人教版八年级上册数学 【几何模型三角形轴对称】试卷易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册数学【几何模型三角形轴对称】试卷易错题(Word版含答
案)
一、八年级数学全等三角形解答题压轴题(难)
1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.
(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5
Q
(厘米/秒);(2)点P、Q
在AB边上相遇,即经过了80
3
秒,点P与点Q第一次在AB边上相遇.
【解析】
【分析】
(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得
△BPD≌△CQP;
②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;
(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x
秒,即可列出方程15
6220
2
x x,解方程即可得到结果.
【详解】
(1)①因为t=1(秒),
所以BP=CQ=6(厘米)
∵AB=20,D为AB中点,
∴BD=10(厘米)
又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD
∵AB=AC,
∴∠B=∠C,
在△BPD 与△CQP 中,
BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩
, ∴△BPD ≌△CQP (SAS ),
②因为V P ≠V Q ,
所以BP ≠CQ ,
又因为∠B =∠C ,
要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,
故CQ =BD =10.
所以点P 、Q 的运动时间84663
BP t (秒), 此时107.54
3Q CQ V t (厘米/秒).
(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程
设经过x 秒后P 与Q 第一次相遇,依题意得
1562202x x , 解得x=803
(秒) 此时P 运动了
8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48,
所以点P 、Q 在AB 边上相遇,即经过了
803
秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】
此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.
2.(1)如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点.且∠EAF =60°.探究图中线段EF ,BE ,FD 之间的数量关系.
小明同学探究的方法是:延长FD 到点G .使DG =BE .连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,
他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是BC ,CD 上的点,且∠EAF 是∠BAD 的二分之一,上述结论是否仍然成立,并说明理由.
(3)如图3,四边形ABCD 是边长为5的正方形,∠EBF =45°,直接写出三角形DEF 的周长.
【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.
【解析】
【分析】
(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,
∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.
(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,
∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.
(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到
EF=FG,最后求三角形的周长即可.
【详解】
解答:(1)解:如图1,延长FD到G
,使得DG=DC
在△ABE和△ADG中,
∵
DC DG
B ADG AB AD
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,
∵∠EAF=1
2
∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,
在△AEF和△GAF中,