破解含参不等式恒成立的5种常用方法
含参数不等式的“恒成立”问题解题方法荟萃
含参数不等式的“恒成立”问题解题方法荟萃含参数不等式的“恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般的,若函数()x f 在定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论. 【方法荟萃】 一、分离变量法对于一些含参数的不等式恒成立问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行剥离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
【例1】不等式-2cos 2x +4sinx-k 2+k<0对一切实数x 恒成立,求参数k 的取值范围。
分析与解:所给不等式可化为:(2 sinx+1)2< k 2-k+3<==>(2 sinx+1)2max < k 2-k+3 而(2 sinx+1)2max =9∴k 2-k+3=9,解之得:k > 3或k < -2故k 的取值范围是(-∞,-2)∪(3,+∞)。
【例2】设()()()⎥⎦⎤⎢⎣⎡+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。
分析与解:因为分母n 是正数,要使得()x f 当(]1,∞-∈x 有意义,分子()()an n xxx+-+++121 就必须也是正数。
并容易看出,可以将a 分离出来。
当(]1,∞-∈x 时,()x f 有意义,故有()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->⇔>+-+++xx x xxxn n n a a n n 11210121令()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=xx x n n n x 1121 ϑ,只要对()x ϑ在(]1,∞-上的最大值,此不等式成立即可。
含字母参数不等式恒成立问题的解法
含字母参数不等式恒成立问题的解法焦作市孟州第五高级中学刘会霞摘要:含参数不等式恒成立问题最突出的特点是不等式中含有参数,这类题学生主要错在对参数的讨论不够全面。
求参数取值范围时一定要分析恒成立的类型,以便确定求参数范围的方法。
本文从换元、函数最值、分离参数、二次函数、数形结合五种类型来展开探究。
含参数不等式恒成立问题是高中数学中常见的问题之一,问题中渗透着换元化归、分类讨论、数形结合、函数与方程等思想方法。
本文通过实例就解这类问题的方法进行初步的探讨,大致可分为以下几种:换元、函数最值、分离参数、二次函数、数形结合。
一,换元法在不等式恒成立问题中,有些题表面看是有限定条件的函数的定义域问题,但如果换一个角度来考虑,若主元(或参数)能变为一次的形式,则可利用一次函数的性质来解决。
对于一次函数f(x)=k x+b, x,f(x)>0恒成立⇔, f(x)<0恒成立⇔例1 设y=(log2x)2+(t-2)log2x-t+1,若t[-2,2]时,y>0 恒成立,求x的取值范围.解:设y=f(t)=( log2x-1)t+(log2x)2-2 log2x +1,则f(t) 是一次函数,当t∈[-2,2]时,f(t)>0恒成立.则由,即解得log2x <-1或log2x>3.∴0<x<或x>8,∴x的取值范围是(0,)∪(8,+∞)【规律方法】解决恒成立问题一定要清楚谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数。
二、函数最值法应用重要结论:“不等式a>f(x)恒成立⇔a>a> ; 不等式a<f(x)恒成立⇔ a<”例2.(2010·山东高考)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:若对任意x >0,x x 2+3x +1≤a 恒成立, 只需求得y =x x 2+3x +1的最大值即可. 因为x >0, 所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x +3=15, 当且仅当x =1时取等号,所以a 的取值范围是[15,+∞). 三、分离参数法若不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于不等号的两边,即化成a>f(x) ( a<f(x) )型恒成立问题,再利用结论“a>f(x)恒成立⇔a>; a<f(x)恒成立⇔ a<” (转化为求最值问题),求出参数范围,有时可避免较复杂的分类讨论。
解决“含参数不等式的恒成立”问题的基本方法
解决“含参数不等式的恒成立”问题的基本方法“含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般的,若函数()x f 在定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.例一 已知函数()()1112>⎪⎭⎫ ⎝⎛+-=x x x x f .①求()x f 的反函数()x f 1-; ②若不等式()()()x a a x fx ->--11对于⎥⎦⎤⎢⎣⎡∈41,161x 恒成立,求实数a 的取值范围.分析:本题的第二问将不等式()()()x a a x fx ->--11转化成为关于t 的一次函数()()211a t a t g -++=在⎥⎦⎤⎢⎣⎡∈21,41t 恒成立的问题. 那么,怎样完成这个转化呢?转化之后又应当如何处理呢? 【解析】 ①略解()()10111<<-+=-x xxx f②由题设有()()x a a xx x->-+-111,∴x a a x ->+21,即()0112>-++a x a 对于⎥⎦⎤⎢⎣⎡∈41,161x 恒成立. 显然,a ≠-1令x t =,由⎥⎦⎤⎢⎣⎡∈41,161x 可知⎥⎦⎤⎢⎣⎡∈21,41t则()()0112>-++=a t a t g 对于⎥⎦⎤⎢⎣⎡∈21,41t 恒成立.由于()()211a t a t g -++=是关于t 的一次函数.(在⎥⎦⎤⎢⎣⎡∈21,41t 的条件下()()211a t a t g -++=表示一条线段,只要线段的两个端点在x 轴上方就可以保证()()0112>-++=a t a t g 恒成立)∴()()451011210114102104122<<-⇒⎪⎩⎪⎨⎧>-++>-++⇒⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛>⎪⎭⎫⎝⎛a a a a a g g例二 定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。
