高一数学必修四作业本答案

合集下载

高一数学必修四作业本答案:第三章

高一数学必修四作业本答案:第三章

高一数学必修四作业本答案:第三章以下是小编为大家整理的关于《高一数学必修四作业本答案:第三章》的文章,供大家学习参考!第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式1.D.2.A.3.D.4.6+24.5.cos_-π6.6.cos_.7.-72_.8._1-m2+32m.9.-2732._.cos(α-β )=1.提示:注意-1≤sinα≤1,-1≤sin β ≤1,可得cosα=cosβ=0._.AD=6_3.提示:设∠DAB=α,∠CAB=β,则tanα=32,tanβ=23,AD=5cos(α-β).3.1.2两角和与差的正弦、余弦、正切公式1.A.2.B.3.C.4.2cos_+π6.5.62.6.a2+b2,ba2+b2,aa2+b2.7.-32+36.8.725.9._-36._.sin2α=-5665.提示:2α=(α+β )+(α-β ). _.tan∠APD=_.提示:设AB=1,BP=_,列方程求出_=23,再设∠APB=α,∠DPC=β,则tanα=32,tanβ=34,而∠APD=_0°-(α+β ).3.1.3二倍角的正弦、余弦、正切公式1.C.2.C.3.D.4.sinθ2-cosθ2或2sinθ2-π4.5.-36.6.-2cosθ2.7.336625.8._tan_°.提示:乘以8sin_°8sin_°.9.-_._.α+2β=3π4.提示:tan2β=_5,2β也为锐角._.tan2α=-34.提示:3α=2α+α,并注意角的范围及方程思想的应用.3.2简单的三角恒等变换(一)1.B.2.A.3.C.4.sin2α.5.1.6._.7.提示:利用余弦二倍角公式.8.2m4-3m2.9.提示:利用sin2θ2+cos2θ2=1. _.2-3.提示:7°=_°-8°._.[-3,3].提示:令cosα+cosβ=t,利用|cos(α-β)|≤1,求t的取值范围.3.2简单的三角恒等变换(二)1.C.2.A.3.C.4.π2.5.[-2,2].6.-_.提示:y=_cos2_.7.周期为2π,值为2,最小值为-2.8.kπ+π8,kπ+5π8(k∈Z).9.(1,2]._.y=2sin2_-π6-1,值为1,最小值为-3,最小正周期为π._.定义域为_∈R_≠kπ+π2,k∈Z,值域为[-2,2].提示:y=2sin2__≠kπ+π2(k∈Z).3.2简单的三角恒等变换(三)1.B.2.D.3.A.4.90°.5.1_;π2.6.2.7.-7.8.5-_,5+_.9.1.提示:“切”化“弦”._.Sma_=4.提示:设∠AOB=θ._.有效视角为45°.提示:∠CAD=α-β,tanα=2,tanβ=_.单元练习1.D.2.C.3.B.4.D.5.B.6.B.7.B.8.B.9.A._.D._.a1-b._.725._._65._.4._.-6772._.-2+3_._.0._.-tanα._.2_5._._25.提示:α-2β=(α-β)-β,且0<α-β<π._.提示:1-cos2θ=2sin2θ._.(1)f(_)=3+4cos2_+π3,最小正周期为π.(2)[3-23,7].综合练习(一)1.D.2.C.3.B.4.A.5.A.6.D.7.A.8.D.9.C._.C_._._.0._.(3,5)._.2sin1._.41._.2π._.②③._.提示:AB=a+3b,AC=_a+b._.(1)-_.(2)-83._.(1)θ=45°.(2)λ=-1._.6365或-3365.提示:cosα=±45._.sin2α=-2425;cosβ=-3+43_.提示:β=2kπ+α+π3(k∈Z).综合练习(二)1.A.2.D.3.D.4.A.5.C.6.D.7.D.8.B.9.C._.C._.2kπ-5π6,2kπ+π6(k∈Z)._.1_._.(1,-1)._.1._.5∶1._.锐角._.π6或2π3._.33-4_._.∠ABC=45°.提示:利用向量._.(1)-_25.(2)-75._.OD=(_,6).提示:设OD=(_,y),列方程组._.(1)单调递增区间:23kπ+π6,23kπ+π2(k∈Z),单调递减区间:23kπ+π2,23kπ+5π6(k∈Z).(2)-_,1.高一数学必修四作业本答案:第三章.。

高一数学必修四课后习题答案

高一数学必修四课后习题答案

高一数学必修四课后习题答案小编寄语:高一数学的学习需要大家多做练习,并要及时进行参考练习答案,发现自己的问题,及时进行改正。

这样才能加深自己对知识的掌握。

让自己学习的效果更好。

为促进大家学习能力的提高,小编为大家提供高一数学必修四课后习题答案,供大家参考。

舟it:•誕輕fim饨弟見制二数凯績’郁二卑醍和不―定是悅侑・Zr _ J. * .:* 』L"VIH 木曲的11憫址郴爰山OIHl的他的符心倉斥廉用弭〕Utw翩性闫・H.・恵|1取霰实际・ICffH刖惭就收:冋膜成姐个甲剔的成枚了.輯川r 比屮金數於:讣嵐晞定"犬氐1 k丈杓也•• iA*r的瞅打卓"fWUff・3. fi> (21述闪氟限仙;仁门述:戲PHHn CM訥说叨陀作出賂址的仙・nm理蛰®儿銘限仙.圏略”1. (U :阳陳・稱网ftllUflh 42)3SV.幫毀Wflh C3>麹巾叭第•:繼做弘说朗施花盼工池M内找出*祈楚的阳件迪桶制的加・仲M疋址邯儿備執则・乩U》丨“ I申常價+ k*酗代1pfi,d2,t 1^12\ 滋矿1心(2»审丨/i 却亍"・冊讥teZ:-. 5B克■- 225\ 135:K«川星介衣业认和符环讲肯吋亦勺畅逬他決曲柏屈的输的躍令.片代输建他IK内ttiirittitftt缶⑴ 3M 皿样巧(2J > |(r=-|+*n f^/L\,说明川羅匮粗缶啡性血仆别R f軸和I N轴上的僻的里許.4.. (I)艸寻U 7S" J<XIM IK祐乍(23 EIF l・ J"" =7 Inti I. 2.说明弹於同敕吐冬隔小徴卿ffHl用的:能不斶*丼进-毎』说曲棹m苗;H・泄恳机用{诵髓求/倆典帧之谕■中用的枫式蹈咸沒如求用“•希之瓠啖4M麵虫设??沟悄:「5也曲X术“刈仇陆龙F陷>j KArxHrffMl.说朝通竝井划込川血厦》i艸覺皿制卜■的*磴住成・体;rHASH腹;W的恋歿ft恳习|•爭页】说朗牡逬iHLm飙也的检乳一Z CIJ 15\ <Z> 21V*1血明傕豳滦质讽的檢样・高一数学必修四课后习题答案下载相关文章>>高一数学必修四课后习题答案高一数学必修4向量课件大全高一数学必修4课后参考答案高一数学必修4知识点总结。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、33AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD同向的共有3对,与AD 反向的也有6对;模的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g . 练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km; (3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =, 34EC b =,1()8DN b a =-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即∥.因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,3)AP x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2AC AB ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)OC OA AC =+=,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)OB OB '==-,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=- 习题 B 组(P101)1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP =(2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-=,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=- 2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==()cos a b a b λλθ⋅=()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx⎧+=⎪⎨=⎪⎩,解得5x y⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-=而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.cos ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =.2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d v θ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y =--. (2,22)AB =-.将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =;(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=.(第4题)6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b+=+=++⋅,222()2a b a b a b a b -=-=+-⋅.因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-. 再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所(第3题)(第6题)示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =P 2(第5题)第三章 三角恒等变换3.1两角和与差的正弦、余弦和正切公式 练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=.cos(2)cos2cos sin2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-+=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==又由33cos ,(,2)42πββπ=∈,得sin β==所以32cos()cos cos sin sin ((()43βαβαβα-=+=⨯+⨯-=. 练习(P131)1、(1; (2) (3(4)2 2、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4);(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-;(6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+;(2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+;(3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-;(4)原式=12(cos )cos sin sin )cos()2333x x x x x πππ=-=+.7、解:由已知得3sin()cos cos()sin 5αβααβα---=,即3sin[()]5αβα--=,3sin()5β-=所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-.因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=. 练习(P135)1、解:因为812παπ<<,所以382αππ<<又由4cos 85α=-,得3sin 85α=-,3sin385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-=2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---=2232tan23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--=3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α=,所以sintan (2)cos ααα==-= 4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题 A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-;(2)333sin()sin cos cos sin 1cos 0sin cos 222πππαααααα-=-=-⨯-⨯=-;(3)cos()cos cos sin sin 1cos 0sin cos παπαπαααα-=+=-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===,所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-+⨯=6、(1); (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β==.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sinα== ∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 的方程2(1)10x p x +++=,即210x px p +++=的两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===---- 1tan tan1142tan()1431tan tan 1()142πθπθπθ+-++===-⋅--⨯ ∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-=由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+.在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=.于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4)提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅= 2cos50sin100sin501cos10cos10︒︒=︒⋅==︒︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-=+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π21;(2)()f x 在[,]22ππ-上的图象如右图:12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示的三角函数式的值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。

