7.4平行线的性质课件ppt
合集下载
7.4-平行线的性质(共26张PPT)

★基础过关精练 ★能力提升演练 ★拓展探究训练
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
平行线的性质ppt课件

(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=
∠
BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .
《7.4平行线的性质》课件(共25张PPT)

平行线的性质
复习回顾
平行线的判定方法是什么?
1、同位角相等 2、内错角相等 3、同旁内角互补
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
.交流合作,探索发现
猜一猜∠1和∠2相等吗?
a
1
b
2
c
心动 不如行动
合作交流一
65° c
1
a
2
b
65°
c
1 2
a b
∠1=∠2
定
方
法
的
平行线的性质
由“线”定“角”
平行线的判定
由“角”定 “线”
做一做
如图所示,已知 AB∥CD,∠1=105°
.
内错
∠1与∠2=是__1角05,°
因此∠2_∠同1位= ;
∠1与∠4=是__10角5°, 因此∠4_∠同1=旁内 ;
∠1与∠3是 180°-105° 角,因7此5°∠3=
它的度数时,因不小心将纸片撕破,只剩下如图的一
部分,如果不能延长DC、FE的话,你能帮他设计出多
少种方法可以测出∠A的度数?
D
F G
1 C
2 E
AA
梳 理 知 识 , 颗 粒 归 仓
小结
两直线平行
线的关系
同位角相等
内错角相等
同旁内角互补 性质
判定 角的关系
区平
行
别
线 的
性
与
质 和
平
联行
线
系
的 判
符号语言.: ∵a∥b,
∴ 2+ 4=180°.
.师生互动,典例示范
例 如图,已知直线a∥b, ∠1 = 500,求∠2的度数.
复习回顾
平行线的判定方法是什么?
1、同位角相等 2、内错角相等 3、同旁内角互补
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
.交流合作,探索发现
猜一猜∠1和∠2相等吗?
a
1
b
2
c
心动 不如行动
合作交流一
65° c
1
a
2
b
65°
c
1 2
a b
∠1=∠2
定
方
法
的
平行线的性质
由“线”定“角”
平行线的判定
由“角”定 “线”
做一做
如图所示,已知 AB∥CD,∠1=105°
.
内错
∠1与∠2=是__1角05,°
因此∠2_∠同1位= ;
∠1与∠4=是__10角5°, 因此∠4_∠同1=旁内 ;
∠1与∠3是 180°-105° 角,因7此5°∠3=
它的度数时,因不小心将纸片撕破,只剩下如图的一
部分,如果不能延长DC、FE的话,你能帮他设计出多
少种方法可以测出∠A的度数?
D
F G
1 C
2 E
AA
梳 理 知 识 , 颗 粒 归 仓
小结
两直线平行
线的关系
同位角相等
内错角相等
同旁内角互补 性质
判定 角的关系
区平
行
别
线 的
性
与
质 和
平
联行
线
系
的 判
符号语言.: ∵a∥b,
∴ 2+ 4=180°.
.师生互动,典例示范
例 如图,已知直线a∥b, ∠1 = 500,求∠2的度数.
平行线的性质课件

利用平行线性质解决几何最值问题
平行线定义:在同一平面内,永不 相交的两条直线
几何最值问题:求线段、角度、面 积等几何量的最大值或最小值
添加标题
添加标题
添加标题
添加标题
平行线性质:平行线之间的线段相 等
利用平行线性质解决几何最值问题 的方法:通过平行线之间的线段相 等,找到几何量的最大值或最小值
平行线的性质在解析几 何中的应用
面的交点
平行线与平面 的夹角:平行 线与平面的夹 角为直线与平
面的夹角
平行线与平面的 平行性:平行线 与平面的平行性 为直线与平面的
平行性
总结与思考
总结平行线的性质及其应用
平行线的定义: 在同一平面内, 永不相交的两
条直线
平行线的性质: 平行线之间的 角度相等,平 行线之间的线
段相等
平行线的应用: 在几何证明、 工程测量、建 筑设计等领域
利用平行线性质解决函数问题
平行线与函数的 关系:平行线是 函数的基本性质 之一,可以应用 于求解函数问题
平行线性质的应 用:利用平行线 性质可以求解函 数的最大值、最 小值、极值等问
题
平行线性质的证 明:利用平行线 性质可以 在更高级的数学 领域中也有广泛 的应用,如微积 分、线性代数等
平行线的性质在代数中 的应用
利用平行线性质解决线性方程组问题
平行线性质:两条直线平行,同位角相等
线性方程组:一组线性方程组成的方程组
利用平行线性质解线性方程组:通过观察方程组中的同位角,找出方程组中的平行线, 从而解出方程组
应用实例:求解线性方程组,如3x+2y=5,4x+3y=6,通过观察方程组中的同位角, 找出方程组中的平行线,从而解出方程组
平行线的性质 PPT课件