含参数不等式恒成立问题的解题策略
解决“含参数不等式的恒成立”问题的基本方法“含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般地,若函数()x f 的定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()Mx f ≥⇔min (()M x f ≥有解⇔M max )(x f ≤);()M x f ≤恒成立()M x f ≤⇔m a x(()M x f ≤有解⇔M x f ≤m i n )().因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.例一 定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫ ⎝⎛∈2,0πθ时,有()()022s in 2c o s 2>--++m f m f θθ恒成立,求实数m 的取值范围. 分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。
【解析】由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ 因为()x f 为奇函数,故有()()22sin 2cos 2+>+m f m f θθ恒成立,又因为()x f 为R 减函数,从而有22sin 2cos 2+<+m m θθ对⎪⎭⎫ ⎝⎛∈2,0πθ设t =θsin ,则01222>++-m mt t 对于()1,0∈t 恒成立,在设函数()1222++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g ,即21-≥m ,又0<m ∴021<≤-m (如图1) ②当[]1,0∈=m t ,即10≤≤m 时, ()012442<+-=∆m m m 2∴2121+<<-m ,又[]1,0∈m ,∴10≤≤m (如图2)③当1>=m t 时,()0212211>=++-=m m g 恒成立.∴1>m (故由①②③可知:21-≥m . 例二 定义在R 上的单调函数f(x)满足f(3)=log 23且对任意x ,y ∈R 都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若()()02933<--+⋅x x x f k f 对任意x ∈R 恒成立,求实数k 分析: 问题(1)欲证f(x)为奇函数即要证对任意x 都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x 可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.问题(2)的上述解法是根据函数的性质.f(x)是奇函数且在x ∈R 上是增函数,把问题转化成二次函数f(t)=t 2-(1+k)t+2>0对于任意t >0恒成立.对二次函数f(t)进行研究求解.【解析】(1)证明:f(x+y)=f(x)+f(y)(x ,y ∈R), ①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x ∈R 成立,所以f(x)是奇函数.(2)解:f(3)=log 23>0,即f(3)>f(0),又f(x)在R 上是单调函数,所以f(x)在R 上是增函数,又由(1)f(x)是奇函数.()()()2932933++-=---<⋅x x x x x f f k f , 2933++-<⋅x x x k 即()023132>+⋅+-x x k 对于任意R x ∈恒成立.令t=3x >0,、问题等价于()0212>++-t k t 对于任意0>t 恒成立.令()()212++-=t k t t f ,其对称轴为直线21k x +=当021<+k ,即1-<k 时, ()020>=f 恒成立,符合题意,故1-<k ; 当021≥+k 时,对于任意0>t ,()0>t f 恒成立()⎪⎩⎪⎨⎧<⨯-+=∆≥+⇔02410212k k , 解得2211+-<≤-k综上所述,当221+-<k 时,()()02933<--+⋅x x x f k f 对于任意R x ∈恒成立.本题还可以应用分离系数法,这种解法更简捷.t =m分离系数,由2933++-<⋅x x x k 得1323-+<x x k . 由于R x ∈,所以03>x ,故1221323-≥-+=x x u ,即u 的最小值为122-. 要使对于R x ∈不等式1323-+<x x k 恒成立,只要122-<k 说明: 上述解法是将k 分离出来,然后用平均值定理求解,简捷、新颖.例三 已知向量=(2x ,x+1),= (1-x ,t)。
求解不等式恒成立中参数问题的五大策略
f a < 0 ,
【 △= 6 — 4 ∞< 0 .
.
策 略一 :利 用一 次 函数 的性 质
若 已 ) 一 + 6 > 0 对 叵成 ’
例2 . 已知关于 的二次不等式 ( J } - 5 ) ( 1 ) x + 3 > 0的解集为 R. 则实数 k的取值范围为 解 析 :当 . _ 5 = 0时 .要使原不等式 的解 集为
解析 :如果将两边分别设成两个 函数 y l = ( X 一 1 ) 和
因为 当 ≥e时 , ( — l n x 一 1 ) = 1 一 > 0 , 所 以 — l 眦一
1 ≥e — l n e -l = e 一 2 > 0 .
所 以 ( ) > 0 , 所以^ ( ) ( e ) = _, 所 以 n≤一 旦 _ _ .
e-l e-I
若已
)
删
’
> 乱 一
R, 则必有一次项系数也为零 ,且常数项大于零.
f - 5 = O.
例1 . 对 于满 足 O ≤p ≤4的实数 P, 使
3恒成立 的 的取值范 围是 .
即{ 4 ( 1 - k ) = 0 , 解得k = 1 .
1 3 > 0 ,
) = I
一 1 厂
.
D / 2
然后观察两个 图像 ( 尤其要注意交点处和临界处 )的 位 置关 系 ,进而列 出含参数 的不等式. 例5 . 不 等式 ( 一 1 ) < 】 o 在 ∈( 1 , 2 ) 上恒 成立 ,
则 a的取值 范围为 .
x > 3 或 1 , 所以 的取值范围是( 一 , 一 1 ) U( 3 , + ) .