人教版本高中数学必修4课后练习习题答案.docx

人教版本高中数学必修4课后练习习题答案.docx

第二章平面向量2.1 平面向量的实际背景及基本概念练习(P77)uuur uuur2、AB,BA .1、略 .这两个向量的长度相等,但它们不等 .uuur uuur uuur uuur3、 AB 2 , CD 2.5 , EF 3 , GH 2 2 .4、(1)它们的终点相同;(2)它们的终点不同 .习题 A 组( P77)1、( 2) .uuur uuuruuur uuur uuur uuur3、与 DE相等的向量有: AF , FC ;与 EF 相等的向量有: BD , DA ;uuur uuur uuur与FD 相等的向量有: CE , EB .r uuur uuur uur r uuuur uuur4、与 a 相等的向量有:CO, QP, SR;与 b 相等的向量有:PM , DO ;r uuur uuur uuur与c 相等的向量有: DC , RQ, STuuur3 3 .6、(1)×;(2)√;(3)√;(4)× .5、 AD2习题 B 组( P78)1、海拔和高度都不是向量 .2、相等的向量共有24 对.模为 1 的向量有uuuur18 对 . 其中与 AM 同向的共有 6uuuur uuur uuur6 对;模对,与 AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有为 2 的向量共有 4 对;模为 2 的向量有 2 对2.2 平面向量的线性运算练习(P84)1、图略 .2、图略 .3uuur uuur 、(1) DA ;(2) CB .r ur ur ur 4、(1) c ;( 2) f ;(3) f ;(4) g .练习(P87)1、图略 .2uuur uuur uuur uuur uuur3、图略.、 DB , CA , AC , AD , BA .练习(P90)1、图略 .uuur5 uuur uuur2 uuur2、AC AB , BC AB .77uuur 说明:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是BCuuur与 AB 反向 .r r r7 rr 1rr8r3、(1) b2a ;(2)b4a ;(3)b a ;(4)b a .4、(1)共线;(2)共线 .29r r( 2)11r1rr、图略 .5、(1) 3a2b ;12a b ;(3) 2 ya .63习题 A 组( P91)1、(1)向东走 20 km;(2)向东走 5 km;( 3)向东北走 10 2 km;(4)向西南走 5 2 km;( 5)向西北走 10 2 km;( 6)向东南走 102 km.2、飞机飞行的路程为700 km;两次位移的合成是向北偏西 53°方向飞行 500 km.3、解:如右图所示:uuur uuurAB 表示船速, AD 表示河水的流速,以 AB 、 AD 为邻边作□ ABCD ,则uuurAC 表示船实际航行的速度 .uuur uuur在 Rt△ ABC中, AB8 , AD 2 ,uuuruuur 2 uuur 2222 17所以 ACAB AD82 因为 tanCAD 4 ,由计算器得 CAD76所以,实际航行的速度是 2 17 km/h ,船航行的方向与河岸的夹角约为 76°.r uuur uuur r r uuur4、(1) 0 ; ( 2) AB ; ( 3) BA ; (4) 0 ; (5) 0 ; ( 6) CB ; (7)r 0 .5、略6、不一定构成三角形 . 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形 .7、略 .8 、(1)略;r r r r r r(2)当 ab 时, aba brrrrrr 1rr9、(1) 2a 2b ; ( 2)10a 22b10c ; ( 3)3ab ;(4)2( x y)b .r r ur r ruruur r r uruur 210、 a b 4e 1 , a be 1 4e 2 , 3a2b3e 1 10e 2 .uuurr uuur r 11、如图所示, OCa , ODb ,uuur r r uuur r r DC ba , BC ab .uuur 1ruuur rr uuur1 r r uuur 3 r12、 AEb , BCba , DE4 (b a) , DBa ,41 uuuur1 r4uuur 3ruuur 1 rruuurrECb , DN8 (ba) , AN4 AM(ab) .4813、证明:在 ABC 中, E, F 分别是 AB, BC 的中点,(第 11 题)所以 EF / / AC 且 EF1AC ,uuur 1 uuur 2即 EF 2 AC ;1 uuuruuur同理, HGAC ,2uuur uuur所以 EF HG .习题 B 组( P92)1、丙地在甲地的北偏东 45°方向,距甲地 1400 km.(第 12 题)(第 13 题)r r2、不一定相等,可以验证在 a,b 不共线时它们不相等 .uuuur uuur uuuur uuur1 uuur uuuur 1 uuur3、证明:因为 MN AN AM ,而 ANAC , AMAB ,3 3(第 1 题)uuuur1 uuur 1 uuur 1 uuuruuur1 uuur所以 MNACAB(ACAB)BC .3 3 334、(1)四边形 ABCD 为平行四边形,证略(2)四边形 ABCD 为梯形 .uuur1 uuur证明:∵ ADBC ,3∴ AD / /BC 且 AD BC ∴四边形 ABCD 为梯形 .(3)四边形 ABCD 为菱形 .uuur uuur证明:∵ AB DC ,(第 4 题 (2) )∴ AB / /DC 且 AB DC∴四边形 ABCD 为平行四边形uuur uuur 又 AB AD ∴四边形 ABCD 为菱形 .5、(1)通过作图可以发现四边形 ABCD 为平行四边形 .(第 4 题(3) )uuur uuur uuur uuur uuur uuur 证明:因为 OA OB BA , OD OC CDuuur uuur uuur uuur 而 OA OC OB ODuuur uuur uuur uuur所以 OA OB OD OCuuur uuur所以 BA CD ,即 AB ∥ CD .(第 5 题)因此,四边形 ABCD 为平行四边形 .2.3 平面向量的基本定理及坐标表示 练习(P100)r r r r ( 7, 2) ;r r r r(7, 5) ; 1、(1) a b (3,6) , a b (2) a b(1,11), a b r r r r(4,6)r rr r(3, 4) .(3) a b (0,0) , a b ;(4) a b(3,4) , a brr ( 6, 8) , r r (12,5) .2、 2a4b 4a 3buuur (3,4) uuur ( 3, 4)uuur (9, uuur( 9,1)3、(1) AB , BA ;(2) AB 1) , BA;uuur uuur(0, 2) ;uuuruuur( 5,0)(3) AB (0, 2) , BA(4) AB(5,0) , BA4、 AB ∥ CD .uuur(1,uuur(1,uuur uuur证明: AB1) ,CD 1) ,所以 AB CD . 所以 AB ∥CD .、 (10,1) 或 (14, 1)5、(1) (3, 2) ;( 2) (1,4) ;(3) (4, 5) .633uuur3 uuur uuur3 uuur 7、解:设 P( x, y) ,由点P在线段AB的延长线上,且AP PB ,得 AP PBuuur uuur22 ( x, y)(2,3)( x2, y3)3)(x, y)(4 x, 3 y) AP, PB (4,x23(4x)32∴ ( x2, y3)3y)∴(4 x,32y3(3y)2x8,所以点 P 的坐标为(8, 15) .∴y15习题 A组( P101)1、(1) ( 2,1) ;(2) (0,8) ;(3) (1,2) .说明:解题时可设 B(x, y) ,利用向量坐标的定义解题 .uur uur uur2、F1F2F3 (8,0)uuur( 1, 2)uuur(53,6(1)) (2,7)3、解法一: OA, BCuuur uuur uuur uuur uuur uuur uuur(1,5) .所以点 D 的坐而 AD BC , OD OA AD OA BC标为 (1,5) .uuur( x(1), y( 2))( x1, y2)解法二:设 D ( x, y) ,则 AD,uuur(53,6(1))(2,7)BCuuur uuur可得,x12由 AD BCy2,解得点 D 的坐标为(1,5) . 7uuur uuur(2,4).4、解: OA(1,1), ABuuur1 uuur(uuur uuur uuur1uuur(1, 2).AC AB1,2) ,AD 2 AB( 4,8) ,AE2AB2uuur uuur uuur(0,3) ,所以,点C的坐标为 (0,3) ;OC OA ACuuur uuur uuur(3,9) ,所以,点D的坐标为 (3,9) ;OD OA ADuuur uuur uuur(2,1) ,所以,点E的坐标为 (2,1). OE OA AEr r(x,6) ,所以23,解得 x4.5、由向量 a,b 共线得 (2,3)x6uuur uuur(8,uuur uuur uuur uuur6、 AB(4, 4) , CD8) , CD 2 AB ,所以 AB 与 CD 共线 .uuur uuur(2, 4),所以点 A 的坐标为(2, 4);7、 OA2OAuuur uuur(3,9)B( 3,9)OB3OB,所以点的坐标为;故uuuur3,9) (2, 4)(5,5)A B (习题 B组( P101)uuur(1,2)uuur(3,3) .1、 OA, AB当 tuuur uuur uuur uuur1时,OP OA AB OB (4,5) ,所以 P(4,5) ;当 t 1uuur uuur1 uuur(1,2)(3,3)(5,7),所以 P(5,7) ;时, OP OA AB22222222当 tuuur uuur uuur(1,2)(6,6)(5,4) ,所以 P(5,4) ;2 时,OP OA2AB当 tuuur uuur uuur(6,6)(7,8),所以 P(7,8) .2 时,OP OA 2 AB (1,2)uuur(4,uuur uuur uuur2、(1)因为 AB6) , AC(1,1.5) ,所以 AB 4 AC ,所以A、B、C三点共线;uuur(1.5,2)uuur(6,uuur uuur(2)因为 PQ, PR8) ,所以 PR4PQ ,所以P、 Q 、R三点共线;uuur(8,4)uuur( 1,uuur uuur(3)因为 EF, EG0.5) ,所以 EF8EG ,所以E、F、G三点共线 .ur uur r ur uur3、证明:假设10 ,则由1e1 2 e20 ,得e12 e2 .1ur uur ur uur所以 e1 ,e2是共线向量,与已知 e1,e2是平面内的一组基底矛盾 ,因此假设错误,10.同理20.综上120 .uuur uuur ur uur4、( 1) OP19 .(2)对于任意向量OP xe1ye2, x, y 都是唯一确定的,所以向量的坐标表示的规定合理 .2.4 平面向量的数量积练习(P106)ur r ur rcos ur r8 6124.1、p q p q p, qr r 2r r0ABC 为直角三角形.2、当 a b 0 时,ABC 为钝角三角形;当a b时,3、投影分别为 3 2 ,0, 3 2 . 图略练习(P107)r( 3)242r52 22r r3 54 27 .1、 a 5 , b29 , a br r 8 r r r rr r rr r49 .2、 a b , (a b)(a b)7 , a (b c)0 , (a b)2r r r r74 , 88 .3、 a b 1, a 13 , b习题 A 组( P108)r rr r r 2 r r r 2rr25 12 3 .1、 a b6 3 , (a b)2 a2a b b 25 12 3 , a buuur uuur uuur uuur20 .2、 BC 与 CA 的夹角为 120°, BC CAr rr 2 r r r 2r rr 2 r r r 2 35 .3、 a ba 2ab b23 , a ba 2ab br r4、证法一:设 a 与 b 的夹角为 .( 1)当0 时,等式显然成立;( 2)当0 时, r r r ra 与b , a 与 b 的夹角都为 ,r r r r r r所以( a) b a b cos a b cosr r r r( a b)a b cosr ( r r r r ra b)a b cosa b cos所以 (r r r r r ( ra) b (a b)a b) ;( 3)当0 时, r r r ra 与b , a 与 b 的夹角都为 180,则 ( r r r r ) r ra) b a b cos(180 a b cosr rr r r r( a b) a b cosa b cosr r r r )r r a ( b) ab cos(180a b cos所以 (r r r r r ( ra) b (a b)a b) ;综上所述,等式成立 .r r证法二:设 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,r r那么 ( a) b ( x 1 , y 1 ) ( x 2 , y 2 ) x 1 x 2 y 1 y 2r r( a b) ( x 1 , y 1 ) ( x 2, y 2 ) ( x 1 x 2 y 1 y 2 ) x 1x 2y 1 y 2r ra ( b) (x 1, y 1 ) ( x 2 , y 2 )x 1x 2y 1 y 2所以 (r r r r r r a) b( a b) a ( b) ;5、(1)直角三角形, B 为直角 .uuur( 1, 4) (5, 2)( 6, 6) uuur(3, 4) (5, 2)( 2,2)证明:∵ BA , BC uuur uuur 6 ( 2)( 6) 2 0∴ BA BCuuur uuur B 为直角, ABC 为直角三角形∴ BABC ,(2)直角三角形, A 为直角uuur (19,4) ( 2, 3) (21,7) uuur( 1, 6) ( 2, 3) (1, 3)证明:∵ AB , ACuuur uuur∴ AB AC 21 1 7 ( 3) 0uuur uuurA 为直角,ABC 为直角三角形∴ AB AC ,(3)直角三角形, B 为直角uuur (2,5) (5, 2) (uuur (10,7) (5, 2)(5,5)证明:∵ BA 3,3) , BC uuur uuur3 5 3 5 0∴ BA BCuuur uuurB 为直角, ABC 为直角三角形∴ BABC , 6、 135 . 7、120 .r r r r r 2 r r r 2 r r 6 ,(2a 3b)(2 a b) 4a 4a b 3b 61 ,于是可得 a br r 1cosa b120 .r r,所以a b28、 cos23 , 55 .40uuur(5, 2) (1,0) (4,uuur(8, 4) (5, 2) (3,6) ,9、证明:∵ AB 2) , BCuuur(8, 4)(4,6) (4, 2)DCuuur uuur uuur uuur43 ( 2) 6∴ AB DC , AB BC∴ A, B,C , D 为顶点的四边形是矩形 .r( x, y) , 10、解:设 ax 2y 2 9x3 5 x3 5 则y ,解得5 ,或 5 . x6 56 5 2yy55rr于是 a (3 5,6 5 ) 或 a ( 3 5 , 6 5 ) .5 55 5r r(x, y) ,11、解:设与 a 垂直的单位向量 e则 x2y 2 1x5或 x5,解得 55 . 4x2 y 0y2 5 2 55 y 5r 5 ,r 5 , 2 5) . 于是 e (2 5 ) 或 e (5555习题 B 组( P108)r r r r r r r r 0r r r 0r r r 1、证法一: a b a ca b a ca (b c)a(b c)r r r ( x 3 , y 3 ) .证法二:设 a ( x 1 , y 1) , b ( x 2 , y 2 ) , cr r r rr r r 先证 a b a ca(b c)r rr ra b x 1 x 2y 1 y 2 , a c x 1 x 3 y 1 y 3r r r r由a ba c得x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3,即x 1( x 2 x 3 ) y 1 ( y 2 y 3) 0r r r r r 而 b c ( x 2 x 3 , y 2 y 3 ) ,所以 a (bc) 0rr r r r r r 再证 a(b c)a ba cr r r 0 得 x 1 (x 2由 a (b c)x 3 ) y 1( y 2y 3 ) 0 ,r r r r即 x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3 ,因此 a b a cuuur uuur2、 cos AOBOA OB cos cos sin sin. uuur uuurOA OBr r(c, d) .3、证明:构造向量 u(a,b) , vr r r r r rbd a2b2c2 d 2r ru v u v cos u,v ,所以ac cos u, v∴ (ac bd )2(a2b2 )(c2r r( a2b2 )( c2 d 2 ) d 2 ) cos2 u, vuuur uuur4、 AB AC 的值只与弦AB的长有关,与圆的半径无关 .证明:取 AB 的中点 M ,连接 CM ,则 CMuuuur 1 uuurAB , AM AB2uuuuruuur uuur uuur uuurBAC AM又 AB AC AB AC cos BAC ,而uuurACuuur uuur uuur uuuur1uuur 2所以 AB AC AB AM2AB(第 4 题)uuur2uuur 2 5、(1)勾股定理:Rt ABC 中,C uuur 290 ,则CA CB ABuuur uuur uuur证明:∵ AB CB CAuuur 2uuur uuur uuur 2uuur uuur uuur 2∴ AB(CB CA)2CB2CA CB CA .uuur uuur由 C 90 ,有 CA CB ,于是CA CB 0uuur 2uuur2uuur2∴ CA CB AB(2)菱形ABCD中,求证: AC BDuuur uuur uuur uuur uuur uuur证明:∵ AC AB AD, DB AB AD ,uuur uuur uuur uuur uuur uuur uuur 2uuur 2∴ AC DB ( AB AD ) ( AB AD)AB AD .∵四边形 ABCD 为菱形,∴ ABuuur 2uuur 20 AD ,所以AB ADuuur uuurBD ∴ AC DB 0 ,所以AC(3)长方形ABCD中,求证:AC BD证明:∵ 四边形 ABCD 为长方形,所以 ABuuur uuur0 AD ,所以AB ADuuur 2uuur uuur uuur 2uuur 2uuur uuur uuur 2.∴ AB2AB AD AD AB2AB AD ADuuur uuur uuur uuur uuur2uuur 2BD ∴ ( AB AD )2 ( AB AD )2,所以 AC BD ,所以AC (4)正方形的对角线垂直平分 . 综合以上( 2)( 3)的证明即可 .2.5 平面向量应用举例习题 A 组( P113)1、解:设 P( x, y) , R( x 1 , y 1)uuur uuur则 RA (1,0) ( x 1 , y 1) (1 x 1, y 1) , AP (x, y) (1,0)( x 1,0)uuur uuury 1 ) 2( x 1, y) ,即x 1 2x 3由 RA 2AP 得 (1 x 1 , y 12 y代入直线 l 的方程得 y2x .所以,点 P 的轨迹方程为 y2x .2、解:(1)易知,OFD ∽ OBC , DF1BC ,22所以 BO .BF32 uuur1rr 1uuuruuur uuurr2 rrrAOBOBABFa( ba) a(ab)1r33 23uuurr(2)因为 AE(ab)2(第 2 题)uuur2 uuurAO 2所以 AOAE ,因此 A,O, E 三点共线,而且OE3同理可知:BO2, CO2 ,所以AOBOCO 2r uuruurOFODOE OFOD( 2,7) ;3、解:(1) v v B v Ar uurr uur v v A 13 .(2) v 在 v A 方向上的投影为 uurv A 5(第 4 题) uur uur ur ur uur4、解:设 F 1 , F 2 的合力为 F , F 与 F 1 的夹角为 ,ur 30 uur uur uur则 F 3 1, ; F 3 3 1, F 3 与 F 1 的夹角为 150°. 习题 B 组( P113)uuruuruur1、解:设 v 0 在水平方向的速度大小为 v x ,竖直方向的速度的大小为v y ,uur uur uur uur.则 v x v 0 cos , v y v 0 sin设 在 时 刻 t时 的 上 升 高 度 为 h , 抛 掷 距 离 为 s , 则uur1gt,( g 为重力加速度 )hv 0 t sinuur2sv 0 t cosuur 2uur 2v 0 sin 2,最大投掷距离为 v 0 sin 2.所以,最大高度为2ggur uur r uur r2、解:设v1与v2的夹角为,合速度为v,v2与 v 的夹角为,行驶距离为 d .ur r则 sin v1sin10sin, d0.5v d1.r rsin.∴ r20sin v v20sin v所以当90 ,即船垂直于对岸行驶时所用时间最短.3、(1)(0, 1)uuur( x 1, y 2) .uuur(2, 22) .