的三条边长分别为a,b,c(c>a,c>b), 能否判断这个三角形是否是直角三角形?
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
最短时: x 1.5,
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
3.如图,在棱长为10 cm的正方体的一个顶点A处有一 只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是 1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬 到B?
B
A
B B
A
【解析】因为从A到B最短路径AB满足 AB2=202+102=500>400,所以不能在20 s内从A爬 到B.
3 勾股定理的应用
1.能运用勾股定理及直角三角形的判别条件(即勾股定 理的逆定理)解决简单的实际问题. 2.数学思考、解决问题:在将实际问题抽象为数学问题 的过程中,学会观察图形,提高分析问题、解决问题的 能力及渗透数学建模的思想.
1.你知道勾股定理的内容吗? 2.一个三角形的三条边长分别为a,b,c(c>a,c>b), 能否判断这个三角形是否是直角三角形?
【规律方法】将立体图形展开成平面图形,找出两点间的最 短路径,构造直角三角形,利用勾股定理求解.
运用勾股定理解决实际问题时,应注意: 1.没有图的要按题意画好图并标上字母. 2.有时需要设未知数,并根据勾股定理列出相应的方程 来解.
八年级数学上册1《勾股定理的应用》课件 2022年北师大版八上数学PPT+
9.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,
但他把这三个数据与其他的数据弄混了,请你帮助他找出来为( C )
A.13,12,12
B.12,12,8
C.13,10,12
D.5,8,4
10.如图,王大伯家屋后有一块长12 m,宽8 m的矩形空地,他在以
长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,
思路探究:除了截短法和延长法外,在等腰三角形中,我们通常作底边的中线或高或顶角平分 线,以便使用等腰三角形的性质(三线合一).
第一章 三角形的证明 复习
回顾 思考1
“原名〞 知多少
公理:公认的真命题称为公理(axiom). 证明:除了公理外,其它真命题的正确性都通过推理的方法证实.
推理的过程称为证明. 定理:经过证明的真命题称为定理(theorem). 推论:由一个公理或定理直接推出的定理,叫做这个公理或定理的推论(corollary).推 论可以当作定理使用.
第8题图
第9题图
15.(8分)在一棵树的10 m高处有两只猴子,其中一只爬下树走向离树 20 m的池塘,而另一只爬向树顶后直扑池塘,如果两只猴子经过的距 离相等,问这棵树有多高? 解:如图,点B为树顶,D处有两只猴子,那么AD=10 m,C为池塘, 那么AC=20 m.设BD的长为x m,那么树的高度为(10+x) m.因为 AC+AD=BD+BC,所以BC=20+10-x=(30-x)m.在△ACB中, ∠A=90°,所以AC2+AB2=BC2.即202+(10+x)2=(30-x)2,解得 x=5,所以x+10=5+10=15,即这棵树高为15 m
结论4: 等腰三角形腰上的高线与底边的夹角等于顶 角的一半.
结论5:等腰三角形底边上的任意一点到两腰的距离 之和等于一腰上的高.
勾股定理的应用PPT课件1
B
A
B
B
10
A
10
10
C
A
拓展2
如果盒子换成如图长为3cm,宽为 2cm,高为1cm的长方体,蚂蚁沿着 表面需要爬行的最短路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;
1
(3)经过左面和上底面.
A
3
C
B
B
A
3
1 2C
B 2
A
A1
3
C
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
B
B
2
1
A
3
C
A
AB= AC2 BC2 = 32 32 = 18
(2)当蚂蚁经过前面和右面时,如图,最短路程 为
B
B
1
A
A
3
2C
AB= AC2 BC2 = 52 12 = 26
(3)当蚂蚁经过左面和上底面时,如图,最短路
程为
B 1m
一个门框的尺寸如图所示, 一块长3m、宽2.1m的薄木板能否
D 从门框内通过?为什么?
解:联结AC,在Rt△ABC中AB=2m, BC=1m ∠B=90°,根据勾股定理:
AB2 BC2 AC2
AC AB2 BC2
12 22 2.236m >2.1m
∴薄木板能从门框内通过。
C
超越自我
6 米
棵树折断之前有多高
吗? A
8米
6
米
B
C
8米
问题二
帮卡车司机 排忧解难。
一辆装满货物的 卡车,其外形高2.5 米,宽1.6米,要开 进厂门形状如图的 某工厂,问这辆卡 车能否通过该工厂 的厂门?说明理由
A
B
B
10
A
10
10
C
A
拓展2
如果盒子换成如图长为3cm,宽为 2cm,高为1cm的长方体,蚂蚁沿着 表面需要爬行的最短路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;
1
(3)经过左面和上底面.
A
3
C
B
B
A
3
1 2C
B 2
A
A1
3
C
解:(1)当蚂蚁经过前面和上底面时,如图,最 短路程为
B
B
2
1
A
3
C
A
AB= AC2 BC2 = 32 32 = 18
(2)当蚂蚁经过前面和右面时,如图,最短路程 为
B
B
1
A
A
3
2C
AB= AC2 BC2 = 52 12 = 26
(3)当蚂蚁经过左面和上底面时,如图,最短路
程为
B 1m
一个门框的尺寸如图所示, 一块长3m、宽2.1m的薄木板能否
D 从门框内通过?为什么?