【教学随笔】五招突破不等式恒成立问题
五招突破不等式恒成立问题不等式恒成立问题,参变量潜在约束影响,参数出现,增加了问题的难度,且不易理清思路。
本文针对这个问题总结以下几种方法,希望对大家有所帮助。
第一招:变更主元法例1、若不等式对任意恒成立,求x的取值范围。
分析:本题可以把x看成常数,a为主元,则关于a的不等式对任意恒成立,借助一次函数的性质可使问题快速获解。
解:令,则g(a)>0对任意恒成立,由,得,解得x<1或x>3.故x的取值范围是点评:对于一次函数f(x)=kx+b,(1)若,则当时恒有f(x)>0.(2)若,则当时恒有第二招:分离变量例2.当时,不等式恒成立,则的取值范围是.A B C D【解析】:不等式即,因为,所以,令,因为,函数f(x)在(1,2)上递增,于是f(x)>f (1)=-5,故要使恒成立,应有【点评】求解本题通过分类参数,构造新函数,利用函数的单调性,把问题转化为求函数最值问题解决。
第三招:数形结合法例3、当时,不等式恒成立,则m的取值范围是_______.解:令,则二次函数f(x)在上函数值恒小于零。
结合二次函数图象知,只需满足,即,解得,即点评:处理一元二次不等式问题,要把它与二次函数及图象、二次方程紧密联系起来,充分利用数形结合思想来解答。
本题还可以采用分类变量法来解答:由在上恒成立,结合函数的单调性,求出字母m的取值范围。
第四招:转化化归法例4、设,其中,当时,f(x)有意义,求a的取值范围。
分析:f(x)有意义可以转化为对一切恒成立问题。
解:当时,f(x)有意义,故对一切恒成立。
两边同除以,得,,令,,因为f(x)有意义的充要条件是二次方程g(t)=0在内无实根,即,解得,即a的取值范围为点评:对某些问题,巧妙地进行变量代换,经适当整理后可使问题转化为关于某变量的方程形式,此时用方程的思想方法来解,就会达到事半功倍的效果。
第五招:集合思想求解例5.若关于x的不等式的解集总包含区间(1,2)恒成立,求实数a的取值范围。
解答含参不等式恒成立问题的三个途径
解题宝典含参不等式恒成立问题是一类综合性较强的题型,经常同时涉及多个不同的知识点.由于问题中涉及了参数,所以在解题的过程中,我们要充分关注参数,对参数进行分离、分类讨论等.本文结合实例,对解答含参不等式恒成立问题的三种途径作一探讨.一、分离参数法分离参数法是指将不等式变形使参数和变量分离,然后构建关于变量的函数,将原问题转化为函数最值或值域问题来求解的方法.在分离出参数之后,求函数最值的方法有导数法、基本不等式法、配方法等.例1.已知函数f ()x =ln 2()1+x -x 21+x,其单调递增区间为()-1,0,单调递减区间为()0,+∞.若不等式æèöø1+1n n +a≤e 对于任意n ∈N *都成立(其中e 是自然对数的底数),求a 的最大值.解:将不等式æèöø1+1n n +a≤e 两边取对数,可得()n +a æèöø1+1n ≤1,即a ≤1ln æèöø1+1n -n ,设g ()x =1ln ()1+x -1x,x ∈(]0,1,而函数的单调递增区间为()-1,0,单调递减区间为()0,+∞,所以ln 2()1+x -x 21+x≤0,故g ′()x <0,x ∈(]0,1,即g ()x 在区间(]0,1上为减函数,因此g ()x 在(]0,1的最小值为g ()1=1ln 2-1,则a 的最大值为1ln 2-1.解答本题主要运用了分离参数法.首先将不等式进行变形使参数和变量分离,然后构造函数g ()x ,对其求导,通过讨论导函数的单调性求得g ()x 的最小值,得到a 的最大值.二、分段讨论法分段讨论法一般适用于求解需要分多种情况进行讨论的问题.在运用分段讨论法求解含参不等式恒成立问题时,需将参数或定义域区间分成几段,然后逐段讨论使不等式恒成立时的情况,最后综合所求得的结果即可.这种方法的优势在于可以将每一种情况都考虑到.例2.已知f ()x =x ||x -a -2.当x ∈[]0,1时,f ()x <0恒成立,求实数a 的取值范围.分析:已知函数式中含有绝对值,需采用分段讨论法来求解,在定义域内讨论不同区间去掉绝对值符号以及不等式恒成立的情况.解:当x =0时,显然f ()x <0成立,此时a ∈R ,当x ∈(]0,1时,由f ()x <0可得,x -2x <a <x +2x,令g ()x =x -2x ,h ()x =x +2x ,x ∈(]0,1,则g ′()x =1+2x2>0,所以g ()x 在x ∈(]0,1上是单调递增的,则g ()x max =g ()1=-1,此时h ′()x =1-2x2<0,则h ()x 是单调递减,h ()x min =h ()1=3,因此a 的取值范围是()-1,3.三、单调性法单调性法是指利用函数的单调性构造使不等式恒成立的条件,使问题获解的方法.在运用单调性法解答不等式恒成立问题时,要注意首先将不等式进行变形,构造出合适的函数,然后分析函数的单调性.例3.若定义在()0,+∞上的函数f ()x 满足f ()x +f ()y =f ()xy ,且当x >1时,不等式f ()x <0成立,若不等式f æèöøx 2+y 2≤f ()xy +f ()a 对于任意x ,y ∈()0,+∞恒成立,求实数a 的取值范围.解:设0<x 1<x 2,则x 2x 1>1,则有f æèçöø÷x 2x 1<0,所以f ()x 2-f ()x 1=f æèçöø÷x 2x 1∙x 1-f ()x 1=f æèçöø÷x 2x 1<0,即f ()x 2<f ()x 1,所以函数f ()x 在()0,+∞上为减函数,故f æèöøx 2+y 2≤f xy +f ()a ⇔f æèöøx 2+y 2≤f ()a xy⇔a +y xy+y xy≥2xy xy=2(当且仅当x =y 时取等号),所以a 的取值范围是()0,2.分离参数法、分段讨论法和单调性法都是解答含参不等式恒成立问题的方法,但它们的适用范围并不相同,分离参数法适用于求解方便将参数、变量分离的问题;分段讨论法适用于解答需要分多种情况进行讨论的问题;单调性法适用于解答函数的性质较为明显的问题.(作者单位:江苏省南通市海门四甲中学)42。
解答含参不等式问题常用的几种方法
考点透视含参不等式问题较为复杂,常与导数、函数、方程等知识相结合.这类问题侧重于考查不等式的性质、简单基本函数的图象和性质、导数的性质等,对同学们的运算和分析能力有较高的要求.下面举例说明解答含参不等式问题的几种常用方法.一、判别式法判别式法主要适用于求解含参二次不等式问题.解答这类问题主要有三个步骤:第一步,根据二次不等式构造一元二次方程;第二步,运用二次方程的判别式,建立关于参数的新不等式;第三步,解新不等式,求得问题的答案.例1.若ax2-2ax+1≥0在R上恒成立,则实数a的取值范围为_____.解:当a=0时,1≥0,不等式ax2-2ax+1≥0成立;当a≠0时,{a>0,Δ≤0,解得0<a≤1;综上所述,实数a的取值范围为0≤a≤1.该二次不等式的二次项和一次项中含有参数,需分a=0和a≠0两种情况进行讨论.运用判别式法求解含参一元二次不等式问题,需先根据不等式构造一元二次函数和一元二次方程;然后根据一元二次方程的根的分布情况,建立关于判别式、根与系数、对称轴的不等式,从而求得参数的取值范围.