∴∠C+∠D=180°( ? ) ∴∠ B=∠D ( ? )
同理 ∠A=∠C
D C
平行线性质定理和判定定理的比较
两线直的线平关行系
同位角相等 性质 内错角相等
同角旁内的角关互互系补换。
思考: 1、判定判与定性质的条件与结论有什么关
系?
师生互动,典例示范
例 1:已知:如图,直线b∥a,c//a,∠1, ∠2,
1.如图 AB∥CD, CD ∥EF,
∠1 = ∠2=60 ° ,那么
∠A= 120 ,°
A
∠E= 120°。
160 ° C 2 60 °
E
B D
F
2、如图,AB∥CD, AD∥BC,A 试问∠A=∠C,∠B=∠D 吗?
解:∠A= ∠ C, ∠B=∠D 理由:∵AB∥CD (已知 ) B
∴∠B+∠C=180°( ? ) 又 ∵ AD∥BC (已知)
同位角有什么关系c? a
b
方法一:度量法
65° c
1
a
∠1=∠2 2
b
65°
a∥b
方法二:裁剪拼接法
c a∥b
1
a
2
b
∠1=∠2
任意一条直线截平行线 所得的同位角都相等呢?
性质发现
结论
a
平行线的性质定 b 两条平行线理被1第三条直线所截,
同位角相等.
1 2
c
简写为:两直线平行,同位角相等.
符号语言: ∵a∥b,
a
1
3
b
2
c
性质发现
结论
a
平行线的性质定 b 理2
两条平行线被第三条直线所截,
内错角相等.
同理 ∠A=∠C
D C
平行线性质定理和判定定理的比较
两线直的线平关行系
同位角相等 性质 内错角相等
同角旁内的角关互互系补换。
思考: 1、判定判与定性质的条件与结论有什么关
系?
师生互动,典例示范
例 1:已知:如图,直线b∥a,c//a,∠1, ∠2,
1.如图 AB∥CD, CD ∥EF,
∠1 = ∠2=60 ° ,那么
∠A= 120 ,°
A
∠E= 120°。
160 ° C 2 60 °
E
B D
F
2、如图,AB∥CD, AD∥BC,A 试问∠A=∠C,∠B=∠D 吗?
解:∠A= ∠ C, ∠B=∠D 理由:∵AB∥CD (已知 ) B
∴∠B+∠C=180°( ? ) 又 ∵ AD∥BC (已知)
同位角有什么关系c? a
b
方法一:度量法
65° c
1
a
∠1=∠2 2
b
65°
a∥b
方法二:裁剪拼接法
c a∥b
1
a
2
b
∠1=∠2
任意一条直线截平行线 所得的同位角都相等呢?
性质发现
结论
a
平行线的性质定 b 两条平行线理被1第三条直线所截,
同位角相等.
1 2
c
简写为:两直线平行,同位角相等.
符号语言: ∵a∥b,
a
1
3
b
2
c
性质发现
结论
a
平行线的性质定 b 理2
两条平行线被第三条直线所截,
内错角相等.
《平行线的性质》课件完整版PPT初中数学4