解:设 P(x, y) ,则 AP ABuuur uuur7将 AB 绕点A沿顺时针方向旋转到 AP ,相当于沿逆时针方向旋转到44uuurAP ,uuur(727727) (1, 3)于是 AP 2 cos 2 sin, 2 sin 2 cos4444所以x11,解得 x0, y1 y233( 2)y2xuuur后,点 P 的坐解:设曲线 C 上任一点P的坐标为 ( x, y) , OP 绕 O 逆时针旋转4标为 (x , y )x x cos ysin x 2( x y)则44,即2y x sin4y cos y2( x y) 42又因为 x 2y 2 3 ,所以1( x y) 21( x y) 2 3 ,化简得 y3 222x第二章复习参考题 A 组( P118)1、(1)√;(2)√;( 3)×;(4)× .2、(1) D ;(2) B ;(3) D ;( 4)C;( 5) D ;(6) B .uuur 1 r r uuur 1r r3、AB(a b) , AD( a b)22uuur uuur uuur uuur 2 r 1 r4、略解:DE BA MA MB a b33uuur 2 r 2 r uuur 1 r 1 rAD a b , BC a b3333uuur 1 r 1 r uuur uuur 1 r 2 rEF a b , FA DC a b3333(第 4 题)uuur 1 r2ruuur 2r1rCD a b , AB a b 3333 uuur r rCE a buuur(8,8)uuur8 2 ;5、(1)AB, ABuuur(2,uuur(8,8) ;uuur uuur33 .(2)OC16) , OD(3)OA OBuuur uuur6、AB与CD共线 .uuur uuur uuur uuur uuur uuur 证明:因为 AB (1,1) , CD(1, 1) ,所以 AB CD .所以 AB 与 CD 共线.7、D(2,0) .8、 n 2 .9、1,0 .3,cos B0,cos C 410、cos A55r ur ur r ur ur 22cos60r ur ur11、证明:(2 n m)m2n m m 1 0 ,所以 (2n m)m .12、 1 .13r r r r1.14、 cos5,cos19、 a b13 , a b820第二章复习参考题 B 组( P119)1、(1) A;(2)D;(3)B;(4)C;(5)C;(6)C;(7)D .r r r r r r2、证明:先证a b a b a b .r r r r r 2r 2r ra b( a b) 2a b2a b,r r r r r2r2r ra b( a b)2a b2ab .r r r r0r r r 2r 2r r因为 a b ,所以 a b,于是 a b a b a b .r r r r r r再证 a b a b a b .r r r 2r r r 2r r r 2r r r 2由于 a b a2a b b, a b a2a b br r r r r r r r由 a b a b 可得 a b0 ,于是 a br r r r r r【几何意义是矩形的两条对角线相等】所以 a b a b a b .r r r ur3、证明:先证a b c dr ur r r r r r2r2c d(a b) (a b)a b(第 3 题)r r r ur 0 r ur又 ab ,所以cd ,所以 c drur r r 再证 cdab .r urr ur r rr r r 2 r 2 0由 cd 得 c d 0 ,即 (a b)(a b)abrr所以 ab【几何意义为菱形的对角线互相垂直,如图所示】uuur uuur uuur uuur 1 r r uuur 1 r1r4、 AD AB BC CD 2 a b , AE ab4 2uuur 3 r uuuur 1 ruuuur uuur uuuur 1r1 r1 r1rr 而 EF a , EM 4 a ,所以 AM AEEM4 aba(ab)424 25、证明:如图所示,uuur uuur uuuuruuur uuuur uuur r OD OP 1 2,由于1 230 ,OPOPOPOPuuuruuur uuur 所以 OP 3OD , OD 1uuuruuur uuur所以 ODOP PD1 1所以 OPP 1 2 30 ,同理可得OPP 1330(第 5 题)所以 P 3 PP 1260 ,同理可得PP 12 P 360 , P 2 P 3 P 1 60 ,所以 PP 12 P 3 为正三角形 .6、连接 AB.uuuuruuurrr由对称性可知, AB 是 SMN 的中位线, MN2AB 2b2a .7、(1)实际前进速度大小为42 (4 3) 2 8(千米/时),沿与水流方向成 60°的方向前进;(2)实际前进速度大小为 4 2 千米/时,沿与水流方向成90 arccos6的方向前进 .3(第 6 题) uuur uuuruuur uuur uuur uuur uuur uuur uuur8、解:因为 OA OBOB OC ,所以 OB (OA OC) 0 ,所以 OB CA 0uuur uuur uuur uuur0 ,所以点 O 是 ABC 的垂心 .同理, OA BC 0 , OC AB9、(1) a 2 x a 1 y a 1 y 0 a 2 x 0 0 ; ( 2)垂直;(3)当 A 1 B 2A 2B 1 0时, l 1 ∥ l 2 ;当 A 1 A 2 B 1B 2 0时, l 1 l 2 ,夹角 的余弦 cosA 1 A 2B 1 B 2 ;A 1 2B 12A 22B 22( )Ax 0 By 0 C4dA 2B 2第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 练习(P127)1、 cos()coscossinsin0 cos1 sinsin.222cos(2)cos2cossin2sin1 cos0 sincos .2、解:由 cos3 , ( , ) ,得 sin1 cos 21 ( 3)24 ;525 5所以 cos()cos cossinsin 2 ( 3 ) 2 4 2 .4442 52 5103、解:由 sin15 , 是第二象限角,得 cos 1 sin 21(15 )28 ;1717 17所以 cos() cos cossin sin8 1 15 3 8 153 .33317 2 172344、解:由 sin2 , ( ,3) ,得 cos1 sin 21 (2 )25 ;3 23 3 又由 cos3 , (3,2 ) ,得 sin1 cos21 ( 3) 27 .4244所以cos() coscos sinsin3 (5) (7) ( 2) 3 5 27 .434 312练习(P131)1、(1)62; ( 2) 62; ( 3) 62; ( 4) 23 .4442、解:由 cos3 , ( , ) ,得 sin 1 cos 21 ( 3)24 ;5255所以 sin() sin coscos sin4 1 ( 3)3 43 3 .333 5 25 2103、解:由 sin12, 是第三象限角,得 cos1 sin 21 ( 12) 25 ;1313 13所以cos(6) coscos sin sin 3 ( 5 ) 1 ( 12) 5 3 12 .662 13 2 1326tantan314、解: tan()42 .1 3 141tan tan45、(1)1; ( 2) 1;(3)1;(4)3 ;22(5)原式 = (cos34 cos26sin34 sin 26 )cos(3426 )cos601 ;2(6)原式= sin20cos70 cos20 sin70 (sin 20 cos70cos20sin70 )sin901 .6、(1)原式 = cos cosxsin sin x cos(3x) ;33(2)原式 = 2(3sin x1cosx) 2(sin x coscosxsin) 2sin( x) ;22666(3)原式 = 2(2sin x2cosx) 2(sin x cos4 cosx sin ) 2sin( x) ;224 4(4)原式 =13sin x)22(coscosxsin sin x) 2 2 cos( x) .2 2( cos x2 3233 7、解:由已知得 sin()cos cos()sin3 ,5即 sin[()]3, sin() 355所以 sin3 . 又 是第三象限角,5于是 cos1sin 21 ( 3 )2 4 .55因此sin(5 ) sincos 5cos sin 5( 3 )(2 ) ( 4 )( 2 ) 7 2 .44 45 2 5 2 10练习(P135)1、解:因为 8 12 ,所以382443sin335又由 cos1 ( 2, tan8,得 sin)584 48585cos85所以 sinsin(2 )2sincos2 (3(4 248 ))2548855coscos(2) cos 2sin 28 ( 4 )2 ( 3)2 7 4885 5252tan2 33 1624tantan(2)8432 77482 1 ( 21 tan)8 42、解:由 sin()3,得 sin3,所以 cos 255所以 cos2cos 2sin216( 3) 2725525 3、解:由 sin2sin 且 sin0 可得 cos121 sin 21 ( 3 )2 165 25,又由( , ),得 sin1 cos 21 ( 1 )23,所以22 2tansin 3 ( 2)3 .cos24 、 解 : 由 tan21 , 得 2tan1 .所 以 tan 26tan1 0 , 所以3 1 tan 23tan 3 105、( 1)sin15 cos151sin301 ; ( 2)cos 2sin 28cos2 ;2484 2(3)原式 =12tan 22.5 11 ;( 4)原式 =cos452 .2 1 tan 2 22.52 tan4522 习题 A 组( P137)3)3 cos3 sin 0 cos ( 1) sinsin ; 1、(1) cos(cossin222(2) sin(3) sin3coscos 3sin1 cossincos ;222(3) cos( ) cos cos sinsin1 cos 0 sincos ;(4) sin( ) sin coscos sin0 cos( 1) sinsin .2、解:由 cos3,0,得 sin1 cos21 ( 3)24 ,55 5所以 cos() cos cos sin sin 6 4 33 14 3 3 .6 65 252 103、解:由 sin2, ( , ) ,得 cos1 sin 21 (2 )25 ,3 23 3又由 cos3, (,3) ,得 sin1 cos 21 ( 3)27 ,424 4所cos()cos cos sin sin5( 3 )2(7 )3527 .3434124、解:由cos 1 ,是锐角,得 sin1cos2 1 ( 1) 2 4 3777因为,是锐角,所以(0,) ,又因为cos()11,所14sin() 1 cos2 ()1(11)2531414所以 cos cos[()]cos()cos sin()sin(11153431 )71472 145、解:由60150 ,得 9030180又由 sin(30)3,得 cos(30)1sin 2 (30) 1 (3)2 55所以 cos cos[(30)30 ]cos(30)cos30sin(30)sin3043314335252106、(1)6 2 ;( 2)2 6 ;( 3)2 3 .447、解:由sin2,(,) ,得 cos1sin21( 2 )2 5 .3233又由cos 3,是第三象限角,4sin1cos21(3)27 .44所以 cos()cos cos sin sin5(32(73)34) 4352712sin()sin cos cos sin2(3(5)(7)3)344以以45得635128、解:∵ sin A5,cos B 3且 A,B 为 ABC 的内角13 5∴ 0 A,0B, cos A12 ,sin B 413 52当 cosA12时, sin( A B) sin Acos BcosAsin B135 3 ( 12) 4 33 013 5 13565A B,不合题意,舍去∴ cos A 12,sin B413 5∴ cosCcos( A B)(cos AcosB sin Asin B)(123 5 4)16 13 5 13 5 659、解:由 sin3 , ( , ) ,得 cos1 sin21 (3) 24 .5255∴ tansin 3 ( 5 ) 3 . cos5 44tantan3 1 2 .∴ tan()14 3 21tan tan1 (11) 24tantan 3 1tan()14 3 212 .tan tan1 ()24 10、解:∵ tan ,tan 是 2x 23x 7 0 的两个实数根 .∴ tantan3, tantan7 .22tantan31 .∴ tan()2 71 tan tan1 ( )3211、解:∵ tan() 3,tan() 5∴ tan2tan[( )()]tan( ) tan() 3 5 41 tan() tan( ) 1 357tan 2tan[()()]tan( ) tan() 3511 tan() tan()1 3 5 812、解:∵ BD : DC : AD2:3:6 ∴ tanBD1DC 1AD,tanAD23tantan 1 1∴ tan BACtan()3 211 tantan1 113 2又∵ 0BAC 180 ,∴BAC 45(第 12 题)13、( 1)6 5 sin( x) ;( 2) 3sin(3x) ;(3)2sin(x) ;(4) 2sin( 7x) ;626212(5)2;( 6)1; (7)sin() ;( 8) cos() ;(9) 3 ; (10)22tan() .14、解:由 sin0.8,(0, ) ,得 cos1 sin 21 0.820.62∴ sin22sin cos 2 0.8 0.6 0.96cos2cos 2sin 20.62 0.82 0.2815、解:由 cos3,180270 ,得 sin1 cos 21 ( 3 ) 26333∴ sin 22sincos 2 (6 ) ( 3) 2 23 3 3cos2cos 2sin 2 (3 )2 ( 6 ) 2 1333tan 2sin 2 2 2 ( 3)2 2cos2 316、解:设 sin Bsin C5,且 0B 90,所以 cosB12 .1313∴ sin A sin(180 2B)sin 2B 2sin B cosB25 1212013 13169cos A cos(1802B)cos2 B(cos 2Bsin 2B)((12) 2( 5)2 ) 1191313169tan Asin A 120 ( 169) 120 cos A169 1191192tan2 1 3,tan(tan tan 2 13 17、解:tan 23 2 )7 4 1 .1 tan 21 ( 1 )2 4 1 tan tan211 337 418、解: cos()cossin()sin1 cos[()]1,即 cos1333又(3,2 ) ,所以 sin1 cos21 (1)22 2233∴ sin 22sin cos2 (2 2 ) 1 4 23 39 cos2cos 2sin 2( 1 )2 ( 2 2 ) 2733 9∴cos(2 ) cos2 cos4sin 2 sin 47 2 ( 4 2 ) 27 2 849 2 9 21819、(1) 1 sin2 ;(2) cos2;( 3) 1sin 4x ;( 4) tan2 .4习题 B 组( P138) 1、略 .2、解:∵ tan A,tan B 是 x 的方程 x 2 p(x 1) 1 0 ,即 x 2 px p 1 0 的两个实根∴ tan A tan B p , tan A tan B p 1∴ tan C tan[( A B)]tan(A B) tan A tan Bp1 tan A tan B1 ( p11)由于 0 C,所以 C3 .43、反应一般的规律的等式是(表述形式不唯一)sin2cos 2(30 ) sin cos(30 )3(证明略)4本题是开放型问题,反映一般规律的等式的表述形式还可以是:sin 2 (30 ) cos 2sin( 30 )cos34sin 2 (15 ) cos 2 (15 )sin( 15 )cos( 15 ) 34 sin 2cos 2sincos3 ,其中 30 ,等等4思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳 . 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高 .4、因为 PA1 2 ,则 (cos( 2 sin 2 ( ) (cos cos ) 2(sinsin )2PP ) 1)即 2 2cos( ) 2 2cos cos 2sin sin所以 cos() cos cossinsin3.2 简单的三角恒等变换练习(P142)1、略 . 2 、略 . 3 、略 .4、( 1) y1 sin 4x . 最小正周期 , 增区 [8k ,k], k Z ,最222 82大1;2( 2) ycos x 2 . 最小正周期2 , 增区 [2k ,22k ], kZ ,最大3;( 3) y2sin(4 x) . 最小正周期 2, 增区 [ 5k , k ], kZ ,最324 2 24 2大 2.A ( P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用 sin 2cos 2代替 1,用 2sin cos 代替 sin 2;(5)略; ( 6)提示:用 2cos 2 代替 1 cos2 ;(7)提示:用 2sin 2 代替 1 cos2 ,用 2cos 2 代替 1 cos2 ;(8)略 . 2、由已知可有 sincoscos sin1⋯⋯①, sin coscos sin1⋯⋯②23(1)②× 3-①× 2 可得 sin cos 5cos sin(2)把( 1)所得的两 同除以cos cos 得 tan5tan注意: 里 coscos0 含与①、②之中1 .2tan2 ( 1 )4 3、由已知可解得tan于是 tan2221 tan 21 ( 1 23)2tantan1 1 1tan()421341 tan tan1) 14(2∴ tan24tan()44、由已知可解得 x sin , ycos,于是 x 2 y 2 sin 2 cos 21.5、 f ( x) 2sin(4 x) ,最小正周期是 , 减区 [k , 7k ], k Z .32242 242B ( P143)1、略 .2、由于 76 2 7 90 ,所以 sin76sin(90 14 ) cos14 m即 2cos 2 7 1m ,得 cos7m 123、设存在锐角,使22 ,所以, tan()3 ,3 232tan tan又 tantan 23 ,又因为 tan()2, 221 tan tan2 所以 tantan tan()(1 tantan ) 33222由此可解得 tan1 ,,所以6 .4经检验6 ,是符合题意的两锐角 .44、线段 AB 的中点 M 的坐标为 ( 1(coscos ), 1(sin sin )) . 过 M 作 MM 1 垂22直于 x 轴,交 x 轴于 M 1 , MOM 1 1 ()1 ( ) .22在 Rt OMA 中, OMOA cos2cos.2在 Rt OM 1 M 中, OM 1 OM cos MOM 1cos2 cos ,2M 1 M OM sin MOM 1 sincos.22于是有1(coscos )cos2cos2 ,21(sinsin) sincos 2(第 4 题)225、当 x2 时, f ( ) sin 2 cos 2 1 ;当 x4 时, f ( ) sin 4cos 4(sin 2cos 2 )2 2sin 2 cos 211sin 22 ,此时有 1≤ f ( ) ≤ 1 ;22当x 6时,f ( ) sin 6cos 6(sin 2cos 2 )33sin 2 cos 2 (sin 2cos 2)13sin 22 ,此时有 1≤ f () ≤ 1 ;44由此猜想,当 x2k,k N时, 1≤ f ( ) ≤ 12k 16、(1) y 5( 3sin x4cosx) 5sin( x) ,其中 cos3,sin45555所以, y 的最大值为5,最小值为﹣ 5;(2) y22sin( x) ,其中 cosa ,sinb aba2b2a 2b2所以, y 的最大值为a 2b 2 ,最小值为a 2b 2 ;第三章 复习参考题 A 组( P146)1、 16 . 提示:()652、56. 提示: sin()sin[()]sin[( 5) ()]654 43、1.4、(1)提示:把公式 tan()tan tan变形;1 tan tan(2) 3 ;( 3) 2;( 4) 3 . 提示:利用( 1)的恒等式 .5、(1)原式 =cos103sin104sin(30 10 ) 4 ;sin10 cos10sin 20sin10 3) sin 40 sin10 3 cos10(2)原式 = sin 40 (cos10cos10= 2sin 40cos40sin80 1 ;cos10cos10(3)原式 = tan70 cos10 (3sin 20 1) tan70 cos103sin 20 cos20cos20cos20= sin70cos102sin10 sin 201 ;cos70cos20 cos70(4)原式 = sin50 (13sin10 ) sin50 cos10 3sin10cos10 cos10sin50 2cos50 sin100 1cos10 cos106、(1) 9;(2)24;525(3)2 2 . 提示: sin 4cos 4(sin 2cos 2 ) 2 2sin 2 cos 2 ;3(4)17.257、由已知可求得 cos cos2, sin sin1,于是 tantansin sin1 .55cos cos28、(1)左边 = 2cos 2 21 4cos23 2(cos 2 2 2cos2 1)2(cos21)2 2(2cos 2) 2 8cos 4=右边。