二、分离参数法分离参数法适用于求解变量和参数可分离的不等式问题.解题时,需先判断出参数系数的正负;然后根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;再求出含变量一边的式子的最值;最后求出参数的取值范围.例2.当x∈()1,+∞时,(e x-1-1)ln x≥a(x-1)2恒成立,则实数a的取值范围为_____.解:因为x∈()1,+∞,则x-1>0,由(e x-1-1)ln x≥a(x-1)2,可得e x-1-1x-1⋅ln xx-1≥a,即e x-1-1x-1⋅1x-1ln x≥a,则e x-1-1x-1⋅1e ln x-1ln x≥a,令f()x=e x-1x()x>0,则f′()x=()x-1e x+1x2,令g()x=()x-1e x+1,则g′()x=xe x>0,所以g()x在()0,+∞上单调递增,则g()x>g()0=0,即f′()x>0,所以f()x在()0,+∞上单调递增,则f()x>0,令h()x=ln x-x+1,则h′()x=1-xx<0,则h()x在()1,+∞上单调递减,则h()x<h()1=0,即ln x-x+1<0,则x-1>ln x,所以f()x-1>f()ln x>0,即e x-1-1x-1>eln x-1ln x>0,可得e x-1-1x-1⋅1e ln x-1ln x>1,则a≤1,解答本题,要先将不等式进行整理,使参数和变量分离;再构造出函数f()x=e x-1x()x>0,将问题转化为函数最值问题.对其求导,判断其单调性,即可求得参数的取值范围.三、函数性质法若含参不等式中含有简单基本函数,则可直接将不等式进行变形,将其构造成函数,把问题转化为f(x,a)≥0、f(x,a)<0、f(x,a)≥g(x,a)、f(x,a)<g(x,a)等函数不等式问题.再根据简单基本函数的单调性,以及导数与函数单调性之间的关系,判断出函数的单调性,即可根据函数的单调性,求得函数的最值,顺利求出问题的答案.例3.若不等式sin x-ln()x+1+e x≥1+x+ax2-13x3恒成立,则a的取值范围为_____.解:由x>-1得,sin x-ln(x+1)+e x-x-1-ax2+13x3≥0,设f(x)=sin x-ln(x+1)+e x-x-1-ax2+13x3,则g(x)=f′(x)=cos x-1x+1+e x-1-2ax+x2,则h(x)=g′(x)=-sin x+1(x+1)2+e x-2a+2x,则z(x)=h′(x)=-cos x-2(x+1)3+e x+2,z′(x)=sin x+6(x+1)4+e x,当x>-1时,z′(x)>0,则h(x)单调递增,又当x∈(-1,0)时,z(x)<0,则h(x)单调递减,当x∈(0,+∞)时,z(x)>0,则h(x)单调递增,又h(0)=2-2a,①当2-2a≥0,即1≥a时,h(0)≥0,则当x∈(-1,+∞)孙小芳35考点透视时,h (x )≥0,此时g (x )单调递增,又g (0)=0,故当x ∈(-1,0)时,g (x )<0,则f (x )单调递减,当x ∈(0,+∞)时,g (x )>0时,f (x )单调递增,所以f (x )min =f (0),又f (0)=0,故f (x )≥0恒成立,满足题意;②当2-2a <0,即a >1时,h (0)<0,x →+∞,h (x )→+∞,故存在x 0>0,且h (x 0)=0,则当x ∈(-1,x 0)时,h (x )<0,则g (x )单调递减,当x ∈(x 0,+∞)时,h (x )>0,所以g (x )单调递增,又g (0)=0,故g (x 0)<0,x →+∞,g (x )→+∞,故存在x 1>x 0,且g (x 1)=0,所以当x ∈(-1,x 1)时,g (x )<0,则f (x )单调递减,又因为f (0)=0,所以f (x )<f (0)=0,与f (x )≥0恒成立不相符;综上所述,a ≤1.根据不等式构造函数f (x )=sin x -ln(x +1)+e x -x -1-ax 2+13x 3,通过多次求导,判断出导函数的符号,进而判断出函数的单调性,求得函数最值.求得使f (x )min ≥0成立时a 的取值范围,即可解题.四、主参换位法主参换位法,也叫反客为主法,适用于解答已知参数的范围求自变量取值范围的不等式问题.解答这类问题一般分三个步骤:第一步,将原不等式转化成关于参数的不等式;第二步,以参数为自变量,构造函数式,将问题转化为函数问题;第三步,根据函数的性质、图象讨论不等式成立的情形,建立关系即可解题.例4.已知函数f ()x =ax 2+bx -6,不等式f ()x ≤0的解集为[]-3,2.若当0≤m ≤4时,不等式mf ()x +6m <x +1恒成立,求实数x 的取值范围.解:由题意知:-3,2是方程ax 2+bx -6=0的根,且a >0,∴ìíîïï-b a=-3+2,-6a=(-3)×2,解得a =1,b =1.∴f ()x =x 2+x -6,∴mf ()x +6m <x +1可变形为()x 2+x m -x -1<0,令g ()m =()x 2+x m -x -1,∴{g (0)<0,g (4)<0,即{-x -1<0,4x 2+3x -1<0,解得ìíîx >-1,-1<x <14,-1<x <14.解答本题主要采用了主参换位法.因为已知参数m 的取值范围,故把m 当成自变量,通过主参换位,将问题转化为g ()m =()x 2+x m -x -1对任意0≤m ≤4恒成立,根据一次函数的性质,列出不等式组,即可解题.五、数形结合法当把不等式两边的式子看成两个函数式时,可根据其几何意义画出两个函数的图象,分析两个曲线间的位置,确保不等式恒成立,即可通过数形结合,求得参数的取值范围.例5.若关于x 的不等式||||kx -4-x 2-3≤3k 2+1恒成立,则k 的取值范围是_____.解:由题意可得4-x 2≥0,得-2≤x ≤2,则||||kx -4-x 2-3≤3k 2+1可转化为:||kx -4-x 23,设直线l :kx -y -3=0,上半圆C :x 2+y 2=4()y >0,即y =4-x 2,半径为r =2,||kx -4-x 2≤3表示圆C 小于或等于3,如图,设圆心(原点O )到直线l 的距离为d ,由于圆C 上半部分上的点到直线l 的最大距离为d +r =d +2,所以d +2≤3,即d ≤1,即||0-0-3k 2+1≤1,解得k ≤-22或k ≥22,所以k 的取值范围为(]-∞,-22⋃[)22,+∞.解答本题,需挖掘代数式的几何意义,采用数形结合法,将原问题转化为使圆C 上半部分上的任意一点到直线l 的距离小于或等于3时参数的取值范围.分析直线与圆的位置关系,便可建立新不等式.由此可见,求解含参不等式问题的方法多样.但由于不等式与函数的关系紧密,且利用函数的单调性和图象容易建立不等关系式,因此函数思想是破解含参不等式问题的主要思想.(作者单位:江苏省南京市大厂高级中学)36。
求解含参不等式恒成立问题的几个“妙招”
乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。
27用含参不等式恒成立问题的解法
例1、对于不等式(1-m)x2+(m-1)x+3>0
................