人教版数学七年级下册
平行线的性质
学习目标
1.进一步熟悉平行线的判定方法和性质; 2.运用平行线的性质和判定进行简单的推理和计算; (重点、难点)
c
你会吗?
a
21
34
如图,
b
65
(1)∵ ∠1=_∠_5__(已知)
∴ a ∥ b ( 同位角相等,两直线平行)
(2)∵ ∠3=__∠_5_ (已知)
∴ a ∥ b ( 内错角相等,两直线平行)
C
D
∴ // (平行于同一直线的两直线平行). CD EF 平行线的判定方法有哪三种?他们是先知道什么.
∴∠AGD=180°-∠BAC=180°-70°=110°.
又∵AB∥DE,AB∥CF,
∴∠A+∠ =180 ,∠C+∠ =180 (两直线平行,同旁 1 o 探究:两直线平行,同位角有什么关系?
③∠4+∠7=180o; ④∠3+ ∠5=180°,
2
o
内角互补). (3)∵ a ∥ b (已知)
∴ _____∥_____. (同旁内角互补,两直线平行)
又∵∠A=100°,∠C=110°(已知), 探究:两直线平行,同位角有什么关系?
解:过点E作EF//AB.
∴∠ 1 = 80 °, ∠ 2 = 70 °(等量代换).
(两直线平行,同旁内角互补)
a
1
34
b
2
推导
利用性质1来说明性质2和性质3
已知: a ∥ b ,
a
1
请说明∠2=∠3.
b
34 2
∵ a ∥ b (已知)
∴∠1=∠2( 两直线平行,同位角相等)
∵ ∠1=∠3( 对顶角相等)
平行线的性质
学习目标
1.进一步熟悉平行线的判定方法和性质; 2.运用平行线的性质和判定进行简单的推理和计算; (重点、难点)
c
你会吗?
a
21
34
如图,
b
65
(1)∵ ∠1=_∠_5__(已知)
∴ a ∥ b ( 同位角相等,两直线平行)
(2)∵ ∠3=__∠_5_ (已知)
∴ a ∥ b ( 内错角相等,两直线平行)
C
D
∴ // (平行于同一直线的两直线平行). CD EF 平行线的判定方法有哪三种?他们是先知道什么.
∴∠AGD=180°-∠BAC=180°-70°=110°.
又∵AB∥DE,AB∥CF,
∴∠A+∠ =180 ,∠C+∠ =180 (两直线平行,同旁 1 o 探究:两直线平行,同位角有什么关系?
③∠4+∠7=180o; ④∠3+ ∠5=180°,
2
o
内角互补). (3)∵ a ∥ b (已知)
∴ _____∥_____. (同旁内角互补,两直线平行)
又∵∠A=100°,∠C=110°(已知), 探究:两直线平行,同位角有什么关系?
解:过点E作EF//AB.
∴∠ 1 = 80 °, ∠ 2 = 70 °(等量代换).
(两直线平行,同旁内角互补)
a
1
34
b
2
推导
利用性质1来说明性质2和性质3
已知: a ∥ b ,
a
1
请说明∠2=∠3.
b
34 2
∵ a ∥ b (已知)
∴∠1=∠2( 两直线平行,同位角相等)
∵ ∠1=∠3( 对顶角相等)
平行线ppt课件