解:联结AC,在Rt△ABC中AB=2m, BC=1m ∠B=90°,根据勾股定理:
AB2 BC2 AC2
AC AB2 BC2
12 22 2.236m >2.1m
∴薄木板能从门框内通过。
C
超越自我
6 米
棵树折断之前有多高
吗? A
8米
6
米
B
C
8米
问题二
帮卡车司机 排忧解难。
一辆装满货物的 卡车,其外形高2.5 米,宽1.6米,要开 进厂门形状如图的 某工厂,问这辆卡 车能否通过该工厂 的厂门?说明理由
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课主要是应用勾股定理和它的逆定理来解 决实际问题,在应用定理时,应注意:1、没 有图的要按题意画好图并标上字母;2、不要 用错定理。
你学会了吗?
◆明朝大数学家大位在他60岁那年完成了一部数 学巨著《直指算法统宗》,在清朝康熙年间曾誉 之“风行宇内,迄今盖已百有数十余年”。其中 有一道著名的“中国秋能热水器 的支架AB长为90cm, 与AB垂直的BC长 120cm.太阳能真空管 AC有多长?
C
B
●2005年8月,中俄两国在青岛举行联合军事演习. 甲、乙两艘军舰同时从某港口O出发,分别向北偏 西60°、南偏西30°方向航行围攻敌舰,已知甲、 乙两艘军舰速度分别为60海里/时、80海里/时, 问两舰出发后多长时间相距200海里?
苏科版
八年级数学(上册)
勾股定理的应用(1)
南京玄武湖东西隧 道与中央路北段及龙蟠 路大致成直角三角形, 从C处到B处,如果直接 走湖底隧道CB,比绕道 BA (约1.36km)和 AC(约2.95km)减少多 少行程?(精确到0.1km)
解:在Rt△ABC中,由勾股定理,得
A B
C
BC=
= 2.95 2 1.36 2 ≈2.62(km) AC BA
2 2
BA+AC≈1.36+2.95=4.31(km), (BA+AC)-BC≈4.31-2.62=1.69≈1.7(km). 答:直接走湖底隧道比绕道BA和AC减少行程约1.7km.
一架长为10m的梯子AB斜靠在墙上.
⑴ 若梯子的顶端距地面的垂直距离为8m, 则梯子的顶端A与它的底端B哪个距墙角C远? ⑵在⑴中如果梯子的顶端下滑1m,那么 它的底端是否也滑动1m? ⑶有人说,在滑动过程中,梯子 的底端滑动的距离总比顶端下 滑的距离大,你赞同吗? A A’
解:设水池的水深AC为x尺,则这根芦苇长 AD=AB=(x+1)尺, 在直角三角形ABC中,BC=5尺
由勾股定理得,BC2+AC2=AB2
即
52+ x2= (x+1)2
25+ x2= x2+2 x+1, 2 x=24, ∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺。
问题3 一种盛饮料的圆柱形杯(如图),测得内
A
O
B
问题2
如图,有两棵树,一棵高8m,另一棵高2m,两树 相距8m,一只小鸟从一棵树的树梢飞到另一棵树 的树梢,至少飞了 多少m?
A
变式1:若两棵树之间的地 面上有一条小虫,一只小鸟从 一棵树的树梢飞到地面捉到 小虫后又飞到另一棵树的树 梢,至少飞了 多少m?
8m C 8m
B 2m
变式2:两棵树之间的地面上是否存在一点P,且PA=PB, 若存在,说出 点P的位置;若存在,说明理由.
部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯 口外面至少要露出4.6㎝,问吸管要做多长?
A
B
C
下图是学校的旗杆,旗杆上的绳子垂 到了地面,并多出了一段,现在老师 想知道旗杆的高度,你能帮老师想个 办法吗?请你与同伴交流设计方案?
A
图(1)
C 图(2)
B
通过今天的学习, 用你自己的话说说你的收获和体会?
C
B
B’
问题1
在台风“麦莎” 的袭击中,一棵大树 在离地面9米处断裂, 树的顶部落在离树根 底部12米处。这棵树 折断之前有多高?
练一练
在台风“麦莎” 的袭击中,一棵大树 在离地面9米处断裂, 树的顶部落在离树根 底部12米处。这棵树 折断之前有多高?
9 米 12米
变式:若已知树高24米,断裂后树的顶部落在离树 根底部12米处,这棵树裂痕离树根底部有多高?
试一试:
在我国古代数学著作《九章算 术》中记载了一道有趣的问题,这 个问题的意思是:有一个水池,水 面是一个边长为10尺的正方形,在 水池的中央有一根新生的芦苇,它 高出水面1尺,如果把这根芦苇垂 直拉向岸边,它的顶端恰好到达岸 边的水面,请问这个水池的深度和 这根芦苇的长度各是多少?