(*)
(1)当| x | ≤2,不等式恒成立,求实数m的取值范围 ;
求谁,谁就是参数; 另一个是自变量
(2)当| m | ≤2,不等式恒成立,求实数x的取值范围 .
变更“主元” 解(2) : 设g(m)=(-x2+x)m+(x2-x+3) (m∈[-2,2])法
(Ⅱ){a|a≥-4}
练 习
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x) (1)当x∈R时,f(x)≥a恒成立,求a的取值范围; (2)若g(x)的值域为R,求a的取值范围; (3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1){a|-2≤a≤1}; (2){a|a≥ 或a≤2 }2
例1:已知关于x的不等式: (a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 ( a 2) 4( a 2) 0
练 已知不等式x2+mx>4x+m-4. 习 (1)若对于0≤m≤4的所有实数m,不等式恒成立,求实数x的取值范围.
(2)若对于x≤1的所有实数x,不等式恒成立,求实数m的取值范围. (1)实数x的取值范围为:(-∞,0)∪(0,2)∪(2,+∞); (2)实数m的取值范围是:{m|m<4}. 求谁,谁就是参数; 另一个是自变量
f 0 >0 则 f 4 >0
含参不等式恒成立问题的求解方法
2
求实数 a 的取值范围. 解析 构造辅助函数 g(x) f (x) ax (x 1) ln(x 1) ax ,原问题变为
g(x) 0 对所有的 x 0 恒成立,注意到 g(0) 0 ,故问题转化为 g(x) g(0) 在
令
y x 1 ,由 x 0,1,所以 y [1, 2] ,则:
2x x 1 2 y 2 y 2, 所以, t 2 y 2 y 2 ,当 y [1, 2] 时恒成立.
因为 h( y) 2 y 2 y 2 在 y [1, 2] 上有最大值 h(1) 1 ,所以 t 1有
2
2
2
综上得: a (, 6 ) 1,.
2 例 3.2 不等式 2x2 2kx k 1 对 x R 恒成立,求实数 k 的取值范围.
4x2 6x 3 解 因为 4x2 6x 3 4(x 3)2 3 0 ,所以原不等式等价于 2x2 2kx k
44 4x2 6x 3,即 2x2 (6 2k)x (3 k) 0对 x R恒成立 .
f (x) g(x) 在 0 x 1 时恒成立.
这种方法是解决参数不等式恒成立问题最常用的一种方法,也体现这类问题 的常规性,不仅是函数问题,在数列问题中也很适用 .
1
例 1.2 求所有的实数 k,使得不等式 a3 b3 c3 d 3 1 k(a b c d ) 对
任意的 a,b, c, d 1,都成立
解 当 a b c d 1时,有 3 (4)k ,
k 3 4
又当 a b c d 1 时,有 3 2k ,
2
2
k 3 . 4
破解含参不等式问题的几个“妙招”
含参不等式恒成立问题具有较强的综合性,且难度一般较大,通常会综合考查方程、函数、导数、不等式等知识点的应用.解答这类问题,可以从不同的角度入手,寻找到不同的解题思路.下面介绍几个破解含参不等式问题的“妙招”,以帮助大家提升解题的效率.一、数形结合数形结合法是解答数学问题的常用方法.通过数与形之间的相互转化,将不等式恒成立问题转化为函数图象的交点、位置关系问题,即可通过研究图形,破解不等式恒成立问题.在研究图形时,要特别关注临界的情形,如有1个交点、有2个交点、相切等情形.例1.若当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.解:设f 1(x )=(x -1)2,f 2(x )=log a x ,在同一个平面直角坐标系中画出两个函数的图象,如图所示.要使不等式(x -1)2<log a x 在x ∈(1,2)上恒成立,需使f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方,即使a >1,由图可知,在x ∈(1,2)上,f 1(x )∈()0,4,且f 1(x )=(x -1)2的最高点为(2,4),当x =2时,由f 2(x )=log a x =4得a =2,所以a 的取值范围为(1,2].不等式两边的式子都是简单基本函数,于是分别画出两个函数的图象,将不等式恒成立问题转化为f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的位置关系问题.结合图形来分析f 2(x )=log a x 的图象始终在f 1(x )=(x -1)2的上方的临界情形:两个图象的最高点在同一个位置,即可解题.二、分离参数对于含有参数的不等式恒成立问题,通常需将参数与变量分离,可先将不等式化为一边有参数、另一边无参数的形式;再根据已知条件,讨论不含有参数的式子的取值范围,进而确定参数的取值范围.例2.已知函数f ()x =ax -4x -x 2,当x ∈(0,4]时,f ()x <0恒成立,求实数a 的取值范围.解:由f ()x =ax -4x -x 2<0可得a<,因为函数g ()x在x ∈(0,4]上为减函数,所以在x ∈(0,4]上,函数g ()x>g ()4=0,故a <0,即实数a 的取值范围为(-∞,0).解答本题,要先将实数a 与变量x 分离开;再根据g ()x 的单调性求得当x ∈(0,4]时g ()x 的值域,进而求出实数a 的取值范围.在分离参数时,要注意判断参数的正负值是否会对不等式的符号产生影响.三、分类讨论由于参数的取值往往不确定,所以在解答不等式恒成立问题时,我们通常需要对参数或某些变量进行分类讨论.确定分类讨论的标准和对象是用分类讨论法解题的关键.例3.设f ()x =x 2-2mx +2,当x ∈[-1,+∞)时,f ()x =x 2-2mx +2≥0恒成立,求参数m 的取值范围.解:设F ()x =x 2-2mx +2-m ,则问题就转化为当x ∈[-1,+∞)时,F ()x =x 2-2mx +2-m ≥0恒成立.①当△=4()m -1()m -2<0,即-2<m <1时,F ()x =x 2-2mx +2-m >0恒成立;②当△=4()m -1()m -2≥0时,ìíîïïïï△≥0,F ()-1≥0,--2m 2≤-1,即ìíîïïïï4()m -1()m +2≥0,m +3≥0,--2m 2≤-1,解得-3≤m ≤-2.综上所述,参数m 的取值范围为[-3,1).该不等式为二次式,且二次项的系数大于0,但方程的判别式对函数F ()x 和m 的取值有影响.于是采用分类讨论法,分△≥0和△<0两种情况讨论F ()x ≥0时m 的取值.虽然不等式恒成立问题的难度较大,但是我们只要掌握了解答此类问题的几个“妙招”,就能在解题时做到游刃有余.(作者单位:华东师范大学盐城实验中学)O47Copyright ©博看网. All Rights Reserved.。