02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。
平行线的性质ppt

梯形
包括特殊的等腰梯形和直角梯形,有上下底边平 行和两腰相等的性质。
燕尾形
由两条直线平移后相交形成,具有特定的形状和 性质。
与平行线相关的定理和公式
平行线判定定理
01
包括同位角相等、内错角相等、同旁内角互补等定理,用于判
断两条直线是否平行。
平行线性质定理
02
包括两直线平行同位角相等、内错角相等、同旁内角互补等定
推论2
如果一个平面内的直线与另一个平面内的直线互相平行,则这两个平面互相平行 。
平行线的证明方法
方法1
利用三角形中位线定理证明两 直线平行
方法2
利用四边形对角线相等证四边形 两对边分别平行
方法3
利用三角形相似或全等证明两直线 平行
05
平行线的拓展
与平行线相关的几何图形
平行四边形
包括特殊的菱形、矩形和正方形,具有对边平行 和对边相等的性质。
通过解决与平行线性质相关的问题,学生学会了转化、演绎 推理等数学思想方法。
反思与总结
学生需要反思自己在学习平行线性质过程中的表现,总结经 验,为后续课程做好准备。
对后续课程期待与建议
期待后续课程
本节课结束后,学生对后续课程有所期待,希望继续学习与平行线性质相关 的知识。
对教师的建议
希望教师能够继续引导学生反思和总结学习平行线性质的经验,并鼓励学生 在实际生活中应用数学知识。
THANKS
02
平行线的性质
平行线的公理
平行线的公理一
经过直线外一点,有且只有一条直线与已知直线平行。
平行线的公理二
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的传递性
如果两条直线都与第三条直线平行,那么这两条直线也互 相平行。
包括特殊的等腰梯形和直角梯形,有上下底边平 行和两腰相等的性质。
燕尾形
由两条直线平移后相交形成,具有特定的形状和 性质。
与平行线相关的定理和公式
平行线判定定理
01
包括同位角相等、内错角相等、同旁内角互补等定理,用于判
断两条直线是否平行。
平行线性质定理
02
包括两直线平行同位角相等、内错角相等、同旁内角互补等定
推论2
如果一个平面内的直线与另一个平面内的直线互相平行,则这两个平面互相平行 。
平行线的证明方法
方法1
利用三角形中位线定理证明两 直线平行
方法2
利用四边形对角线相等证四边形 两对边分别平行
方法3
利用三角形相似或全等证明两直线 平行
05
平行线的拓展
与平行线相关的几何图形
平行四边形
包括特殊的菱形、矩形和正方形,具有对边平行 和对边相等的性质。
通过解决与平行线性质相关的问题,学生学会了转化、演绎 推理等数学思想方法。
反思与总结
学生需要反思自己在学习平行线性质过程中的表现,总结经 验,为后续课程做好准备。
对后续课程期待与建议
期待后续课程
本节课结束后,学生对后续课程有所期待,希望继续学习与平行线性质相关 的知识。
对教师的建议
希望教师能够继续引导学生反思和总结学习平行线性质的经验,并鼓励学生 在实际生活中应用数学知识。
THANKS
02
平行线的性质
平行线的公理
平行线的公理一
经过直线外一点,有且只有一条直线与已知直线平行。
平行线的公理二
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的传递性
如果两条直线都与第三条直线平行,那么这两条直线也互 相平行。
《平行线的性质》课件(共21张PPT)【推荐】

A.4个 B.3个直 线所截,默认两直线平行
例 下列说法正确的有 ①两直线被第三条直线所截,同位角相等; ②两直线被第三条直线所截,同旁内角互补; ③两直线平行,同旁内角相等; ④两直线平行,内错角相等
A.4个 B.3个 C.2个 D.1个
错解 B 正解 D
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN. 点拔 本题思路:平行→内错角相等→平行→内错角相等,综合 运用了平行线的性质与判定.
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° C.75° D.85°
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° 解析 如图所示,
C.75°
易错点 看到两直线被第三条直 线所截,默认两直线平行
例 下列说法正确的有 ①两直线被第三条直线所截,同位角相等; ②两直线被第三条直线所截,同旁内角互补; ③两直线平行,同旁内角相等; ④两直线平行,内错角相等
A.4个 B.3个 C.2个 D.1个
错解 B 正解 D
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN.
题型二 平行线性质与判定的综 合运用
例2 如图所示,AB∥CD,∠1=∠2,AM⊥MN,求证:DN⊥MN.
证明 ∵AB∥CD,∴∠BAD=∠ADC, ∵∠1=∠2,∴∠BAD-∠1=∠ADC-∠2,即∠MAD=∠ADN, ∴AM∥DN,∴∠M=∠N, ∵A⊥MN,∴∠M=90°,∴∠N=∠M=90°,∴DN⊥MN. 点拔 本题思路:平行→内错角相等→平行→内错角相等,综合 运用了平行线的性质与判定.
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° C.75° D.85°
题型三 直尺或三角板中的平行线
例3 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数 为( )
A.60° B.65° 解析 如图所示,
C.75°
易错点 看到两直线被第三条直 线所截,默认两直线平行
7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册

所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,
最新人教版七年级数学下册《平行线的性质》优质ppt教学课件