苏教版高中数学必修4高一练习答案

苏教版高中数学必修4高一练习答案
20.解:(1)依题意得,
.……………………………………………4分
由 ,得 ,
即函数 的对称轴方程为 .……………………………………6分
(2)由(1)知
函数 的图象关于 轴对称, 函数 是偶函数,即 .
故 ……………………………………………8分
又函数 的周期为6, .
.……………………………………………11分
在Rt△AOF中,OA=25, ∠A=90°,∠AFO= ,∴OF= .……………………4分
又∠EOF=90°,∴EF= = ,

即 .…………………………………………6分
当点F在点D时,这时角 最小,求得此时 = ;
当点E在C点时,这时角 最大,求得此时 = .
故此函数的定义域为 .……………………………………………………………8分
6
0.30
0.15
2
0.10
0.05
合计
20
1
0.50
……………………………………………6分
(2)各区间的组中值分别为4.5,6.5,8.5 10.5,
由此算得平均数约为4.5 ,
所以估计高三年级学生的学习用书平均重量约为 .…………10分
(3)由题意知, ,
所以估计高三年级学生的学习用书重量为“标准重量”人数约为560人.……………14分
数学参考答案004.55.226. 7.
8.15 9. 10.17.5 11. 12. 13. 14.
二.解答题:
15.解:(1)依题意得, ,
所以 .……………………………………………6分
(2)由 且 得, 为第三象限角,
故 ,所以 .……………………………………………14分

高一数学必修4全册习题(答案详解)

高一数学必修4全册习题(答案详解)

高一三角同步练习1(角的概念的推广)一.选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα 6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7、已知角2α的终边在x 轴的上方,那么α是 ( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角 8、若α是第四象限的角,则α- 180是 .(89上海)A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角二.填空题1、写出-720°到720°之间与-1068°终边相同的角的集合___________________.2、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.3、若角α的终边为第二象限的角平分线,则α的集合为______________________.4、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .三.解答题1、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210-; (2)731484'-.2、求θ,使θ与900-角的终边相同,且[]1260180,-∈θ.3、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|, {}Z k k x k x B ∈⋅<<-⋅=,360210360|,求B A ,B A .4、已知角α是第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。

高一数学必修四作业本答案

高一数学必修四作业本答案

答案与提示第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5×360°+315°.5.{-240°,120°}.6.{α|α=k·360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k·360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k·360°-1840°≤360°.∴1480°≤k·360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k·360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k·360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k·360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k·360°+225°,k∈Z}.10.(1){α|30°+k·180°≤α≤90°+k·180°,k∈Z}.(2){α|k·360°-45°≤α≤k·360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°×24=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4×25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°·cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0. 10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k·360°+2125°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5×4A=20A=20×10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6×6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示(第11题)1.D.2.D.3.D.4.0.5.一个圆.6.②③.7.如:当b是零向量,而a与c不平行时,命题就不正确.8.(1)不是向量.(2)是向量,也是平行向量.(3)是向量,但不是平行向量.(4)是向量,也是平行向量.9.BE,EB,BC,CB,EC,CE,FD(共7个).10.AO,OA,AC,CA,OC,CO,DO,OD,DB,BD,OB,BO(共12个). 11.(1)如图.(2)AD的大小是202m,方向是西偏北45°.2.1.3相等向量与共线向量1.D.2.D.3.D.4.①②.5.④.6.③④⑤.7.提示:由AB=DC AB=DC,AB∥DC ABCD为平行四边形AD=BC.(第8题)8.如图所示:A1B1,A2B2,A3B3.9.(1)平行四边形或梯形.(2)平行四边形.(3)菱形.10.与AB相等的向量有3个(OC,FO,ED),与OA平行的向量有9个(CB,BC,DO,OD,EF,FE,DA,AD,AO),模等于2的向量有6个(DA,AD,EB,BE,CF,FC).11.由EH,FG分别是△ABD,△BCD的中位线,得EH∥BD,EH=12BD,且FG∥BD,FG=12BD,所以EH=FG,EH∥FG且方向相同,∴EH=FG.2.2平面向量的线性运算2.2.1向量加法运算及其几何意义1.D.2.C.3.D.4.a,b.5.①③.6.向南偏西60°走20km.7.作法:在平面内任取一点O,作OA=a,AB=b,BC=c,则OC=a+b+c,图略.8.(1)原式=(BC+CA)+(AD+DB)=BA+AB=0.(2)原式=(AF+FE)+(ED+DC)+CB=AE+EC+CB=AB.9.2≤|a+b|≤8.当a,b方向相同时,|a+b|取到最大值8;当a,b方向相反时,|a+b|取到最小值2.10.(1)5.(2)24.11.船沿与河岸成60°角且指向上游的方向前进,船实际前进的速度为33km/h.2.2.2向量减法运算及其几何意义1.A.2.D.3.C.4.DB,DC.5.b-a.6.①②.7.(1)原式=(PM+MQ)+(NP-NQ)=PQ+QP=0.(2)原式=(BC-BD)+(CA+AD)+CD=DC+CD+CD=CD.8.CB=-b,CO=-a,OD=b-a,OB=a-b.9.由AB=DC,得OB-OA=OC-OD,则OD=a-b+c.10.由AB+AC=(AD+DB)+(AE+EC)及DB+EC=0得证.11.提示:以OA,OB为邻边作OADB,则OD=OA+OB,由题设条件易知OD与OC为相反向量,∴OA+OB+OC=OD+OC=-OC+OC=0.2.2.3向量数乘运算及其几何意义1.B.2.A.3.C.4.-18e1+17e2.5.(1-t)OA+tOB.6.③.7.AB=12a-12b,AD=12a+12b.8.由AB=AM+MB,AC=AM+MC,两式相加得出.9.由EF=EA+AB+BF与EF=ED+DC+CF两式相加得出.10.AD=a+12b,AG=23a+13b,GC=13a+23b,GB=13a-13b.11.ABCD是梯形.∵AD=AB+BC+CD=-16a+2b=2BC,∴AD∥BC且AD≠BC.2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示1.D.2.C.3.C.4.(-2,3),(23,2).5.1,-2.6.①③.7.λ=5.提示:BD=CD-CB=-3i+(3-λ)j,令BD=kAB(k∈R),求解得出.8.16.提示:由已知得2x-3y=5,5y-3x=6,解得x=43,y=27.9.a=-1922b-911c.提示:令a=λ1b+λ2c,得到关于λ1,λ2的方程组,便可求解出λ1,λ2的值.10.∵a,b不共线,∴a-b≠0,假设a+b和a-b共线,则a+b=λ·(a-b),λ∈R,有(1-λ)a+(1+λ)b=0.∵a,b不共线,∴1-λ=0,且1+λ=0,产生矛盾,命题得证.11.由已知AM=tAB(t∈R),则OM=OA+AM=OA+tAB=OA+t(OB-OA)=(1-t)OA+tOB,令λ=1-t,μ=t,则OM=λOA+μOB,且λ+μ=1(λ,μ∈R).2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示1.C.2.D.3.D.4.(12,-7),1,12.5.(-2,6)6.(20,-28)7.a-b=(-8,5),2a-3b=(-19,12),-13a+2b=233,-5.8.AB+AC=(0,1),AB-AC=(6,-3),2AB+12AC=92,-1.9.提示:AB=(4,-1),EF=EA+AB+BF=83,-23=23AB.10.31313,-21313或-31313,21313.11.(1)OP=OA+tAB=(1,2)+t(3,3)=(1+3t,2+3t),当点P在第二象限内时,1+3t<0,且2+3t >0,得-23<t<-13.(2)若能构成平行四边形OABP,则OP=AB,得(1+3t,2+3t)=(3,3),即1+3t=3,且2+3t=3,但这样的实数t不存在,故点O,A,B,P不能构成平行四边形.2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义1.C.2.C.3.C.4.-122;-32.5.(1)0.(2)±24.(3)150°.6.①.7.±5.8.-55;217;122.9.120°.10.-25.提示:△ABC为直角三角形,∠B=90°,∴AB·BC=0,BC与CA的夹角为180°-∠C,CA与AB的夹角为180°-∠A,再用数量积公式计算得出.11.-1010.提示:由已知:(a+b)·(2a-b)=0,且(a-2b)·(2a+b)=0,得到a·b=-14b2,a2=58b2,则cosθ=a·b|a||b|=-1010.2.4.2平面向量数量积的坐标表示、模、夹角1.B.2.D.3.C.4.λ>32.5.(2,3)或(-2,-3).6.[-6,2].7.直角三角形.提示:AB=(3,-2),AC=(4,6),则AB·AC=0,但|AB|≠|AC|.8.x=-13;x=-32或x=3.9.1213,513或-1213,-513.10.正方形.提示:AB=DC,|AB|=|AD|,AB·AD=0.11.当C=90°时,k=-23;当A=90°时,k=113;当B=90°时,k=3±132.2.5平面向量应用举例2.5.1平面几何中的向量方法1.C.2.B.3.A.4.3.5.a⊥b.6.②③④.7.提示:只需证明DE=12BC即可.8.(7,-8).9.由已知:CN=NA,BN=NP,∴AP=NP-NA=BN-CN=BC,同理可证:QA=BC,∴AP=QA,故P,A,Q三点共线.10.连结AO,设AO=a,OB=b,则AB=a+b,OC=-b,AC=a-b,|a|=|b|=r,∴AB·AC=a2-b2=0,∴AB ⊥AC.11.AP=4PM.提示:设BC=a,CA=b,则可得MA=12a+b,BN=a+13b,由共线向量,令PA=mMA,BP=nBN及PA+BP=BA=a+b,解得m=45,所以AP=4PM.2.5.2向量在物理中的应用举例1.B.2.D.3.C.4.|F||s|cosθ.5.(10,-5).6.④⑤.7.示意图略,603N.8.102N.9.sinθ=v21-v22|v1|.(第11题)10.(1)朝与河岸成60°的角且指向上游的方向开.(2)朝与河岸垂直的方向开.11.(1)由图可得:|F1|=|G|cosθ,|F2|=|G|·tanθ,当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.(2)令|F1|=|G|cosθ≤2|G|,得cosθ≥12,∴0°≤θ≤60°.(第12(1)题)12.(1)能确定.提示:设v风车,v车地,v风地分别表示风对车、车对地、风对地的相对速度,则它们的关系如图所示,其中|v车地|=6m/s,则求得:|v风车|=63m/s,|v风地|=12m/s.(2)假设它们线性相关,则k1a1+k2a2+k3a3=0(k1,k2,k3不全为零),得(k1,0)+(k2,-k2)+(2k3,2k3)=(0,0),有k1+k2+2k3=0,且-k2+2k3=0,可得适合方程组的一组不全为零的解:k1=-4,k2=2,k3=1,所以它们线性相关.(3)假设满足条件的θ存在,则由已知有:(a+b)2=3(a-b)2,化简得,|a|2-4|a||b|cosθ+|b|2=0,令t=|a||b|,则t2-4cosθ·t+1=0,由Δ≥0得,cosθ≤-12或cosθ≥12,故0≤θ≤π3或2π3≤θ≤π时,等式成立.单元练习1.C.2.A.3.C.4.A.5.C.6.C.7.D.8.D.9.C.10.B.11.①②③④.12.-7.13.λ>103.14.0,2.15.53.16.2-2.17.④.18.(1)-13.(2)19.19.(1)(4,2).(2)-41717.提示:可求得MA·MB=5(x-2)2-8;利用cos∠AMB=MA·MB|MA|·|MB|,求出cos∠AMB的值.20.(1)提示:证(a-b)·c=0.(2)k<0,或k>2.提示:将式子两边平方化简.21.提示:证明MN=13MC即可.22.D(1,-1);|AD|=5.提示:设D(x,y),利用AD⊥BC,BD∥BC,列出方程组求出x,y的值.第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式1.D.2.A.3.D.4.6+24.5.cosx-π6.6.cosx.7.-7210.8.121-m2+32m.9.-2732.10.cos(α-β)=1.提示:注意-1≤sinα≤1,-1≤sin β≤1,可得cosα=cosβ=0.11.AD=6013.提示:设∠DAB=α,∠CAB=β,则tanα=32,tanβ=23,AD=5cos(α-β).3.1.2两角和与差的正弦、余弦、正切公式1.A.2.B.3.C.4.2cosx+π6.5.62.6.a2+b2,ba2+b2,aa2+b2.7.-32+36.8.725.9.22-36.10.sin2α=-5665.提示:2α=(α+β)+(α-β).11.tan∠APD=18.提示:设AB=1,BP=x,列方程求出x=23,再设∠APB=α,∠DPC=β,则tanα=32,tanβ=34,而∠APD=180°-(α+β).3.1.3二倍角的正弦、余弦、正切公式1.C.2.C.3.D.4.sinθ2-cosθ2或2sinθ2-π4.5.-36.6.-2cosθ2.7.336625.8.18tan10°.提示:乘以8sin10°8sin10°.9.-12.10.α+2β=3π4.提示:tan2β=125,2β也为锐角.11.tan2α=-34.提示:3α=2α+α,并注意角的范围及方程思想的应用.3.2简单的三角恒等变换(一)1.B.2.A.3.C.4.sin2α.5.1.6.12.7.提示:利用余弦二倍角公式.8.2m4-3m2.9.提示:利用sin2θ2+cos2θ2=1.10.2-3.提示:7°=15°-8°.11.[-3,3].提示:令cosα+cosβ=t,利用|cos(α-β)|≤1,求t的取值范围.3.2简单的三角恒等变换(二)1.C.2.A.3.C.4.π2.5.[-2,2].6.-12.提示:y=12cos2x.7.周期为2π,最大值为2,最小值为-2.8.kπ+π8,kπ+5π8(k∈Z).9.(1,2].10.y=2sin2x-π6-1,最大值为1,最小值为-3,最小正周期为π.11.定义域为x∈Rx≠kπ+π2,k∈Z,值域为[-2,2].提示:y=2sin2xx≠kπ+π2(k∈Z). 3.2简单的三角恒等变换(三)1.B.2.D.3.A.4.90°.5.102;π2.6.2.7.-7.8.5-22,5+22.9.1.提示:“切”化“弦”.10.Smax=4.提示:设∠AOB=θ.11.有效视角为45°.提示:∠CAD=α-β,tanα=2,tanβ=13.单元练习1.D.2.C.3.B.4.D.5.B.6.B.7.B.8.B.9.A.10.D.11.a1-b.12.725.13.1665.14.4.15.-6772.16.-2+308.17.0.18.-tanα.19.2125.20.1625.提示:α-2β=(α-β)-β,且0<α-β<π.21.提示:1-cos2θ=2sin2θ.22.(1)f(x)=3+4cos2x+π3,最小正周期为π.(2)[3-23,7].综合练习(一)1.D.2.C.3.B.4.A.5.A.6.D.7.A.8.D.9.C.10.C11.12.12.0.13.(3,5).14.2sin1.15.41.16.2π.17.②③.18.提示:AB=a+3b,AC=13a+b.19.(1)-13.(2)-83.20.(1)θ=45°.(2)λ=-1.21.6365或-3365.提示:cosα=±45.22.sin2α=-2425;cosβ=-3+4310.提示:β=2kπ+α+π3(k∈Z).综合练习(二)1.A.2.D.3.D.4.A.5.C.6.D.7.D.8.B.9.C.10.C.11.2kπ-5π6,2kπ+π6(k∈Z).12.102.13.(1,-1).14.1.15.5∶1.16.锐角.17.π6或2π3.18.33-410.19.∠ABC=45°.提示:利用向量.20.(1)-1225.(2)-75.21.OD=(11,6).提示:设OD=(x,y),列方程组.22.(1)单调递增区间:23kπ+π6,23kπ+π2(k∈Z),单调递减区间:23kπ+π2,23kπ+5π6(k∈Z).(2)-22,1.。