例谈解答含参不等式恒成立问题的两个小措施
含参不等式恒成立问题常与函数、导数、平面几何、方程、不等式、三角函数等知识相结合,侧重于考查同学们的分析和逻辑思维能力.这类问题的难度往往比较大,很多同学经常不知该如何应对.事实上,我们只要选用恰当的方法,就能使问题迎刃而解.下面,谈一谈解答含参不等式恒成立问题的两个小措施.一、数形结合为了降低解答含参不等式恒成立问题的难度,我们可以采用数形结合法来解题.首先,将不等式进行适当的变形;然后,挖掘不等式中代数式的几何意义,如将y=ax+b看作一条直线,将y=()a-x2看作一条抛物线,将y=a x看作指数函数;再画出相应的几何图形,通过分析图形之间的位置关系、研究图形的几何性质,来建立使不等式恒成立的式子,从而使问题获解.例1.设函数f(x)=ìíîïï2-x-1,x≤0,x12,x>0,若f(a)>1恒成立,求a的取值范围.解:在同一坐标系中画出分段函数f(x)=ìíîïï2-x-1,x≤0,x12,x>0,以及直线y=1的图象,如图1所示.图1由图可知当a>1或a<-1时,函数f(x)的图象始终在y=1的上方,此时f(a)>1恒成立,所以a的取值范围为(-∞,-1)⋃(1,+∞).解答本题,主要运用了数形结合法.要使f(a)>1恒成立,只需使函数f(x)的图象始终在y=1的上方.于是根据函数f(x)的解析式,在同一平面直角坐标系内作出函数f(x)与直线y=1的图象,结合图形讨论两个图象的位置关系,便可顺利解题.例2.已知不等式()x-12<log a x对任意x∈()1,2恒成立,求实数a的取值范围.解:设y1=()x-12,y2=log a x,在同一坐标系中画出y1、y2的图象,如图2所示.x21)-x2=log a图2由图可知,在x∈()1,2时,y1=()x-12的图象始终在y2=log a x图象的下方,此时y1<y2,当x∈()1,2时,y1=()x-12∈()0,1,而在()1,2上,0<log a x<1,则0<y2<1,可得1<a≤2.故实数a的取值范围为(]1,2.本题若采用常规方法直接求解,比较复杂,借助图形可以更直观便捷地求得问题的答案.先将不等式两侧的式子看作两个函数解析式,并在同一平面直角坐方法集锦y=1 44。
解答含参不等式恒成立问题的几种思路
含参不等式恒成立问题一般较为复杂.仅运用不等式的性质,往往很难找到使不等式恒成立的条件,使问题顺利得解.这就需要采用不同思路,如变换主元、分离参数、分类讨论等来解题.下面结合实例来谈一谈解答含参不等式恒成立问题的三种思路.一、变换主元变换主元法是指将问题中主元、参数的位置互换,即将参数视为主元,将主元视为参数进行求解的方法.运用变更主元法解答含参不等式恒成立问题,需先找出所要求证不等式中的变量与参数,然后将两者进行互换,得到新不等式,根据新主元的取值或者限制条件,列出满足题意的不等式或不等式组,从而解题.例1.对于任意-1≤a ≤1,x 2+()a -4x +()4-2a >0恒成立,则x 的取值范围为_____.解:设f ()a =()x -2a +()x 2-4x +4,a ∈[]-1,1,则问题等价于在a ∈[]-1,1时,f ()a >0恒成立,由一次函数的性质可得ìíîf ()-1>0,f ()1>0,解题宝典即{x2-5x+6>0,x2-3x+2>0,解得x<1或x>3,所以实数x的取值范围为()-∞,1⋃()3,+∞.将x和a进行变换,把a看作主元,构造关于a的函数f()a,便可采用变更主元法来解题.很显然f()a为一次函数,根据一次函数的性质,要使f()a>0恒成立,只需使[]-1,1上的所有函数值都大于0,建立关于x的不等式组,即可解题.二、分离参数分离参数法是解答含参不等式恒成立问题的重要方法.运用分离参数法求解不等式恒成立问题,需先将不等式进行变形,使参数分离,得到形如a≤f()x、a<f()x、a>f()x、a≥f()x的式子,只要使a≤f()x min、a<f()x min、a>f()x max、a≥f()x max,就能确保不等式恒成立.在求f()x的最值时,往往可根据导数的性质、函数的单调性,或利用基本不等式.例2.已知函数f()x=-x ln x+a()x+1,若f()x≤2a在[)2,+∞上恒成立,求a的取值范围.解:当x≥2时,由f()x≤2a可得a≤x ln xx-1,令g()x=x ln xx-1,x≥2,则g′()x=-ln x-x+1()x-12,令t()x=ln x-x+1,x≥2,则t′()x=1x-1,当x≥2时,t′()x<0,故t()x在[)2,+∞上单调递减,可得t()x max=ln2-1<0,所以g′()x=-ln x-x+1()x-12>0,则函数g()x在[)2,+∞上单调递增,可得a≤g()x min=g()2=2ln2,所以a的取值范围为(]-∞,2ln2.首先将不等式进行移项、变形,使参数a分离,得到a≤g()x.对函数g()x求导,根据导函数与函数的单调性之间的关系判断出函数g()x的单调性,求得函数g()x min,即可运用分离参数法,确定参数a的取值范围.三、分类讨论含参不等式恒成立问题中参数的取值往往不确定,因而在求解含参不等式恒成立问题时,需灵活运用分类讨论法,对参数或某些变量进行分类讨论,从而求得问题的答案.而确定分类讨论的标准是解题的关键,可根据一元二次方程的判别式大于、等于、小于0进行分类讨论;也可根据二次函数的二次项系数大于、小于0进行分类讨论;还可根据导函数值大于、等于、小于0进行分类讨论.例3.设f()x=x2-2mx+2,当x∈[)-1,+∞时,f()x≥m恒成立,求参数m的取值范围.分析:首先将不等式f()x≥m转化为F()x=x2-2mx+2-m≥0.要使F()x≥0,需使该函数在x∈[)-1,+∞上恒大于或等于0.由于x2-2mx+2-m=0为一元二次方程,只需讨论方程在x∈[)-1,+∞上的根的分布情况.而方程的根的分布情况主要由判别式确定,所以需采用分类讨论法,对方程的判别式与0之间的大小关系进行讨论.解:设F()x=x2-2mx+2-m,则问题等价于当x∈[)-1,+∞时,F()x≥0恒成立,①当Δ=4()m-1()m+2<0,即-2<m<1时,F()x>0恒成立,②当Δ≥0时,ìíîïïΔ≥0,F()-1≥0,--2m2≤-1,即ìíîïï4()m-1()m+2≥0,m+3≥0,--2m2≤-1,解得-3≤m≤-2,综上所述,参数m的取值范围为m∈[)-3,1.采用分类讨论的思路来求解含参不等式恒成立问题,一般可将参数或与参数相关的量定为分类讨论的对象,再根据题意确定分类讨论的标准,逐层、逐级进行讨论,最后综合所得的结果即可.相比较而言,第一种思路的适用范围较窄;第二、三种思路较为常用,但第三种思路解题的过程繁琐,且运算量较大.因此在解题时,同学们可首先尝试将参数分离,将问题转化为最值问题来求解;若行不通,再考虑运用变更主元、分类讨论的思路.(作者单位:安徽省砀山第二中学)解题宝典41。