C
∴ AB∥CD.
B F D
5.综合运用,巩固提高
练习2 已知:如图,∠AGD=∠ACB, ∠1=∠2,CD与EF平行吗?为什么?
A
G1D E
C
2 F
B
5.综合运用,巩固提高
理由如下: ∵ ∠AGD =∠ACB ,
∴ GD∥BC.
∵∠1和∠3是内错角, ∴∠1=∠3(两直线平行,内错角相等). C ∵∠1=∠2, ∴∠2=∠3. ∵∠2和∠3是同位角,
2
A 1
43 E
B
D
4.巩固新知,深化理解
例2 如图,已知AB∥CD,AE∥CF,∠A= 39°, ∠C是多少度?为什么?
E F
A
G
C
B D
4.巩固新知,深化理解
E F
A
G
1
B
C
D
解:∵AB∥CD, ∴ ∠C=∠1. ∵ AE∥CF, ∴ ∠A=∠1. ∴∠C=∠A. ∵∠A= 39º, ∴∠C= 39º.
总结
性质1 两条平行线被第三条直线所截,同位角相等. 性质2 两条平行线被第三条直线所截,内错角相等.
性质3 两条平行线被第三条直线所截,同旁内角互补.
自主练习
1.梳理旧知,引入新课 问题1 (1)平行线的性质是什么?
这三个性质中条件和结论分别是什么? 性质1 两直线平行,同位角相等. 性质2 两直线平行,内错角相等. 性质3 两直线平行,同旁内角互补.
性质3 两条平行线被第三条直 线 所截,同旁内角互补.
4.巩固新知,深化理解
例1 如图,平行线AB,CD被直线AE所截.
(3)从∠1=110º可以知道∠4是多少度吗?为什么?
答:∠4=70º.因为AB∥CD , ∠1和∠4是同旁内 角,根据两直线平行,同旁内角互补,得到 ∠1+∠4=180º.因为∠1=110º,所以∠4=70Cº.
云南省大姚县实验中学北师大版(新)八年级数学上册7.4平行线的性质(共13张PPT)

∠A=115°,∠D=100°,梯形另外两 个角各是多少度?为什么? A D
B
C
B层
3、如图,已知直线DE经过点A,DE∥BC, ∠B=44°,∠C=57° A D E ∠DAB等于多少度?
∠EAC等于多少度?
B
C
A层 4、如图,A、B、C、D在同一直线上,
AD∥EF. ∠E=78°时,∠ABE、∠DBE各等于多少度?为什么?
复习回顾检查预习:
1、判断两直线平行的方法有哪些? 两直线平行的性质是什么?它们 之间有什么关系? 2、说出证明“同旁内角互补,两 直线平行”的证明步骤、方法。 3、看课本175页,你能看懂定理 的证明思路吗?
北师大版八年级上册
第七章 平行线的证明 第四节 平行线的性质
云南省大姚县实验中学:赵鹏斌
两直线平行 → ←
判定
证明的一般步骤?
课堂训练整理提高
C层 1 、已知平行线AB、CD被直线AE所截
从∠1=110°,可以知道
C
∠2是多少度ห้องสมุดไป่ตู้为什么?
从∠1=110°,可以知道
A
1 4
2 3
E
∠3是多少度,为什么?
从∠1=110°,可以知道
B
D
∠4是多少度,为什么?
B层
2、如图是梯形有上底的一部分,量得
证明:∵a∥b (已知) ∴∠2=∠3 (两条直线平行,同位角相等) ∵∠1+∠3= 180° (1平角=180°) ∴∠1+∠2=180 ° (等量代换)
合作探究二
1、证明的基本步骤是什么?易错 点有哪些? 2、平行线的条件与性质有什么关 系?
今天的收获
平行的的判定与性质:
《平行线的性质》课件