高一数学必修四作业本答案:第二章

高一数学必修四作业本答案:第二章

高一数学必修四作业本答案:第二章以下是为大家整理的关于《高一数学必修四作业本答案:第二章》的文章,供大家学习参考!第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示(第11题)1.D.2.D.3.D.4.0.5.一个圆.6.②③.7.如:当b是零向量,而a与c不平行时,命题就不正确.8.(1)不是向量.(2)是向量,也是平行向量.(3)是向量,但不是平行向量.(4)是向量,也是平行向量.9.BE,EB,BC,CB,EC,CE,FD(共7个).10.AO,OA,AC,CA,OC,CO,DO,OD,DB,BD,OB,BO(共12个).11.(1)如图.(2)AD的大小是202m,方向是西偏北45°.2.1.3相等向量与共线向量1.D.2.D.3.D.4.①②.5.④.6.③④⑤.7.提示:由,AB∥为平行四边形(第8题)8.如图所示:A1B1,A2B2,A3B3.9.(1)平行四边形或梯形.(2)平行四边形.(3)菱形.10.与AB相等的向量有3个(OC,FO,ED),与OA平行的向量有9个(CB,BC,DO,OD,EF,FE,DA,AD,AO),模等于2的向量有6个(DA,AD,EB,BE,CF,FC).11.由EH,FG分别是△ABD,△BCD的中位线,得EH∥BD,EH=12BD,且FG∥BD,FG=12BD,所以EH=FG,EH∥FG且方向相同,∴EH=FG.2.2平面向量的线性运算2.2.1向量加法运算及其几何意义1.D.2.C.3.D.4.a,b.5.①③.6.向南偏西60°走20km.7.作法:在平面内任取一点O,作OA=a,AB=b,BC=c,则OC=a+b+c,图略.8.(1)原式=(BC+CA)+(AD+DB)=BA+AB=0.(2)原式=(AF+FE)+(ED+DC)+CB=AE+EC+CB=AB.9.2≤|a+b|≤8.当a,b方向相同时,|a+b|取到值8;当a,b方向相反时,|a+b|取到最小值2.10.(1)5.(2)24.11.船沿与河岸成60°角且指向上游的方向前进,船实际前进的速度为33km/h.2.2.2向量减法运算及其几何意义1.A.2.D.3.C.4.DB,DC.5.b-a.6.①②.7.(1)原式=(PM+MQ)+(NP-NQ)=PQ+QP=0.(2)原式=(BC-BD)+(CA+AD)+CD=DC+CD+CD=CD.8.CB=-b,CO=-a,OD=b-a,OB=a-b.9.由AB=DC,得OB-OA=OC-OD,则OD=a-b+c.10.由AB+AC=(AD+DB)+(AE+EC)及DB+EC=0得证.11.提示:以OA,OB为邻边作则OD=OA+OB,由题设条件易知OD与OC为相反向量,∴OA+OB+OC=OD+OC=-OC+OC=0.2.2.3向量数乘运算及其几何意义1.B.2.A.3.C.4.-18e1+17e2.5.(1-t)OA+tOB.6.③.7.AB=12a-12b,AD=12a+12b.8.由AB=AM+MB,AC=AM+MC,两式相加得出.9.由EF=EA+AB+BF与EF=ED+DC+CF两式相加得出.10.AD=a+12b,AG=23a+13b,GC=13a+23b,GB=13a-13b.11.ABCD是梯形.∵AD=AB+BC+CD=-16a+2b=2BC,∴AD∥BC且AD≠BC.2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示1.D.2.C.3.C.4.(-2,3),(23,2).5.1,-2.6.①③.7.λ=5.提示:BD=CD-CB=-3i+(3-λ)j,令BD=kAB(k∈R),求解得出.8.16.提示:由已知得2x-3y=5,5y-3x=6,解得x=43,y=27.9.a=-1922b-911c.提示:令a=λ1b+λ2c,得到关于λ1,λ2的方程组,便可求解出λ1,λ2的值.10.∵a,b不共线,∴a-b≠0,假设a+b和a-b共线,则a+b=λ·(a-b),λ∈R,有(1-λ)a+(1+λ)b=0.∵a,b 不共线,∴1-λ=0,且1+λ=0,产生矛盾,命题得证.11.由已知AM=tAB(t∈R),则OM=OA+AM=OA+tAB=OA+t(OB-OA)=(1-t)OA+tOB,令λ=1-t,μ=t,则OM=λOA+μOB,且λ+μ=1(λ,μ∈R).2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示1.C.2.D.3.D.4.(12,-7),1,12.5.(-2,6)6.(20,-28)7.a-b=(-8,5),2a-3b=(-19,12),-13a+2b=233,-5.8.AB+AC=(0,1),AB-AC=(6,-3),2AB+12AC=92,-1.9.提示:AB=(4,-1),EF=EA+AB+BF=83,-23=23AB.10.31313,-21313或-31313,21313.11.(1)OP=OA+tAB=(1,2)+t(3,3)=(1+3t,2+3t),当点P在第二象限内时,1+3t<0,且2+3t>0,得-23<t<-13.(2)若能构成平行四边形OABP,则OP=AB,得(1+3t,2+3t)=(3,3),即1+3t=3,且2+3t=3,但这样的实数t不存在,故点O,A,B,P不能构成平行四边形.2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义1.C.2.C.3.C.4.-122;-32.5.(1)0.(2)±24.(3)150°.6.①.7.±5.8.-55;217;122.9.120°.10.-25.提示:△ABC为直角三角形,∠B=90°,∴AB·BC=0,BC与CA的夹角为180°-∠C,CA与AB的夹角为180°-∠A,再用数量积公式计算得出.11.-1010.提示:由已知:(a+b)·(2a-b)=0,且(a-2b)·(2a+b)=0,得到a·b=-14b2,a2=58b2,则cosθ=a·b|a||b|=-1010.2.4.2平面向量数量积的坐标表示、模、夹角1.B.2.D.3.C.4.λ>32.5.(2,3)或(-2,-3).6.[-6,2].7.直角三角形.提示:AB=(3,-2),AC=(4,6),则AB·AC=0,但|AB|≠|AC|.8.x=-13;x=-32或x=3.9.1213,513或-1213,-513.10.正方形.提示:AB=DC,|AB|=|AD|,AB·AD=0.11.当C=90°时,k=-23;当A=90°时,k=113;当B=90°时,k=3±132.2.5平面向量应用举例2.5.1平面几何中的向量方法1.C.2.B.3.A.4.3.5.a⊥b.6.②③④.7.提示:只需证明DE=12BC即可.8.(7,-8).9.由已知:CN=NA,BN=NP,∴AP=NP-NA=BN-CN=BC,同理可证:QA=BC,∴AP=QA,故P,A,Q三点共线.10.连结AO,设AO=a,OB=b,则AB=a+b,OC=-b,AC=a-b,|a|=|b|=r,∴AB·AC=a2-b2=0,∴AB⊥AC. 11.AP=4PM.提示:设BC=a,CA=b,则可得MA=12a+b,BN=a+13b,由共线向量,令PA=mMA,BP=nBN及PA+BP=BA=a+b,解得m=45,所以AP=4PM.2.5.2向量在物理中的应用举例1.B.2.D.3.C.4.|F||s|cosθ.5.(10,-5).6.④⑤.7.示意图略,603N.8.102N.9.sinθ=v21-v22|v1|.(第11题)10.(1)朝与河岸成60°的角且指向上游的方向开.(2)朝与河岸垂直的方向开. 11.(1)由图可得:|F1|=|G|cosθ,|F2|=|G|·tanθ,当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.(2)令|F1|=|G|cosθ≤2|G|,得cosθ≥12,∴0°≤θ≤60°.(第12(1)题)12.(1)能确定.提示:设v风车,v车地,v风地分别表示风对车、车对地、风对地的相对速度,则它们的关系如图所示,其中|v车地|=6m/s,则求得:|v风车|=63m/s,|v风地|=12m/s.(2)假设它们线性相关,则k1a1+k2a2+k3a3=0(k1,k2,k3不全为零),得(k1,0)+(k2,-k2)+(2k3,2k3)=(0,0),有k1+k2+2k3=0,且-k2+2k3=0,可得适合方程组的一组不全为零的解:k1=-4,k2=2,k3=1,所以它们线性相关.(3)假设满足条件的θ存在,则由已知有:(a+b)2=3(a-b)2,化简得,|a|2-4|a||b|cosθ+|b|2=0,令t=|a||b|,则t2-4cosθ·t+1=0,由Δ≥0得,cosθ≤-12或cosθ≥12,故0≤θ≤π3或2π3≤θ≤π时,等式成立.单元练习1.C.2.A.3.C.4.A.5.C.6.C.7.D.8.D.9.C.10.B.11.①②③④.12.-7.13.λ>103.14.0,2.15.53.16.2-2.17.④.18.(1)-13.(2)19.19.(1)(4,2).(2)-41717.提示:可求得MA·MB=5(x-2)2-8;利用cos∠AMB=MA·MB|MA|·|MB|,求出cos∠AMB的值.20.(1)提示:证(a-b)·c=0.(2)k<0,或k>2.提示:将式子两边平方化简.21.提示:证明MN=13MC即可.22.D(1,-1);|AD|=5.提示:设D(x,y),利用AD⊥BC,BD∥BC,列出方程组求出x,y的值.。

高一数学必修四作业本答案:第二章

高一数学必修四作业本答案:第二章

综保区可行性研究报告一、前言综合保税区(综保区)是指由海关批准设立的特殊监管区域,具有一定的自主权和监管权限的外向型经济开放区,其主要功能是为跨境贸易和投资提供便利和保障。

综保区是国际上一种新型的经济特区模式,具有比传统自由贸易区更加灵活和自主的特点,目前已成为我国推动贸易自由化和经济全球化的重要平台。

随着我国经济的日益开放和国际贸易的不断发展,综保区的建设和发展成为了我国扩大对外开放的重要举措。

因此,对综保区的可行性进行全面的研究和分析,对于我国的对外开放战略和经济发展具有重要的意义。

本报告将对综保区的可行性进行深入研究和分析,以期为相关部门和企业提供参考,促进综保区建设和发展。

二、综保区的概念及发展现状1. 综保区的概念综保区是指由海关批准设立的特殊监管区域,以便为进出口贸易和投资提供便利和保障的特殊经济区域。

综保区是对传统自由贸易区的一种创新,其主要特点是具有更大的自主权和更灵活的管理制度。

综保区是我国开放型经济的重要组成部分,其建设和发展对于加强国际贸易和投资合作,促进经济发展具有重要意义。

2. 综保区的发展现状目前,我国已经在多个地区设立了综保区,并已经取得了一些成效。

比如,上海自由贸易试验区、广东综合保税区等综保区的建设和发展为我国经济的对外开放提供了有力的支持。

由于综保区的特殊监管制度和自主权,在一定程度上可以提高对外贸易和投资的效率,促进产业升级和转型发展。

因此,综保区的建设和发展具有重要的战略意义。

三、综保区的优势和挑战1. 优势(1)便利的外贸环境:综保区的设立可以提供更为便利的外贸环境,为跨境贸易和投资提供更多的便利和保障。

(2)创新的管理制度:综保区具有更大的自主权和更灵活的管理制度,可以更好地适应国际贸易和投资的需求。

(3)促进产业升级和转型发展:综保区的建设和发展可以促进产业升级和转型发展,提高我国的国际竞争力。

2. 挑战(1)监管难度较大:由于综保区具有特殊的监管制度,其管理和监管难度相对较大。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