巧用“三招”,破解不等式恒成立问题
解题宝典不等式恒成立问题在各类试题中比较常见.此类问题的综合性较强,常与函数、方程、导数、直线与圆等知识相结合,是一类难度系数较大的问题.解答此类问题的方法也有很多,如分离参数法、构造函数法、数形结合法、导数法等.本文重点谈一谈破解不等式恒成立问题的“三招”:分离参数法、构造函数法、数形结合法.一、分离参数法分离参数法就是将不等式中的参数和变量分离的方法.在解题时,我们可以将不等式变形为a ≤f ()x 或a ≥f ()x 的形式,只要求得f (x )的最值,使a ≤f min ()x 或a ≥f max ()x ,便可使不等式恒成立,求得问题的答案.例1.若对任意x ∈[1,+∞),x 2+2x +a x>0恒成立,求实数a 的取值范围.解:由x 2+2x +a x>0在x ∈[1,+∞)恒成立可得x 2+2x +a >0,∴a >-x 2-2x ,而y =-x 2-2x 的曲线开口向下,在x ∈[1,+∞)上单调递减,∴-x 2-2x 的最大值为g ()1=1,∴a >1,故实数a 的取值范围为(1,+∞).我们先将不等式化简并将参数分离,将问题转化为求a >-x 2-2x 恒成立时a 的取值范围,求得y =-x 2-2x 的最大值,便可确定a 的取值范围.二、构造函数法分离参数法虽然是破解函数恒成立问题的一个重要方法,但有时把参数和变量分离出来后,我们依旧无法求出问题的答案.此时,可考虑运用构造函数法来解题:根据不等式的特点,构造出适当的函数模型,借助函数的性质来破解难题.例2.已知f (x )=ax 2+x -a ,a ∈R.若不等式f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的实数x ∈[-1,1]恒成立,求实数a 的取值范围.解:原不等式等价于x 2-2ax +2a +1>0对任意的实数x ∈[-1,1]恒成立,设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1(x ∈[-1,1]),①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,解a >-12,所以a ∈∅;②当-1≤a ≤1时,g (x )min =g (a )=-a 2+2a +1>0,解1-<a ≤1;③当a >1时,g (x )min =g (1)=1-2a +2a +1>0,解a >1.综上,a 的取值范围为(1-2,+∞).我们将不等式进行变形,构造出二次函数g (x ),通过讨论g (x )的最小值,从而确定a 的取值范围.由于g (x )的解析式中含有参数a ,g (x )的最小值随着a 的变化而变化,因此需要根据对称轴的位置对a 进行分类讨论,借助二次函数的单调性求得a 的取值范围.三、数形结合法运用数形结合法解答恒成立问题的关键是,根据代数式的特点和结构画出对应的图形,借助图形来分析问题,找到使不等式恒成立的图形或者点的位置,建立新的不等式,从而使问题获解.例3.不等式3x 2-log a x <0在x ∈(0,13)内恒成立,求实数a 的取值范围.解:由3x 2-log a x <0可得3x 2<log a x ,在同一坐标系中画出y =3x 2与y =log a x 的图象,如图所示.当x ∈(0,13)时,y =log a x 的图象位于y =3x 2的上方,故当a >1时不成立,0<a <1.由图可知,y =log a x 的图象必过点(13,13),或在此点的上方,所以log a 13≥13,a ≥127,解得,127≤a <1.数形结合法常用于解答方便或者易于绘制图形的问题.对于形如f ()x -g ()x <(>)0的不等式恒成立问题,我们一般采用数形结合法来求解.只要在同一坐标中画出它们的图象,找出两个图象的临界位置或者点,便能快速找到问题的答案.不等式恒成立问题与函数、方程之间关系紧密,因此在解题时,我们要合理将不等式进行变形,根据其特点、结构合理构造函数、方程,学会借助函数的图象和性质、方程的性质来解题.同时,要灵活运用数形结合思想和转化思想来辅助解题.(作者单位:江苏省无锡市第三高级中学)”,40Copyright©博看网 . All Rights Reserved.。
含参不等式恒成立
“含参不等式恒成立问题”一般求解策略:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ; 2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a 二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔2)a x f <)(恒成立max )(x f a >⇔三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值,但它思路更清晰,操作性更强。
一般地有:1)为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔2)为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔四、数形结合法1)⇔>)()(x g x f 函数)(x f 图象恒在函数)(x g 图象上方;2)⇔<)()(x g x f 函数)(x f 图象恒在函数)(x g 图象下上方。
五、变换主元法例1.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为: ⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值范围为)1,3[-。
数学不等式的恒成立问题的解决方法
数学不等式的恒成立问题的解决方法下面和小编一起来看看高中数学不等式的恒成立问题的解决方法。
