机械加工论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

首钢技师学院成教学院

毕业设计

设计题目:机械加工

年级:14级

专业:机电一体化

学生姓名:李阳

指导老师:XXX

日期:2016年5月30日

绪论

毕业设计是大学中的一项重要内容,是完成教学计划达到教学目标,是培养我创新能力的重要环节;也是自己知识和能力深化和升华的重要过程。

本毕业设计应达到以下教学目的:

1、进一步加深我对机械制造工艺学理论知识的理解;

2、培养我的综合应用机械制造工艺学和其他多门课程的理论知识解决实际问题的能力;培养学生的实践和实际动手能力、提高我的全面素质。

3、通过查阅相关手册,掌握获取工程数据的方法,提高我收集信息、对信息进行价值判断、信息整理、信息加工的能力;

4、培养我制订机械加工工艺规程的原则、步骤和方法;

5、培养我掌握机床夹具设计的基本原理、方法和步骤,进一步提高我的工程设计能力;

6、培养我的编写技术文件的能力。

7、为即将走上工作岗位的我打下一个良好的基础

摘要

1、主轴零件的结构特点

1)主轴零件是CA6140车床中的关键零件之一,主要用以传递旋转运动和扭矩,支撑传动零件并承受载荷。

2)主轴零件是回转体零件,既是阶梯轴又是空心轴,

3)主轴长径比小于12,所以为刚性轴

4)主轴零件的主要加工表面是内、外旋转表面,次要表面有键槽、花键、螺纹和横向孔等。

2、主轴结构的设计要求

1)合理的结构设计。

2)足够的刚度。

3)具有一定的尺寸、形状、位置精度和表面质量。

4)具有足够的耐磨性、抗振性及尺寸稳定性。

5)足够的抗疲劳强度。

目录

1、零件的结构特点及设计要求································

2、CA6140车床主轴技术要求及功用···························

3、零件毛坯的选择及热处理··································

4、基准的选择··············································

5、工序加工中的主要问题····································

6、加工阶段的划分··········································

7、加工工序的安排和工序的确定······························

8、工序具体内容的确定······································

9、指定工序数控加工编程····································

10、零件的检验·············································

11、参考文献···············································

12、致谢···················································

1、零件的结构特点及设计要求

1、主轴零件的结构特点

1)主轴零件是CA6140车床中的关键零件之一,主要用以传递旋转运动和扭矩,支撑传动零件并承受载荷。

2)主轴零件是回转体零件,既是阶梯轴又是空心轴,

3)主轴长径比小于12,所以为刚性轴

4)主轴零件的主要加工表面是内、外旋转表面,次要表面有键槽、花键、螺纹和横向孔等。

5)机械加工工艺主要是车削、磨削,其次是铣削和钻削。 2、主轴结构的设计要求 1)合理的结构设计。 2)足够的刚度。 3)具有一定的尺寸、形状、位置精度和表面质量。 4)具有足够的耐磨性、抗振性及尺寸稳定性。 5)足够的抗疲劳强度。

2、CA6140车床主轴技术要求及功用

附件1为CA6140车床主轴零件图。由零件图可知,该主轴呈阶梯状,其上有安装支承轴承、传动件的圆柱、圆锥面,安装滑动齿轮的花键,安装卡盘及顶尖的内外圆锥面,联接紧固螺母的螺旋面,通过棒料的深孔等。下面分别介绍主轴各主要部分的作用及技术要求:

1、支承轴颈主轴二个支承轴颈A、B圆度公差为0.005mm,径向跳动公差为0.005mm;而支承轴颈1∶12锥面的接触率≥70%;表面粗糙度Ra为0.4mm;支承轴颈尺寸精度为IT5。因为主轴支承轴颈是用来安装支承轴承,是主轴部件的装配基准面,所以它的制造精度直接影响到主轴部件的回转精度。

2、端部锥孔主轴端部内锥孔(莫氏6号)对支承轴颈A、B的跳动在轴端面处公差为0.005mm,离轴端面300mm处公差为0.01 mm;锥面接触率≥70%;表面粗糙度Ra为0.4mm;硬度要求HRC45~50。该锥孔是用来安装顶尖或工具锥柄的,其轴心线必须与两个支承轴颈的轴心线严格同轴,否则会使工件(或工具)产生同轴度误差。

3、端部短锥和端面头部短锥C和端面D对主轴二个支承轴颈A、B的径向圆跳动公差为0.008mm;表面粗糙度Ra为0.8mm。它是安装卡盘的定位面。为保证卡盘的定心精度,该圆锥面必须与支承轴颈同轴,而端面必须与主轴的回转中心垂直。