数学必修四答案详解第二章 平面向量2.1平面向量实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、AD =u u u r .6、(1)×; (2)√; (3)√; (4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r同向的共有6对,与AM u u u u r 反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r . 练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略. 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BCuuu r与AB u u u r反向.3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -rr ; (2)1112a -r r(3)2ya r . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以AC ===u u u r 因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r ; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r .5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r ; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r . 11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r,34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.(第11题)(第12题)EHGFC AB丙乙(第1题)(第4题(2))BCD证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r;(3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩(第4题(3))(第5题)∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r 而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3);(3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线. 7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r,所以点B '的坐标为(3,9)-; 故(3,9)(2,4)(5,5)A B ''=--=-u u u u r习题2.3 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--u u u r u u u r u u u r,所以(5,4)P --;当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r,所以(7,8)P .2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题2.4 A 组(P108)1、a b ⋅=-r r 222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r .4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以()cos cos a b a b a b λλθλθ⋅==r r r r r r()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r ,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r ,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒. 8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r , (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r , 则2292x y y x ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩.于是(55a=r或(55a=--r.11、解:设与ar垂直的单位向量(,)e x y=r,则221420x yx y⎧+=⎨+=⎩,解得5xy⎧=⎪⎪⎨⎪=⎪⎩或5xy⎧=-⎪⎪⎨⎪=⎪⎩.于是,55e=-r或(55e=-r.习题2.4 B组(P108)1、证法一:0()0()a b a c a b a c a b c a b c⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y=r,22(,)b x y=r,33(,)c x y=r.先证()a b a c a b c⋅=⋅⇒⊥-r r r r r r r1212a b x x y y⋅=+r r,1313a c x x y y⋅=+r r由a b a c⋅=⋅r r r r得12121313x x y y x x y y+=+,即123123()()0x x x y y y-+-=而2323(,)b c x x y y-=--r r,所以()0a b c⋅-=r r r再证()a b c a b a c⊥-⇒⋅=⋅r r r r r r r由()0a b c⋅-=r r r得123123()()0x x x y y y-+-=,即12121313x x y y x x y y+=+,因此a b a c⋅=⋅r r r r2、cos cos cos sin sinOA OBAOBOA OBαβαβ⋅∠==+u u u r u u u ru u u r u u u r.3、证明:构造向量(,)u a b=r,(,)v c d=r.cos,u v u v u v⋅=<>r r r r r r,所以,ac bd u v+=<>r r ∴2222222222()()()cos,()()ac bd a b c d u v a b c d+=++<>≤++r r4、AB AC⋅u u u r u u u r的值只与弦AB的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r 又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r ,而AM BAC AC∠=u u u u r u u u r 所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r 5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r ∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r ,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r ,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =.2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r (2)因为1()2AE a b =+u u u r r r 所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE= 同理可知:2,2BO CO OF OD ==,所以2AO BO CO OE OF OD === 3、解:(1)(2,7)B A v v v =-=-r u u r u u r ;(2)v r 在A v u u r 方向上的投影为135A Av v v ⋅=r u u r u u r . 4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r 的夹角为θ, 则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r 的夹角为150°.习题2.5 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为x v u u r ,竖直方向的速度的大小为y v u u r ,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r .设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r 为重力加速度 所以,最大高度为220sin 2v g θu u r ,最大投掷距离为20sin 2v g θu u r . 2、解:设1v u r 与2v u u r 夹角为θ,合速度为v r ,2v u u r 与v r夹角为α,行驶距离为d .则1sin 10sin sin v v v θθα==u r r r ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)-O DF E A B C (第2题) (第4题)解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r . 将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r , 于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r 所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==- (2)32y x=- 解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos 44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()2()2x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩ 又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x =- 第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r ,1()2AD a b =+u u u r r r 4、略解:2133DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r 2233AD a b =+u u u r r r ,1133BC a b =+u u u r r r 1133EF a b =--u u u r r r ,1233FA DC a b ==-u u u r u u u r r r 1233CD a b =-+u u u r r r ,2133AB a b =-u u u r r r CE a b =-+u u u r r r5、(1)(8,8)AB =-u u u r ,82AB =u u u r ;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r . (第4题)6、AB u u u r 与CD u u u r 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u u r 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C === 11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=r u r u r r u r u r ,所以(2)n m m -⊥r u r u r . 12、1λ=-. 13、13a b +=r r ,1a b -=r r . 14、519cos ,cos 820θβ== 第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-r r r r r r .222()2a b a b a b a b +=+=++⋅r r r r r r r r ,222()2a b a b a b a b -=-=+-⋅r r r r r r r r .因为a b ⊥r r ,所以0a b ⋅=r r ,于是22a b a b a b +=+=-r r r r r r . 再证a b a b a b +=-⇒⊥r r r r r r .由于222a b a a b b +=+⋅+r r r r r r ,222a b a a b b -=-⋅+r r r r r r由a b a b +=-r r r r 可得0a b ⋅=r r ,于是a b ⊥r r所以a b a b a b +=-⇔⊥r r r r r r . 【几何意义是矩形两条对角线相等】3、证明:先证a b c d =⇒⊥r r r u r22()()c d a b a b a b ⋅=+⋅-=-r u r r r r r r r又a b =r r ,所以0c d ⋅=r u r ,所以c d ⊥r u r再证c d a b ⊥⇒=r u r r r .由c d ⊥r u r 得0c d ⋅=r u r ,即22()()0a b a b a b +⋅-=-=r r r r r r 所以a b =r r 【几何意义为菱形对角线互相垂直,如图所示】(第3题)(第6题)4、12AD AB BC CD a b =++=+u u u r u u u r u u u r u u u r r r ,1142AE a b =+u u u r r r 而34EF a =u u u r r ,14EM a =u u u u r r ,所以1111(4242AM AE EM a b a =+=++=u u u u r u u u r u u u u r r r r 5、证明:如图所示,12OD OP OP =+u u u r u u u r u u u u r ,由于1230OP OP OP ++=u u u r u u u u r u u u r r ,所以3OP OD =-u u u r u u u r ,1OD =u u u r 所以11OD OP PD ==u u u r u u u r u u u r 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒ 所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.6、连接AB .由对称性可知,AB 是SMN ∆的中位线,22MN AB b ==-u u u u r u u u r r 7、(18=(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为千米/时,沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅u u u r u u u r u u u r u u u r ,所以()0OB OA OC ⋅-=u u u r u u u r u u u r ,所以0OB CA ⋅=u u u r u u u r同理,0OA BC ⋅=u u u r u u u r ,0OC AB ⋅=u u u r u u u r ,所以点O 是ABC ∆的垂心.9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=; (4)d =第三章 三角恒等变换P 2(第5题)3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin 0cos 1sin sin 222πππαααααα-=+=⨯+⨯=. cos(2)cos2cos sin 2sin 1cos 0sin cos παπαπαααα-=+=⨯+⨯=.2、解:由3cos ,(,)52πααπ=-∈,得4sin 5α==;所以34cos()cos cos sin sin ()44455πππααα-=+=-=3、解:由15sin 17θ=,θ是第二象限角,得8cos 17θ===-;所以8115cos()cos cos sin sin 33317217πππθθθ-=+=-⨯+=. 4、解:由23sin ,(,)32πααπ=-∈,得cos α==; 又由33cos ,(,2)42πββπ=∈,得sin β== 所以32cos()cos cos sin sin (()43βαβαβα-=+=⨯⨯-=. 练习(P131) 1、(1; (2) (3(4)22、解:由3cos ,(,)52πθθπ=-∈,得4sin 5θ==;所以413sin()sin cos cos sin ()333525πππθθθ+=+=⨯+-=. 3、解:由12sin 13θ=-,θ是第三象限角,得5cos 13θ===-; 所以5112cos()cos cos sin sin ()()66613213πππθθθ+=-=--⨯-=. 4、解:tan tan 314tan()241311tan tan 4παπαπα+++===--⨯-⋅.5、(1)1; (2)12; (3)1; (4); (5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602-︒︒-︒︒=-︒+︒=-︒=-; (6)原式=sin 20cos70cos20sin70(sin 20cos70cos20sin70)sin901-︒︒-︒︒=-︒︒+︒︒=-︒=-.6、(1)原式=cos cos sin sin cos()333x x x πππ-=+; (2)原式=1cos )2(sin cos cos sin )2sin()2666x x x x x πππ+=+=+; (3)原式=)2(sin cos cos sin )2sin()444x x x x x πππ=-=-; (4)原式=12(cos )cos sin sin ))2333x x x x x πππ=-=+. 7、解:由已知得3sin()cos cos()sin 5αβααβα---=, 即3sin[()]5αβα--=,3sin()5β-= 所以3sin 5β=-. 又β是第三象限角,于是4cos 5β===-. 因此55534sin()sin cos cos sin ()(()(44455πππβββ+=+=-+-=练习(P135)1、解:因为812παπ<<,所以382αππ<< 又由4cos 85α=-,得3sin 85α=-,3sin 385tan 484cos 85ααα-===- 所以3424sinsin(2)2sin cos 2()()48885525αααα=⨯==⨯-⨯-= 2222437cos cos(2)cos sin ()()48885525αααα=⨯=-=---= 2232tan 23162484tan tan(2)3482771tan 1()84αααα⨯=⨯===⨯=-- 2、解:由3sin()5απ-=,得3sin 5α=-,所以222316cos 1sin 1()525αα=-=--=所以2221637cos2cos sin ()25525ααα=-=--= 3、解:由sin2sin αα=-且sin 0α≠可得1cos 2α=-,又由(,)2παπ∈,得sin α==,所以sintan (2)cos ααα==-=4、解:由1tan 23α=,得22tan 11tan 3αα=-. 