反向平行线的性质
• 反向平行线具有相反的斜率。 • 反向平行线之间的距离保持不变。
三、平行线的特殊角度
同位角及其性质
• 同位角是两条平行线 之间的对应角,它们
• 相同等 位。 角具有相等的补 角、余角。
内错角及其性质
• 内错角是两条平行线 之间的相交角,它们
• 互内补错。角具有相等的对 顶角。
相关角及其性质
《平行线的性质》PPT课 件
这是一份关于平行线的精彩课件,通过介绍平行线的基本定义、性质、应用、 证明,并进行综合练习,帮助大家深入理解和应用平行线的知识。
一、基本定义
平行线的概念
平行线是永远不会相交的两条直线。
平行线的符号表示
用“//”表示两条线段平行。
二、平行线的性质
同向平行线的性质
• 同向平行线具有相等的斜率。 • 同向平行线之间的距离保持不变。
对平行线的思考与感悟
通过学习平行线的性质,反思几何学对我们日常生活的影响和意义。
• 相关角是两条平行线 之间的内角与外角。
• 相关角之和等于180°。
四、平行线的应用
1
平行线的实际应用
2
例如,在城市规划中,平行线可用于 规划马路的设计和建设。
平行线的应用场景
平行线的应用广泛,如建筑设计、地 图制作等。
五、平行线的证明
平行线的证明方法
通过等角、等比和等边等多种证明方法来证明平行线。
平行线证明例题
通过实例演示如何在几何问题中使用平行线的证明。
六、综合练习
பைடு நூலகம்
1
综合运用平行线的知识解题
通过题目练习,提升对平行线性质的理解和应用能力。
2
平行线的综合练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)经过分析,找出由已知推出求证的途径,写出 证明过程.
根据下列命题,画出图形,并结合图形
写出已知、求证(不写证明过程): 1)垂直于同一直线的两直线平行;
已知:直线b⊥a , c⊥a
b a
c
求证:b∥c
2)一个角的平分线上的点到这个角的两 边的距离相等;
已知:如图,OC是∠AOB的平分线, A F EF⊥OA于F ,
一般情况下,分析的过程不要求写出来,有些题目中,已 经画出了图形,写好了已知,求证,这时只要写出“证明” 一项就可以了.
谈谈你的收获?
1.平行线的性质:
公理:两直线平行,同位角相等.
定理:两直结平行,内错角相等.
定理:两直线平行,同旁内角互补.
2.证明的一般步骤 (1)根据题意,画出图形.
(2)根据条件、结论,结合图形,写出已知、求证。
做一做:
两条平行线被第三条直线所截, 同旁内角互补.
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角.
a
3 1
b
2
求证:∠1+∠2=180°
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180°
a
3 1
b
2
证法1:
a//b(已知)
∠3=∠2(两直线平行,同位角相等) ∠1+∠3=180°(1平角=180°) ∠1+∠2=180°(等量代换)
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180°
a 3 1
b
2
证法2:
a//b
(已知)
∠3=∠2 (两直线平行,内错角相等) ∠1+∠3=180°(1平角=180°) ∠1+∠2=180°(等量代换)
EG⊥OB于G O
E G
B
C
求证:EF=EG
3)如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 已知:如图,直线a,b,c被直线d所 截,且a∥b,c∥b, 求证:a∥c
d a b c
再
见 !
证明的一般步骤:
第一步:根据题意,画出图形. 先根据命题的条件即已知事项,画出图形,再把命题的 结论即求证的需要在图上标出必要的字母或符号,以便于叙 述或推理过程的表达. 第二步:根据条件、结论、结合图形,写出已知、求证。 把命题的条件化为几何符号的语言写在已知中,命题的 结论转化为几何符号的语言写在求证中. 第三步:经过分析,找出由已知推出求证的途径,写出证明 过程.
c
1
2
如果我们把平行线的判 定定理的条件和结论互换之 后得到的命题是真命题吗?
两直线平行,同位角相等。
议一议:
利用这个公理,你 能证明哪些熟悉的结论?
两直线平行,内错角相等。 两直线平行,同旁内角互补。
想一想:
(1)根据“两条平行线被第三条直线所截,内 错角相等”。你能作出相关的图形吗? (2)你能根据所作的图形写出已知、求证吗?
八年级
上 册
义务教育课程标准实验教科书
几何的三种语言
☞ 平行线的判定
c