4、空套齿轮轴颈空套齿轮轴颈对支承轴颈A、B的径向圆跳动公差为0.015 mm。由于该轴颈是与齿轮孔相配合的表面,对支承轴颈应有一定的同轴度要求,否则引起主轴传动啮合不良,当主轴转速很高时,还会影响齿轮传动平稳性并产生噪声。

5、螺纹主轴上螺旋面的误差是造成压紧螺母端面跳动的原因之一,所以应控制螺纹的加工精度。当主轴上压紧螺母的端面跳动过大时,会使被压紧的滚动轴承内环的轴心线产生倾斜,从而引起主轴的径向圆跳动。

3、零件毛坯的选择及热处理

1、毛坯的形式

毛坯的制造方法根据使用要求和生产类型而定。毛坯形式有棒料和磨模锻两种。前者适于单件小批生产,尤其适用于光滑轴和外圆直径相差不大的阶梯轴,对于直径较大的阶梯轴则往往采用锻件。锻件还可获得较高的抗拉、抗弯和抗扭强度。单件小批生产一般采用自由锻,批量生产则采用模锻件,大批量生产时若采用带有贯穿孔的无缝钢管毛坯,能大大节省材料和机械加工量。综上所述,我选择模锻毛坯。

2、毛坯的尺寸确定

毛坯尺寸的确定查表得粗加工余量7mm,半精加工余量 1.6mm,精加工余量0.4mm.

3、主轴的材料的选择

主轴零件应根据不同的工作情况,选择不同的材料和热处理规范。一般主轴零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。转速较高的主轴零件,一般选用40Cr,经过调质和表面淬火处理,使其具有较高的综合力学性能。45钢是普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差。综上所述,主轴零件材料我选择40Cr。

4、热处理工艺的制定和安排

选择合适的材料并在整个加工过程中安排足够和合理的热处理工序,对于保证主轴的力学性能、精度要求和改善其切削加工性能非常重要。车床主轴的热处理主要包括:

1)毛坯热处理车床主轴的毛坯热处理一般采用正火,其目的是消除锻造应力,细化晶粒,并使金属组织均匀,以利于切削加工。

2)预备热处理在粗加工之后半精加工之前,安排调质处理,目的是获得均匀细密的回火索氏体组织,提高其综合力学性能,同时,细密的索氏体金相组织有利于零件精加工后获得光洁的表面。

3)最终热处理主轴的某些重要表面(如Φ90g5轴颈、锥孔及外锥等)需经高频淬火。最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。

4、基准的选择

1、粗基准的选择

为取得两中心孔作为精加工的定位基准,所以机械加工的第一道工序是铣两端面中心孔。为此可选择前、后支撑轴颈(或其近处的外圆表面)作为粗基准。这样,当反过来再用中心孔定位,加工支撑轴颈时,可以获得均匀的加工余量,有利于保证这两个高精度轴颈的加工精度。

2、精基准的选择

为了避免基准重合误差,考虑工艺基准与设计基准和各工序基准的统一,以及尽可能在一次装夹中加工较多的工作表面,所以在主轴精加工的全部工序中(二端锥孔面本身加工时除外)均采用二中心孔位定位基准。主轴中心通孔钻出以后,远中心孔消失,需要采用锥堵,借以重新建立定位精度(二端中心孔)。

中心孔在使用过程中的磨损会影响定位精度,故必须经常注意保护并及时保修。特别是在关键的精加工工序之前,为了保证和提高定位精度,均需要重新修整中心孔。使用锥堵时应注意:当锥堵装入中心孔以后,在使用过程中,不能随意拆卸和更换,都会引起基准的位置变动,从而造成误差。

3、基准的转换

由于主轴的主要轴颈和大端锥孔的位置精度要求很高,所以在加工过程中药采用互换基准的原则,在基准相互转换的过程中,精度逐步得到提高。

1)、以轴颈位粗基准加工中心孔;

2)、以中心孔为基准,粗车支承轴颈等外圆各部;

3)、以支承轴颈为基准,加工大端锥孔;

4)、以中心孔(锥堵)为基准,加工支承轴颈等外圆各部;

5)、以支撑轴颈位基准,粗磨大端锥孔;

6)、以中心孔为(重配锥堵)为基准,加工支承轴颈等外圆各部;

7)、以打断支撑轴颈和φ75h6外圆表面为基准,粗磨打断锥孔。

主轴外圆表面的加工,应该以顶尖孔作为统一的定位基准。但在主轴的加工过程中,岁着通孔的加工,作为定位基面的中心孔消失,工艺上常采用带有中心孔的锥堵到主轴的两端孔中,如图5-4所示,让锥堵的顶尖其附加定位基准的作用。