所以2tan 6tan 10αα+-=,所以tan 3α=-5、(1)11sin15cos15sin3024︒︒=︒=; (2)22cos sin cos 88πππ-==;(3)原式=212tan 22.511tan 4521tan 22.522︒⋅=︒=-︒; (4)原式=cos45︒=. 习题3.1 A 组(P137) 1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222πππαααααα-=+=⨯+-⨯=-; (2)33sin()sin cos 1cos 0sin cos22ππαααααα-=-=-⨯-⨯=-; (3)cos()cos cos sin 1cos 0sin cos παπαααα-=+-⨯+⨯=-; (4)sin()sin cos cos sin 0cos (1)sin sin παπαπαααα-=-=⨯--⨯=.2、解:由3cos ,05ααπ=<<,得4sin 5α==,所以431cos()cos cos sin sin 666552πππααα-=+=⨯=.3、解:由2sin ,(,)32πααπ=∈,得cos α===又由33cos ,(,)42πββπ=-∈,得sin β===, 所以32cos()cos cos sin sin ()(43αβαβαβ-=+=-+⨯=.4、解:由1cos 7α=,α是锐角,得sin 7α=== 因为,αβ是锐角,所以(0,)αβπ+∈,又因为11cos()14αβ+=-,所以sin()αβ+===所以cos cos[()]cos()cos sin()sin βαβααβααβα=+-=+++1111()1472=-⨯= 5、解:由60150α︒<<︒,得9030180α︒<︒+<︒又由3sin(30)5α︒+=,得4cos(30)5α︒+=-所以cos cos[(30)30]cos(30)cos30sin(30)sin30αααα=︒+-︒=︒+︒+︒+︒431552=-⨯6、(1) (2) (3)2-7、解:由2sin ,(,)32πααπ=∈,得cos α===又由3cos 4β=-,β是第三象限角,得sin β===.所以cos()cos cos sin sin αβαβαβ+=-32()(43=--⨯=sin()sin cos cos sin αβαβαβ-=-23()((34=⨯--⨯=8、解:∵53sin ,cos 135A B ==且,A B 为ABC ∆的内角∴0,02A B ππ<<<<,124cos ,sin 135A B =±=当12cos 13A =-时,sin()sin cos cos sin AB A B A B +=+5312433()013513565=⨯+-⨯=-< A B π+>,不合题意,舍去∴124cos ,sin 135A B ==∴cos cos()(cos cos sin sin )C A B A B A B =-+=--1235416()13513565-⨯-⨯=- 9、解:由3sin ,(,)52πθθπ=∈,得4cos 5θ==-.∴sin 353tan ()cos 544θθθ==⨯-=-. ∴31tan tan 242tan()311tan tan 111()42θϕθϕθϕ-+++===--⋅--⨯. 31tan tan 42tan()2311tan tan 1()42θϕθϕθϕ----===-+⋅+-⨯. 10、解:∵tan ,tan αβ是22370x x +-=的两个实数根.∴3tan tan 2αβ+=-,7tan tan 2αβ⋅=-.∴3tan tan 12tan()71tan tan 31()2αβαβαβ-++===--⋅--.11、解:∵tan()3,tan()5αβαβ+=-=∴tan()tan()tan 2tan[()()]1tan()tan()αβαβααβαβαβαβ++-=++-=-+⋅-3541357+==--⨯tan()tan()tan 2tan[()()]1tan()tan()αβαββαβαβαβαβ+--=+--=++⋅-3511358-==-+⨯12、解:∵::2:3:6BD DC AD =∴11tan ,tan 32BD DC AD AD αβ====∴tan tan tan tan()1tan tan BAC αβαβαβ+∠=+=-⋅1132111132+==-⨯ 又∵0180BAC ︒<∠<︒,∴45BAC ∠=︒(第12题)13、(1))6x π+; (23sin()3x π-; (3)2sin()26x π+;(47sin()12x π-; (5)2; (6)12; (7)sin()αγ+; (8)cos()αγ--; (9) (10)tan()βα-.14、解:由sin 0.8,(0,)2παα=∈,得cos 0.6α===∴sin22sin cos 20.80.60.96ααα==⨯⨯= 2222cos2cos sin 0.60.80.28ααα=-=-=- 15、解:由cos 270ϕϕ=︒<<︒,得sin ϕ===∴sin 22sin cos 2((ϕϕϕ==⨯⨯=22221cos2cossin ((3ϕϕϕ=-=-=- sin 2tan 2(3)cos 23ϕϕϕ==-=-16、解:设5sin sin 13B C ==,且090B ︒<<︒,所以12cos 13B =. ∴512120sin sin(1802)sin 22sin cos 21313169A B B B B =︒-===⨯⨯=2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B =︒-=-=--=--=-sin 120169120tan ()cos 169119119A A A ==⨯-=-17、解:22122tan 33tan 211tan 41()3βββ⨯===--,13tan tan 274tan(2)1131tan tan 2174αβαβαβ+++===-⋅-⨯. 18、解:1cos()cos sin()sin 3αββαββ+++=⇒1cos[()]3αββ+-=,即1cos 3α= 又3(,2)2παπ∈,所以sin3α==-∴1sin 22sin cos 2(ααα==⨯⨯=222217cos2cos sin ()(39ααα=-=-=-∴7cos(2)cos2cos sin 2sin (4449πππααα+=-=-=19、(1)1sin2α+; (2)cos2θ; (3)1sin 44x ; (4)tan2θ.习题3.1 B 组(P138) 1、略. 2、解:∵tan ,tan A B 是x 方程2(1)10x p x +++=,即210x px p +++=两个实根∴tan tan A B p +=-,tan tan 1A B p ⋅=+ ∴tan tan[()]tan()C A B A B π=-+=-+tan tan 11tan tan 1(1)A B pA B p +-=-=-=--⋅-+由于0C π<<,所以34C π=. 3、反应一般的规律的等式是(表述形式不唯一)223sin cos (30)sin cos(30)4αααα++︒++︒=(证明略) 本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cos sin(30)cos 4αααα-︒++-︒=223sin (15)cos (15)sin(15)cos(15)4αααα-︒++︒+-︒+︒=223sin cos sin cos 4αβαβ++=,其中30βα-=︒,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PA PP =,则2222(cos()1)sin ()(cos cos )(sin sin )αβαβαβαβ+-++=-++ 即22cos()22cos cos 2sin sin αβαβαβ-+=-+ 所以cos()cos cos sin sin αβαβαβ+=-3.2简单的三角恒等变换 练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x =. 最小正周期为2π,递增区间为[,],8282k k k Z ππππ-++∈,最大值为12;(2)cos 2y x =+. 最小正周期为2π,递增区间为[2,22],k k k Z ππππ++∈,最大值为3;(3)2sin(4)3y x π=+. 最小正周期为2π,递增区间为5[,],242242k k k Z ππππ-++∈,最大值为2.习题3.2 A 组( P143) 1、(1)略; (2)提示:左式通分后分子分母同乘以2; (3)略; (4)提示:用22sin cos ϕϕ+代替1,用2sin cos ϕϕ代替sin 2ϕ;(5)略; (6)提示:用22cos θ代替1cos2θ+;(7)提示:用22sin θ代替1cos2θ-,用22cos θ代替1cos2θ+; (8)略.2、由已知可有1sin cos cos sin 2αβαβ+=……①,1sin cos cos sin 3αβαβ-=……②(1)②×3-①×2可得sin cos 5cos sin αβαβ=(2)把(1)所得的两边同除以cos cos αβ得tan 5tan αβ= 注意:这里cos cos 0αβ≠隐含与①、②之中3、由已知可解得1tan 2θ=-. 于是2212()2tan 42tan 211tan 31()2θθθ⨯-===----1tan tan1142131tan tan 1()142πθπθ+-+===-⋅--⨯∴tan 24tan()4πθθ=-+4、由已知可解得sin x θ=,cos y θ=,于是2222sin cos 1x y θθ+=+=.5、()2sin(4)3f x x π=+,最小正周期是2π,递减区间为7[,],242242k k k Z ππππ++∈.习题3.2 B 组(P143) 1、略.2、由于762790+⨯=,所以sin76sin(9014)cos14m ︒=︒-︒=︒= 即22cos 71m ︒-=,得cos7︒=3、设存在锐角,αβ使223παβ+=,所以23απβ+=,tan()2αβ+又tantan 22αβ=,又因为tantan 2tan()21tantan 2αβαβαβ++=-,所以tantan tan()(1tan tan )3222αααβββ+=+-= 由此可解得tan 1β=, 4πβ=,所以6πα=.经检验6πα=,4πβ=是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22αβαβ++. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM βαααβ∠=-+=+. 在Rt OMA ∆中,cos cos 22OM OA βααβ--==. 在1Rt OM M ∆中,11cos cos cos22OM OM MOM αβαβ+-=∠=11sin sin cos22M M OM MOM αβαβ+-=∠=. 于是有 1(cos cos )cos cos222αβαβαβ+-+=, 1(sin sin )sin cos222αβαβαβ+-+= 5、当2x =时,22()sin cos 1f ααα=+=;当4x =时,4422222()sin cos (sin cos )2sin cos f ααααααα=+=+-211sin 22α=-,此时有1()12f α≤≤;当6x =时,662232222()sin cos (sin cos )3sin cos (sin cos )f ααααααααα=+=+-+231sin 24α=-,此时有1()14f α≤≤;由此猜想,当2,x k k N +=∈时,11()12k f α-≤≤6、(1)345(sin cos )5sin()55y x x x ϕ=+=+,其中34cos ,sin 55ϕϕ==所以,y 的最大值为5,最小值为﹣5; (2))y x ϕ+,其中cos ϕϕ==所以,y ;第三章 复习参考题A 组(P146)(第4题)1、1665. 提示:()βαβα=+- 2、5665. 提示:5sin()sin[()]sin[()()]44ππαβπαββα+=-++=-+--3、1.4、(1)提示:把公式tan tan tan()1tan tan αβαβαβ++=-变形;(2; (3)2; (4) 提示:利用(1)的恒等式.5、(1)原式4sin(3010)4sin 20︒-︒==︒;(2)原式=sin10sin 40(sin 40cos10︒︒=︒ =2sin 40cos40sin801cos10cos10-︒︒-︒==-︒︒;(3)原式=tan 70cos101)tan 70cos10︒︒-=︒ =sin702sin10sin 20cos101cos70cos20cos70︒-︒-︒⋅︒⋅==-︒︒︒;(4)原式=sin50(1sin50︒⋅=2cos50sin50cos10︒=︒⋅=︒6、(1)95; (2)2425;(3). 提示:4422222sin cos (sin cos )2sin cos θθθθθθ+=+-; (4)1725.7、由已知可求得2cos cos 5αβ=,1sin sin 5αβ=,于是sin sin 1tan tan cos cos 2αβαβαβ==. 8、(1)左边=222cos 214cos232(cos 22cos21)αααα-++=++22242(cos21)2(2cos )8cos ααα=+===右边(2)左边=2222sin cos 2sin cos (sin cos )2cos 2sin cos 2cos (cos sin )αααααααααααα+++=++sin cos 11tan 2cos 22αααα+==+=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin 2cos (cos sin )αβαβααβααβααααα+-+++-+=+sin()cos cos()sin sin sin sin αβααβαβαα+-+===右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A -+--+=++-++ 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A -===+=右边 9、(1)1sin 21cos2sin 2cos222)24y x x x x x π=+++=++++递减区间为5[,],88k k k Z ππππ++∈(222,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22)4f x x x x x x x x x x π=+--=-+(1)最小正周期是π;(2)由[0,]2x π∈得52[,]444x πππ+∈,所以当24x ππ+=,即38x π=时,()f x 的最小值为2-()f x 取最小值时x 的集合为3{}8π.11、2()2sin 2sin cos 1cos2sin 22)14f x x x x x x x π=+=-+=-+(1)最小正周期是π,最大值为21+;(2)()f x 在[,]22ππ-12、()3sin cos 2sin()6f x x x a x a π=++=++.(1)由21a +=得1a =-;(2)2{22,}3x k x k k Z πππ+∈≤≤.13、如图,设ABD α∠=,则CAE α∠=,2sin h AB α=,1cos hAC α=所以1212sin 2ABC h h S AB AC α∆=⋅⋅=,(0)2πα<<当22πα=,即4πα=时,ABC S ∆的最小值为12h h .第三章 复习参考题B 组(P147)1、解法一:由221sin cos 5sin cos 1αααα⎧-=⎪⎨⎪+=⎩,及0απ≤≤,可解得4sin 5α=, αh 1h 2l 2l 1BDE AC(第13题)13cos sin 55αα=-=,所以24sin 225α=,7cos225α=-,sin(2)sin 2cos cos2sin 44450πππααα-=-=. 解法二:由1sin cos 5αα-= 得21(sin cos )25αα-=,24sin 225α=,所以249cos 2625α=. 又由1sin cos 5αα-=,得sin()4πα-=.因为[0,]απ∈,所以3[,]444πππα-∈-.而当[,0]44ππα-∈-时,sin()04πα-≤;当3[,]444πππα-∈时,sin()4πα->所以(0,)44ππα-∈,即(,)42ππα∈所以2(,)2παπ∈,7cos225α=-.sin(2)4πα-=2、把1cos cos 2αβ+=两边分别平方得221cos cos 2cos cos 4αβαβ++=把1sin sin 3αβ+=两边分别平方得221sin sin 2sin sin 9αβαβ++=把所得两式相加,得1322(cos cos sin sin )36αβαβ++=,即1322cos()36αβ+-=,所以59cos()72αβ-=-3、由sin()sin 3παα++= 可得3sin 2αα=4sin()65πα+=-. 又02πα-<<,所以366πππα-<+<,于是3cos()65πα+=.所以cos cos[()]66ππαα=+-4、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos x x x x x x x x x x x x x x +++==---1tan sin 2sin 2tan()1tan 4x x x x x π+==+-由177124x ππ<<得5234x πππ<+<,又3cos()45x π+=,所以4sin()45x π+=-,4tan()43x π+=-所以cos cos[()]cos()cos sin()sin 444444x x x x ππππππ=+-=+++=,sin 10x =-,7sin 22sin cos 25x x x ==, 所以2sin 22sin 281tan 75x x x +=--, 5、把已知代入222sin cos (sin cos )2sin cos 1θθθθθθ+=+-=,得22(2sin )2sin 1αβ-=.变形得2(1cos2)(1cos2)1αβ---=,2cos2cos2αβ=,224cos 24cos 2αβ= 本题从对比已知条件和所证等式开始,可发现应消去已知条件中含θ的三角函数.考虑sin cos θθ+,sin cos θθ这两者又有什么关系?及得上解法. 5、6两题上述解法称为消去法6、()21cos22sin(2)16f x x x m x m π=+++=+++.由 [0,]2x π∈ 得72[,]666x πππ+∈,于是有216m ++=. 解得3m =.()2sin(2)4()6f x x x R π=++∈的最小值为242-+=,此时x 的取值集合由322()62x k k Z πππ+=+∈,求得为2()3x k k Z ππ=+∈7、设AP x =,AQ y =,BCP α∠=,DCQ β∠=,则tan 1x α=-,tan 1y β=- 于是2()tan()()x y x y xyαβ-++=+-又APQ ∆的周长为2,即2x y +,变形可得2()2xy x y =+- 于是2()tan()1()[2()2]x y x y x y αβ-++==+-+-.又02παβ<+<,所以4παβ+=,()24PCQ ππαβ∠=-+=.8、(1)由221sin cos 5sin cos 1ββββ⎧+=⎪⎨⎪+=⎩,可得225sin 5sin 120ββ--=解得4sin 5β=或3sin 5β=-(由(0,)βπ∈,舍去)所以13cos sin 55ββ=-=-,于是4tan 3β=-(2)根据所给条件,可求得仅由sin ,cos ,tan βββ表示三角函数式值,例如,sin()3πβ+,cos22β+,sin cos 2tan βββ-,sin cos 3sin 2cos ββββ-+,等等.。