1、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例1已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数. (Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围. 解析:由题意知,函数在区间上是减函数. 在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.2、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.3、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围. 解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x,不等式│x+1│+│x-2│>a恒成立,求实数a的取值范围分析①:把左边看作x的函数关系,就可利用函数最值求解. 解法1:设f(x)=│x+1│+│x-2│ =-2x+1,(x≤1)3,(-12) ∴f(x)min=3. ∴a<3.分析②:利用绝对值不等式│a│-│b│<│a±b│<│a│+│b│求解f(x)=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).点评:求"恒成立问题"中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象. 从图象上直观得到04、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例如;例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.评注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
含参不等式恒成立问题
含参不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
高考数学解决不等式恒成立问题常用5种方法!最后一种很重
要!
方法一:分离参数法
解析:分离参数法适用的题型特征:
当不等式的参数能够与其他变量完全分离出来,
并且分离后不等式其中一边的函数的最值或范围可求时,
则将参数式放在不等式的一边,分离后的变量式放在另一边,
将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,
若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min 方法二:变换主元法(也可称一次函数型)
解析:学生通常习惯把x当成主元(未知数),
把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,
则可简便解题。
适用于变换主元法的题型特征是:
题目有两个变量,
且已知取值范围的变量只有一次项,
这时就可以将不等式转化为一次函数求解。
方法三:二次函数法
解析:二次函数型在区间的恒成立问题:解决这类问题主要是分
析
1,判断二次函数的开口方向
2,二次函数的判别式是大于0还是小于0
3,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性
方法四:判别式法
解析:不等式一边是分式,
且分式的分子和分母的最高次项都是二次项时,
利用判别式法可以快速的解题,
分离参数将会使解题变得复杂。
方法五:最值法
解析:不等式两边是两个函数,
且含有参数时,我们可以分出出参数,
构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
破解含参不等式恒成立的5种常用方法
含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法
分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,
1]上恒成立,即⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈
x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为4
3-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法
数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
例2 当)2,1(∈x 时,不等式042>++mx x 恒成立,求的取值范围。
分析:设4)(2++=mx x x f ,问题就等价于函数)(x f 的图象在区间(1,2)上的部分位于轴上方,结合二次函数的图象,根据二次函数的性质就可以列出所满足的不等式关系。
解析:设4)(2++=mx x x f ,因为当)2,1(∈x 时,不等式042>++mx x 恒成立,
即等价于在区间(1,2)时,函数)(x f 的图象位于x 轴上方。
函数)(x f 的图象的对称轴方程是x =.2m -
(1) 当.2
m -1≤,即2-≥m 时,)(x f 在区间(1,2)上单调递增,只要0)1(≥f 、即可,,5)1(+=m f 得,5-≥m 与2-≥m 取交偏大得2-≥m ;
(2) 当2.21<-
<m ,即-4<同<-2时,只要0)(min >x f 即可,,44)2()(2min +-=-=m m f x f 由044
2>+-m 时得—4,44<<-m 与24-<<-m 取交集得24-<<-m 。
(3) 当,22
≥-m 即4-≤m 时,)(x f 在区间(1,2)上单调递递减,只要0)2(≥f 即可,,82)2(+=m f 得4-≥m ,与4-≤m 取交集得4-=m 。
综合(1)(2)(3),得4-≥m 。
【点评】二重要的次函数在指定区间上的性质是我们解决这个问题的理论根据,它也是高中阶段最重要的一个问题,望考生充分重视二次函数在高中数学中的应用。
三.单调性分析法
对于不等号一边的表达式,如果是二次函数,可以通过数开结合讨论函数的单调性,根据单调性找到函数值变化情况,但对于较为复杂的函数,只通过数形结合已经不能确定函数的变化情况,在这类中,就要借助导数,分析函数的单调性,通过单调性的分析确立函数值的变化情况,找到参数满足的不等式。
例3.已知函数)0,(123)(23>∈+-=a R x x ax x f 其中。
若在区间[2
1,21-]上,0)(>x f 恒成立,求a 的取值范围。
解析:).1(333)(2-=-='ax x x ax x f 令0)(='x f ,解得或0=x a
x 1=,以下分两种情况讨论:
(1) 若2
11≥a 则20≤<a ,当x 变化时,)(),(x f x f ' 的变化情况如下表
当∈x [2
1
,21-]时,0)(>x f。