公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
判定定理1: 内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
a b
a
b
2
1
c
1 2
判定定理2: a 同旁内角互补,两直线平行.b 0 ∵∠1+∠2=180 , ∴ a∥b.
(3)你能说说证明的思路吗? 已知,如图, 直线a//b, ∠1和∠2 是直线a、b被直线c 截出的内错角。 求证:∠1=∠2
c 3 a 1
2 b
已知:如图,直线a∥b, ∠1和∠2 是直线a、b被直线 c截出的内错角 . 求证:∠1=∠2
证明:∵a∥b ( 已知 )
1 2
c 3 a
b
∴∠3=∠2 ( 两直线平行,同位角相等 ) ∵ ∠3=∠1 ( 对顶角相等 ) ∴∠1=∠2 ( 等量代换 )
根据下列命题,画出图形,并结合图形
写出已知、求证(不写证明过程): 1)垂直于同一直线的两直线平行;
已知:直线b⊥a , c⊥a
b a
c
求证:b∥c
2)一个角的平分线上的点到这个角的两 边的距离相等;
已知:如图,OC是∠AOB的平分线, A F EF⊥OA于F ,
一般情况下,分析的过程不要求写出来,有些题目中,已 经画出了图形,写好了已知,求证,这时只要写出“证明” 一项就可以了.
谈谈你的收获?
1.平行线的性质:
公理:两直线平行,同位角相等.
定理:两直结平行,内错角相等.
定理:两直线平行,同旁内角互补.
2.证明的一般步骤 (1)根据题意,画出图形.
(2)根据条件、结论,结合图形,写出已知、求证。
做一做:
两条平行线被第三条直线所截, 同旁内角互补.
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角.
a
3 1
b
2
求证:∠1+∠2=180°
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180°
a
3 1
b
2
证法1:
a//b(已知)
∠3=∠2(两直线平行,同位角相等) ∠1+∠3=180°(1平角=180°) ∠1+∠2=180°(等量代换)
c
已知:如图,直线a//b,∠1 和∠2是直线a,b被直线c截出 的同旁内角. 求证:∠1+∠2=180°
a 3 1
b
2
证法2:
a//b
(已知)
∠3=∠2 (两直线平行,内错角相等) ∠1+∠3=180°(1平角=180°) ∠1+∠2=180°(等量代换)
EG⊥OB于G O
E G
B
C
求证:EF=EG
3)如果两条直线都和第三条直线平行, 那么这两条直线也互相平行。 已知:如图,直线a,b,c被直线d所 截,且a∥b,c∥b, 求证:a∥c
d a b c
再
见 !
证明的一般步骤:
第一步:根据题意,画出图形. 先根据命题的条件即已知事项,画出图形,再把命题的 结论即求证的需要在图上标出必要的字母或符号,以便于叙 述或推理过程的表达. 第二步:根据条件、结论、结合图形,写出已知、求证。 把命题的条件化为几何符号的语言写在已知中,命题的 结论转化为几何符号的语言写在求证中. 第三步:经过分析,找出由已知推出求证的途径,写出证明 过程.
c
1
2
如果我们把平行线的判 定定理的条件和结论互换之 后得到的命题是真命题吗?
两直线平行,同位角相等。
议一议:
利用这个公理,你 能证明哪些熟悉的结论?
两直线平行,内错角相等。 两直线平行,同旁内角互补。
想一想:
(1)根据“两条平行线被第三条直线所截,内 错角相等”。你能作出相关的图形吗? (2)你能根据所作的图形写出已知、求证吗?
八年级
上 册
义务教育课程标准实验教科书
几何的三种语言
☞ 平行线的判定
c
公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
判定定理1: 内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b.
a b
a
b
2
1
c
1 2
判定定理2: a 同旁内角互补,两直线平行.b 0 ∵∠1+∠2=180 , ∴ a∥b.
(3)你能说说证明的思路吗? 已知,如图, 直线a//b, ∠1和∠2 是直线a、b被直线c 截出的内错角。 求证:∠1=∠2
c 3 a 1
2 b
已知:如图,直线a∥b, ∠1和∠2 是直线a、b被直线 c截出的内错角 . 求证:∠1=∠2
证明:∵a∥b ( 已知 )
1 2
c 3 a
b
∴∠3=∠2 ( 两直线平行,同位角相等 ) ∵ ∠3=∠1 ( 对顶角相等 ) ∴∠1=∠2 ( 等量代换 )