2020年高中数学 人教A版 必修4 同步作业本《向量数乘运算及其几何意义》(含答案解析)

2020年高中数学 人教A版 必修4 同步作业本《向量数乘运算及其几何意义》(含答案解析)

2020年高中数学 人教A 版 必修4 同步作业本《向量数乘运算及其几何意义》一、选择题1.下列说法正确的是( )A .平行于同一向量的两个向量是共线向量B .单位向量都相等C .a ∥b ⇔存在唯一的实数λ,使得a =λbD .与非零向量a 相等的向量有无数个2.已知e 1,e 2是平面内不共线的两个向量,a =2e 1-3e 2,b =λe 1+6e 2,若a ,b 共线,则λ等于( )A .-9B .-4C .4D .93.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,则( )A.AO →=2OD →B.AO →=OD →C.AO →=3OD → D .2AO →=OD →4.在四边形ABCD 中,若AB →=3a ,CD →=-5a ,且|AD →|=|BC →|,则四边形ABCD 是( )A .平行四边形B .菱形C .等腰梯形D .不等腰梯形5.已知向量a 与b 不共线,且AB →=λa +b (λ∈R ),AC →=a +μb (μ∈R ),则点A ,B ,C 三点共线应满足( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=16.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x=23,y=13B .x=13,y=23C .x=14,y=34D .x=34,y=14二、填空题7.若向量a =3i -4j ,b =5i +4j ,则(13a -b )-3(a +23b )+(2b -a )=________.8.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b .9.设a ,b 是两个不共线的非零向量.若向量k a +2b 与8a +k b 的方向相反,则k=________.10.点C 在线段AB 上,且AC CB =12,则AC →=________AB →.11.如图所示,在△ABC 中,D 为BC 边上的一点,且BD=2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n=________.三、解答题12.已知两个非零向量e 1和e 2不共线,如果AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2,求证:A ,B ,D 三点共线.13.已知O ,A ,M ,B 为平面上四点,且OM →=λOB →+(1-λ)OA →(λ∈R ,λ≠1,λ≠0).(1)求证:A ,B ,M 三点共线.(2)若点B 在线段AM 上,求实数λ的范围.14.已知非零向量e 1,e 2,a ,b 满足a =2e 1-e 2,b =k e 1+e 2.(1)若e 1与e 2不共线,a 与b 共线,求实数k 的值;(2)是否存在实数k ,使得a 与b 不共线,e 1与e 2共线?若存在,求出k 的值,否则说明理由.15.在△ABC 中,点D 和E 分别在BC ,AC 上,且BD →=13BC →,CE →=13CA →,AD 与BE 交于R ,证明:RD →=17AD →.答案解析1.答案为:D.解析:若两个向量都与零向量平行,它们可能不共线,所以选项A 不正确;单位向量只是长度相等,方向不确定,故选项B 不正确;“a ∥b ⇔存在唯一的实数λ,使得a =λb ”需在b ≠0的前提下才成立,故选项C 不正确;平移非零向量a ,所得向量都与a 相等,故与非零向量a 相等的向量有无数个.故选D.2.答案为:B.解析:由a ,b 共线知a =m b ,m ∈R ,于是2e 1-3e 2=m(λe 1+6e 2),即(2-mλ)e 1=(6m +3)e 2.由于e 1,e 2不共线,所以⎩⎪⎨⎪⎧6m +3=0,2-mλ=0,∴λ=-4.故选B.3.答案为:B.解析:∵D 为BC 的中点,∴OB →+OC →=2OD →,∴2OA →+2OD →=0,∴OA →=-OD →,∴AO →=OD →.4.答案为:C.解析:由AB →∥DC →且|AB →|≠|DC →|知,四边形ABCD 是梯形.又|AD →|=|BC →|,知梯形ABCD 是等腰梯形.5.答案为:D.解析:若A ,B ,C 三点共线,则AB →=kAC →(k ∈R ),即λa +b =k(a +μb ),∴λa +b =k a +μk b , ∴⎩⎪⎨⎪⎧ λ=k ,1=μk,消去k 得,λμ=1,故选D.6.答案为:A.解析:由题意可知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x=23,y=13,故选A.7.答案为:-16i +323j ; 解析:(13a -b )-3(a +23b )+(2b -a ) =13a -b -3a -2b +2b -a =-113a -b =-113(3i -4j )-(5i +4j ) =-11i +443j -5i -4j =-16i +323j .8.答案为:-57; 解析:因为|a |=5,|b |=7,所以|a ||b |=57,又方向相反,所以a =-57b .9.答案为:-4;解析:∵向量k a +2b 与8a +k b 的方向相反,∴k a +2b =λ(8a +k b )⇒k=8λ,2=λk ⇒k=-4(∵方向相反,∴λ<0⇒k <0).10.答案为:13; 解析:如图,因为AC CB =12,且点C 在线段AB 上,则AC →与CB →同向,且|AC →|=12|CB →|,故AC →=13AB →.11.答案为:-2;解析:直接利用共线定理,得BC →=3DC →,则AC →=AB →+BC →=AB →+3DC →=AB →+3(AC →-AD →)=AB →+3AC →-3AD →,AC →=-12AB →+32AD →, 则m=-12,n=32,那么m -n=-12-32=-2.12.证明:∵BC →=6e 1+23e 2,CD →=4e 1-8e 2,∴BD →=BC →+CD →=(6e 1+23e 2)+(4e 1-8e 2)=10e 1+15e 2.又∵AB →=2e 1+3e 2,∴BD →=5AB →,∴AB →,BD →共线,且有公共点B.∴A ,B ,D 三点共线.13.解:(1)证明:因为OM →=λOB →+(1-λ)OA →,所以OM →=λOB →+OA →-λOA →,OM →-OA →=λOB →-λOA →,即AM →=λAB →,又λ∈R ,λ≠1,λ≠0且AM →,AB →有公共点A ,所以A ,B ,M 三点共线.(2)由(1)知AM →=λAB →,若点B 在线段AM 上,则AM →,AB →同向且|AM →|>|AB →|(如图所示).所以λ>1.14.解:(1)由a =λb ,得2e 1-e 2=λk e 1+λe 2,而e 1与e 2不共线,所以⎩⎪⎨⎪⎧ λk=2λ=-1⇒k=-2. (2)不存在.若e 1与e 2共线,则e 2=λe 1, 有⎩⎪⎨⎪⎧a =2-λe 1,b =k +λe 1,因为e 1,e 2,a ,b 为非零向量,所以λ≠2且λ≠-k ,所以12-λa =1k +λb ,即a =2-λk +λb ,这时a 与b 共线,所以不存在实数k 满足题意.15.证明:连接CR(图略).由A ,D ,R 三点共线,可得CR →=λCD →+(1-λ)CA →=23λCB →+(1-λ)CA →. 由B ,E ,R 三点共线,可得CR →=μCB →+(1-μ)CE →=μCB →+13(1-μ)CA →.所以⎩⎪⎨⎪⎧ 23λ=μ,1-λ=131-μ,解得⎩⎪⎨⎪⎧ λ=67,μ=47, 所以CR →=47CB →+17CA →. 所以AD →=CD →-CA →=23CB →-CA →, RD →=CD →-CR →=23CB →-(47CB →+17CA →)=221CB →-17CA →=17(23CB →-CA →)=17AD →.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案与提示第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0. 10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示(第11题)1.D.2.D.3.D.4.0.5.一个圆.6.②③.7.如:当b是零向量,而a与c不平行时,命题就不正确.8.(1)不是向量.(2)是向量,也是平行向量.(3)是向量,但不是平行向量.(4)是向量,也是平行向量.9.BE,EB,BC,CB,EC,CE,FD(共7个).10.AO,OA,AC,CA,OC,CO,DO,OD,DB,BD,OB,BO(共12个). 11.(1)如图.(2)AD的大小是202m,方向是西偏北45°.2.1.3相等向量与共线向量1.D.2.D.3.D.4.①②.5.④.6.③④⑤.7.提示:由AB=DC AB=DC,AB∥DC ABCD为平行四边形 AD=BC.(第8题)8.如图所示:A1B1,A2B2,A3B3.9.(1)平行四边形或梯形.(2)平行四边形.(3)菱形.10.与AB相等的向量有3个(OC,FO,ED),与OA平行的向量有9个(CB,BC,DO,OD,EF,FE,DA,AD,AO),模等于2的向量有6个(DA,AD,EB,BE,CF,FC).11.由EH,FG分别是△ABD,△BCD的中位线,得EH∥BD,EH=12BD,且FG∥BD,FG=12BD,所以EH=FG,EH∥FG且方向相同,∴EH=FG.2.2平面向量的线性运算2.2.1向量加法运算及其几何意义1.D.2.C.3.D.4.a,b.5.①③.6.向南偏西60°走20km.7.作法:在平面内任取一点O,作OA=a,AB=b,BC=c,则OC=a+b+c,图略.8.(1)原式=(BC+CA)+(AD+DB)=BA+AB=0.(2)原式=(AF+FE)+(ED+DC)+CB=AE+EC+CB=AB.9.2≤|a+b|≤8.当a,b方向相同时,|a+b|取到最大值8;当a,b方向相反时,|a+b|取到最小值2.10.(1)5.(2)24.11.船沿与河岸成60°角且指向上游的方向前进,船实际前进的速度为33km/h.2.2.2向量减法运算及其几何意义1.A.2.D.3.C.4.DB,DC.5.b-a.6.①②.7.(1)原式=(PM+MQ)+(NP-NQ)=PQ+QP=0.(2)原式=(BC-BD)+(CA+AD)+CD=DC+CD+CD=CD.8.CB=-b,CO=-a,OD=b-a,OB=a-b.9.由AB=DC,得OB-OA=OC-OD,则OD=a-b+c.10.由AB+AC=(AD+DB)+(AE+EC)及DB+EC=0得证.11.提示:以OA,OB为邻边作 OADB,则OD=OA+OB,由题设条件易知OD与OC为相反向量,∴OA+OB+OC=OD+OC=-OC+OC=0.2.2.3向量数乘运算及其几何意义1.B.2.A.3.C.4.-18e1+17e2.5.(1-t)OA+tOB.6.③.7.AB=12a-12b,AD=12a+12b.8.由AB=AM+MB,AC=AM+MC,两式相加得出.9.由EF=EA+AB+BF与EF=ED+DC+CF两式相加得出.10.AD=a+12b,AG=23a+13b,GC=13a+23b,GB=13a-13b.11.ABCD是梯形.∵AD=AB+BC+CD=-16a+2b=2BC,∴AD∥BC且AD≠BC.2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示1.D.2.C.3.C.4.(-2,3),(23,2).5.1,-2.6.①③.7.λ=5.提示:BD=CD-CB=-3i+(3-λ)j,令BD=kAB(k∈R),求解得出.8.16.提示:由已知得2x-3y=5,5y-3x=6,解得x=43,y=27.9.a=-1922b-911c.提示:令a=λ1b+λ2c,得到关于λ1,λ2的方程组,便可求解出λ1,λ2的值.10.∵a,b不共线,∴a-b≠0,假设a+b和a-b共线,则a+b=λ²(a-b),λ∈R,有(1-λ)a+(1+λ)b=0.∵a,b不共线,∴1-λ=0,且1+λ=0,产生矛盾,命题得证.11.由已知AM=tAB(t∈R),则OM=OA+AM=OA+tAB=OA+t(OB-OA)=(1-t)OA+tOB,令λ=1-t,μ=t,则OM=λOA+μOB,且λ+μ=1(λ,μ∈R).2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示1.C.2.D.3.D.4.(12,-7),1,12.5.(-2,6)6.(20,-28)7.a-b=(-8,5),2a-3b=(-19,12),-13a+2b=233,-5.8.AB+AC=(0,1),AB-AC=(6,-3),2AB+12AC=92,-1.9.提示:AB=(4,-1),EF=EA+AB+BF=83,-23=23AB.10.31313,-21313或-31313,21313.11.(1)OP=OA+tAB=(1,2)+t(3,3)=(1+3t,2+3t),当点P在第二象限内时,1+3t<0,且2+3t >0,得-23<t<-13.(2)若能构成平行四边形OABP,则OP=AB,得(1+3t,2+3t)=(3,3),即1+3t=3,且2+3t=3,但这样的实数t不存在,故点O,A,B,P不能构成平行四边形.2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义1.C.2.C.3.C.4.-122;-32.5.(1)0.(2)±24.(3)150°.6.①.7.±5.8.-55;217;122.9.120°.10.-25.提示:△ABC为直角三角形,∠B=90°,∴AB²BC=0,BC与CA的夹角为180°-∠C,CA与AB的夹角为180°-∠A,再用数量积公式计算得出.11.-1010.提示:由已知:(a+b)²(2a-b)=0,且(a-2b)²(2a+b)=0,得到a²b=-14b2,a2=58b2,则cosθ=a²b|a||b|=-1010.2.4.2平面向量数量积的坐标表示、模、夹角1.B.2.D.3.C.4.λ>32.5.(2,3)或(-2,-3).6.[-6,2].7.直角三角形.提示:AB=(3,-2),AC=(4,6),则AB²AC=0,但|AB|≠|AC|.8.x=-13;x=-32或x=3.9.1213,513或-1213,-513.10.正方形.提示:AB=DC,|AB|=|AD|,AB²AD=0.11.当C=90°时,k=-23;当A=90°时,k=113;当B=90°时,k=3±132.2.5平面向量应用举例2.5.1平面几何中的向量方法1.C.2.B.3.A.4.3.5.a⊥b.6.②③④.7.提示:只需证明DE=12BC即可.8.(7,-8).9.由已知:CN=NA,BN=NP,∴AP=NP-NA=BN-CN=BC,同理可证:QA=BC,∴AP=QA,故P,A,Q三点共线.10.连结AO,设AO=a,OB=b,则AB=a+b,OC=-b,AC=a-b,|a|=|b|=r,∴AB²AC=a2-b2=0,∴AB ⊥AC.11.AP=4PM.提示:设BC=a,CA=b,则可得MA=12a+b,BN=a+13b,由共线向量,令PA=mMA,BP=nBN及PA+BP=BA=a+b,解得m=45,所以AP=4PM.2.5.2向量在物理中的应用举例1.B.2.D.3.C.4.|F||s|cosθ.5.(10,-5).6.④⑤.7.示意图略,603N.8.102N.9.sinθ=v21-v22|v1|.(第11题)10.(1)朝与河岸成60°的角且指向上游的方向开.(2)朝与河岸垂直的方向开.11.(1)由图可得:|F1|=|G|cosθ,|F2|=|G|²tanθ,当θ从0°趋向于90°时,|F1|,|F2|都逐渐增大.(2)令|F1|=|G|cosθ≤2|G|,得cosθ≥12,∴0°≤θ≤60°.(第12(1)题)12.(1)能确定.提示:设v风车,v车地,v风地分别表示风对车、车对地、风对地的相对速度,则它们的关系如图所示,其中|v车地|=6m/s,则求得:|v风车|=63m/s,|v风地|=12m/s.(2)假设它们线性相关,则k1a1+k2a2+k3a3=0(k1,k2,k3不全为零),得(k1,0)+(k2,-k2)+(2k3,2k3)=(0,0),有k1+k2+2k3=0,且-k2+2k3=0,可得适合方程组的一组不全为零的解:k1=-4,k2=2,k3=1,所以它们线性相关.(3)假设满足条件的θ存在,则由已知有:(a+b)2=3(a-b)2,化简得,|a|2-4|a||b|cosθ+|b|2=0,令t=|a||b|,则t2-4cosθ²t+1=0,由Δ≥0得,cosθ≤-12或cosθ≥12,故0≤θ≤π3或2π3≤θ≤π时,等式成立.单元练习1.C.2.A.3.C.4.A.5.C.6.C.7.D.8.D.9.C.10.B.11.①②③④.12.-7.13.λ>103.14.0,2.15.53.16.2-2.17.④.18.(1)-13.(2)19.19.(1)(4,2).(2)-41717.提示:可求得MA²MB=5(x-2)2-8;利用cos∠AMB=MA²MB|MA|²|MB|,求出cos∠AMB的值.20.(1)提示:证(a-b)²c=0.(2)k<0,或k>2.提示:将式子两边平方化简.21.提示:证明MN=13MC即可.22.D(1,-1);|AD|=5.提示:设D(x,y),利用AD⊥BC,BD∥BC,列出方程组求出x,y的值.第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式1.D.2.A.3.D.4.6+24.5.cosx-π6.6.cosx.7.-7210.8.121-m2+32m.9.-2732.10.cos(α-β)=1.提示:注意-1≤sinα≤1,-1≤sin β≤1,可得cosα=cosβ=0.11.AD=6013.提示:设∠DAB=α,∠CAB=β,则tanα=32,tanβ=23,AD=5cos(α-β).3.1.2两角和与差的正弦、余弦、正切公式1.A.2.B.3.C.4.2cosx+π6.5.62.6.a2+b2,ba2+b2,aa2+b2.7.-32+36.8.725.9.22-36.10.sin2α=-5665.提示:2α=(α+β)+(α-β).11.tan∠APD=18.提示:设AB=1,BP=x,列方程求出x=23,再设∠APB=α,∠DPC=β,则tanα=32,tanβ=34,而∠APD=180°-(α+β).3.1.3二倍角的正弦、余弦、正切公式1.C.2.C.3.D.4.sinθ2-cosθ2或2sinθ2-π4.5.-36.6.-2cosθ2.7.336625.8.18tan10°.提示:乘以8sin10°8sin10°.9.-12.10.α+2β=3π4.提示:tan2β=125,2β也为锐角.11.tan2α=-34.提示:3α=2α+α,并注意角的范围及方程思想的应用.3.2简单的三角恒等变换(一)1.B.2.A.3.C.4.sin2α.5.1.6.12.7.提示:利用余弦二倍角公式.8.2m4-3m2.9.提示:利用sin2θ2+cos2θ2=1.10.2-3.提示:7°=15°-8°.11.[-3,3].提示:令cosα+cosβ=t,利用|cos(α-β)|≤1,求t的取值范围.3.2简单的三角恒等变换(二)1.C.2.A.3.C.4.π2.5.[-2,2].6.-12.提示:y=12cos2x.7.周期为2π,最大值为2,最小值为-2.8.kπ+π8,kπ+5π8(k∈Z).9.(1,2].10.y=2sin2x-π6-1,最大值为1,最小值为-3,最小正周期为π.11.定义域为x∈Rx≠kπ+π2,k∈Z,值域为[-2,2].提示:y=2sin2xx≠kπ+π2(k∈Z). 3.2简单的三角恒等变换(三)1.B.2.D.3.A.4.90°.5.102;π2.6.2.7.-7.8.5-22,5+22.9.1.提示:“切”化“弦”.10.Smax=4.提示:设∠AOB=θ.11.有效视角为45°.提示:∠CAD=α-β,tanα=2,tanβ=13.单元练习1.D.2.C.3.B.4.D.5.B.6.B.7.B.8.B.9.A.10.D.11.a1-b.12.725.13.1665.14.4.15.-6772.16.-2+308.17.0.18.-tanα.19.2125.20.1625.提示:α-2β=(α-β)-β,且0<α-β<π.21.提示:1-cos2θ=2sin2θ.22.(1)f(x)=3+4cos2x+π3,最小正周期为π.(2)[3-23,7].综合练习(一)1.D.2.C.3.B.4.A.5.A.6.D.7.A.8.D.9.C.10.C11.12.12.0.13.(3,5).14.2sin1.15.41.16.2π.17.②③.18.提示:AB=a+3b,AC=13a+b.19.(1)-13.(2)-83.20.(1)θ=45°.(2)λ=-1.21.6365或-3365.提示:cosα=±45.22.sin2α=-2425;cosβ=-3+4310.提示:β=2kπ+α+π3(k∈Z).综合练习(二)1.A.2.D.3.D.4.A.5.C.6.D.7.D.8.B.9.C.10.C.11.2kπ-5π6,2kπ+π6(k∈Z).12.102.13.(1,-1).14.1.15.5∶1.16.锐角.17.π6或2π3.18.33-410.19.∠ABC=45°.提示:利用向量.20.(1)-1225.(2)-75.21.OD=(11,6).提示:设OD=(x,y),列方程组.22.(1)单调递增区间:23kπ+π6,23kπ+π2(k∈Z),单调递减区间:23kπ+π2,23kπ+5π6(k∈Z).(2)-22,1.。

相关文档
最新文档