D C B
A
平地秋千未起,踏板一尺离地, 送行二步与人齐,五尺人高曾记; 仕女佳人争蹴,终朝笑语欢嬉,
良工高士素好奇,算出索长有几?
(一步合5尺)
平地秋千未起,踏板一尺离地, 送行二步与人齐,五尺人高曾记;
仕女佳人争蹴,终朝笑语欢嬉,
良工高士素好奇,算出索长有几?
O
x
x—4
A
5
10
E C
1
B
F
D
你学会了吗?
◆明朝大数学家大位在他60岁那年完成了一部数 学巨著《直指算法统宗》,在清朝康熙年间曾誉 之“风行宇内,迄今盖已百有数十余年”。其中 有一道著名的“中国秋能热水器 的支架AB长为90cm, 与AB垂直的BC长 120cm.太阳能真空管 AC有多长?
C
B
●2005年8月,中俄两国在青岛举行联合军事演习. 甲、乙两艘军舰同时从某港口O出发,分别向北偏 西60°、南偏西30°方向航行围攻敌舰,已知甲、 乙两艘军舰速度分别为60海里/时、80海里/时, 问两舰出发后多长时间相距200海里?
苏科版
八年级数学(上册)
勾股定理的应用(1)
南京玄武湖东西隧 道与中央路北段及龙蟠 路大致成直角三角形, 从C处到B处,如果直接 走湖底隧道CB,比绕道 BA (约1.36km)和 AC(约2.95km)减少多 少行程?(精确到0.1km)
解:在Rt△ABC中,由勾股定理,得
A B
C
BC=
= 2.95 2 1.36 2 ≈2.62(km) AC BA
2 2
BA+AC≈1.36+2.95=4.31(km), (BA+AC)-BC≈4.31-2.62=1.69≈1.7(km). 答:直接走湖底隧道比绕道BA和AC减少行程约1.7km.
一架长为10m的梯子AB斜靠在墙上.
⑴ 若梯子的顶端距地面的垂直距离为8m, 则梯子的顶端A与它的底端B哪个距墙角C远? ⑵在⑴中如果梯子的顶端下滑1m,那么 它的底端是否也滑动1m? ⑶有人说,在滑动过程中,梯子 的底端滑动的距离总比顶端下 滑的距离大,你赞同吗? A A’
解:设水池的水深AC为x尺,则这根芦苇长 AD=AB=(x+1)尺, 在直角三角形ABC中,BC=5尺
由勾股定理得,BC2+AC2=AB2
即
52+ x2= (x+1)2
25+ x2= x2+2 x+1, 2 x=24, ∴ x=12, x+1=13 答:水池的水深12尺,这根芦苇长13尺。
问题3 一种盛饮料的圆柱形杯(如图),测得内
A
O
B
问题2
如图,有两棵树,一棵高8m,另一棵高2m,两树 相距8m,一只小鸟从一棵树的树梢飞到另一棵树 的树梢,至少飞了 多少m?
A
变式1:若两棵树之间的地 面上有一条小虫,一只小鸟从 一棵树的树梢飞到地面捉到 小虫后又飞到另一棵树的树 梢,至少飞了 多少m?
8m C 8m
B 2m
变式2:两棵树之间的地面上是否存在一点P,且PA=PB, 若存在,说出 点P的位置;若存在,说明理由.
部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯 口外面至少要露出4.6㎝,问吸管要做多长?
A
B
C
下图是学校的旗杆,旗杆上的绳子垂 到了地面,并多出了一段,现在老师 想知道旗杆的高度,你能帮老师想个 办法吗?请你与同伴交流设计方案?
A
图(1)
C 图(2)
B
通过今天的学习, 用你自己的话说说你的收获和体会?
C
B
B’
问题1
在台风“麦莎” 的袭击中,一棵大树 在离地面9米处断裂, 树的顶部落在离树根 底部12米处。这棵树 折断之前有多高?
练一练
在台风“麦莎” 的袭击中,一棵大树 在离地面9米处断裂, 树的顶部落在离树根 底部12米处。这棵树 折断之前有多高?
9 米 12米
变式:若已知树高24米,断裂后树的顶部落在离树 根底部12米处,这棵树裂痕离树根底部有多高?
试一试:
在我国古代数学著作《九章算 术》中记载了一道有趣的问题,这 个问题的意思是:有一个水池,水 面是一个边长为10尺的正方形,在 水池的中央有一根新生的芦苇,它 高出水面1尺,如果把这根芦苇垂 直拉向岸边,它的顶端恰好到达岸 边的水面,请问这个水池的深度和 这根芦苇的长度各是多少?
D C B
A
平地秋千未起,踏板一尺离地, 送行二步与人齐,五尺人高曾记; 仕女佳人争蹴,终朝笑语欢嬉,
良工高士素好奇,算出索长有几?
(一步合5尺)
平地秋千未起,踏板一尺离地, 送行二步与人齐,五尺人高曾记;
仕女佳人争蹴,终朝笑语欢嬉,
良工高士素好奇,算出索长有几?
O
x
x—4
A
5
10
E C
1
B
F
D