分数除法的意义和法则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计示例
分数除法的意义和计算法则
一、复习引新
1.说出下面各数的倒数。
0.3 6
2.已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)
二、新授教学
(一).教学分数除法的意义(课件一下载)
①每人吃半块月饼,4个人一共吃多少块月饼?
半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()
②两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
③两块月饼,分给每人半块,可以分给几个人?
列式后,说一说结果是多少?你是如何得出结果的?
④组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
⑤练习反馈。
根据:,写出,
(二).教学分数除以整数
1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)
①求每段长多少米怎样列算式?
②以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
③、教师板书整理。
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
1.计算下面各题:
学生独立完成,教师巡视,进行个别辅导。
2.请同学求未知数
①②
3.判断。
①分数除法的意义与整数除法的意义相同。()
②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
③()
④()
⑤()
4.解答下面各题。
①把平均分成4份,每份是多少?
②什么数乘以6等于?
③一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
练习七 1、2、3、4
六、板书设计
教学设计示例
一个数除以分数
教学目标:
1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解“已知一个数几分之几是多少,求这个数”的数量关系。
2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的文字叙述题。
3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力。
教学重点:使学生理解并掌握一个数除以分数的计算法则。
教学难点:用方程或算术方法解答“已知一个数的几分之几是多少,求这个数”的文字叙述题。
教学过程
一、复习引新
1.口算下面各题
2.口答分数除以整数的计算方法。
3.一个数的5倍是30,求这个数。
要求学生独立完成,然后集体订正。
二、讲授新课
1.教学例2
例2 一辆汽车小时行驶18千米,1小时行驶多少千米?
师:题中已知什么,求什么,怎样列式?
质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(出示课题)。
师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出“小时行18千米?”。(出示课件三下载)
观察:从图上看1小时里有几个小时?(5个小时)
请同学们推想:要想求出5个小时行驶多少千米?就必须先求出什么呢?(小时行的路程)
再启发学生回答:小里有2个小时,2个小时行18千米,用就可以求出小时行驶的千米数,那么,再怎样就能求出1小时行驶的千米数呢?(再乘以5)师生边议论板书:
请同学叙述中间转变的道理,试着总结计算方法。
2.教学例3:
例3 小刚小时走了千米,他1小时走多少千米?
分析:已知什么,求什么,怎样列式:。
比较:和刚才的那道题目哪儿不一样?
讨论:这道题如何解答,你从中悟出了什么道理?(小组为单位讨论)
报告:求出小时走的,1小时里有10个小时,所以再乘以10就求出1小时走的千米数。
推导过程:
(千米)
在这一过程中什么变了,什么没变?
3.通过以上两道例题的学习,我们共同来讨论分数除法的法则。
师:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了方便于叙述,我们把被除数称为甲数,除数称为那乙数。
讨论法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
4.反馈练习
5.教学例4
例4 一个数的是,这个数是多少?
方法(一)解:设这个数为。
方法(二)
分析:方法(一)根据什么?