5、工序加工中的主要问题

1、锥堵和锥套心轴的使用

对于空心的轴类零件,当通孔加工后,原来的定位基准——顶尖孔已被破坏,此后必须重新建立定位基准。对于通孔直径较小的轴,可直接在孔口倒出宽度不大于2mm的60度锥面,代替中心孔。而当通孔直径较大时,则不宜用倒角锥面代替,一般都采用锥堵或锥堵心轴的顶尖孔做为定位基准。

2、使用锥堵或锥堵心轴时应注意以下问题。

1)一般不宜中途更换或拆装,以免增加安装误差。

2)锥堵心轴要求两个锥面应同轴,否则拧紧螺母后会使工件变形。先图所示的锥堵心轴结构比较合理,其左端锥堵与拉杆心轴为一体,其锥面与顶尖孔的同轴度较好,而右端有球面垫圈,拧紧螺母时,能保证左端锥堵与孔配合良好,使锥堵的锥面和工件的锥孔以及拉杆心轴上的顶尖孔有较好的同轴度。

工序双托图

主轴各外圆表面的精加工和光整加工

3、主轴的精加工都是用磨削的方法,安排在最终热处理工序之后进行,用以纠正在热处理中产生的变形,最后达到所需的精度和表面粗糙度。磨削加工一般能达到的经济精度和经济表面粗糙度为IT16和Ra 0.8~0.2μm。对于一般精度的车床主轴,磨削是最后的加工工序。而对于精密的主轴还需要进行光整加工。

4、光整加工用于精密主轴的尺寸公差等级IT5以上或表面粗糙度低于Rɑ0.1μm 的加工表面,其特点是:

1)加工余量都很小,一般不超过0.2mm。

2)采用很小的切削用量和单位切削压力,变形小,可获得很细的表面粗糙度。3)对上道工序的表面粗糙度要求高。一般都要求低于Rɑ0.2μm,表面不得有较深的加工痕迹。

4)除镜面磨削外,其他光整加工方法都是“浮动的”,即依靠被加工表面本身自定中心。因此只有镜面磨削可部分地纠正工件的形状和位置误差,而研磨只可部分地纠正形状误差。其它光整加工方法只能用于降低表面粗糙度。

由于镜面磨削的生产效率高。且适应性广,目前已广泛应用在机床主轴的光整加工中。

- 9 -

6、加工阶段的划分

主轴加工过程中的加工工序和热处理工序均会不同程度的产生加工误差和应力,因此要划分加工阶段。主轴加工基本上划分为以下三个阶段。

1、粗加工阶段

1)毛坯处理:备料,锻造,热处理(正火)

2)粗加工:工序4~6。锯除多余部分,铣端面、钻中心孔和荒车外圆等目的:切除大部分余量,接近最终尺寸,只留少量余量,及时发现缺陷。

2、半精加工阶段

1)半精加工前热处理:工序7。

2)半精加工:工序8~13。车工艺锥面(定位锥孔) 半精车外圆端面和钻深孔等

3)精加工:精磨外圆和内外锥面以保证主轴最主要表面的精度。

详细过程见工序卡

7、加工工序的安排和工序的确定

1、加工顺序方案确定具有空心和内锥特点的轴类零件,在考虑支承颈,一般轴颈和内锥等主要表面的加工顺序时,可有以下几种方案。

1)、外表面粗加工→钻深孔→外表面精加工→锥孔粗加工→锥孔精加工

2)、外表面粗加工→钻深孔→锥孔粗加工→锥孔精加工→外表面精加工

3)、外表面粗加工→钻深孔→锥孔次加工→外表面精加工→锥孔精加工

针对CA6140车床主轴的加工顺序来说,可做如下分析比较:

第一方案:在锥孔粗加工时,由于要用已精加工过的外圆表面作基准面,会破坏外圆表面的精度和粗糙度,所以此方案不宜采用。

第二方案:在精加工外圆表面时,还要再插上锥堵,这样会破坏锥孔精度。另外,在加工锥孔时不可避免的会有加工误差(锥堵本身误差等就会造成外圆表

面和内锥孔的不同轴,故此方案也不宜采用)

工序的确定要按加工顺序进行,应当掌握两个原则:

1)工序中的定位基准面要安排在该工序之前加工。

2)对个表面的加工要粗、精分开,先粗后精,多次加工,已逐步提高其精度和粗糙度。主要表面的精加工应安排在最后。为了改善金属组织和加工性能而安排的热处理工序,如退火、正火等,一般应安排在机械加工之前。为了提高零件的机械性能和消除内应力而安排的热处理工序,如调质、时效处理等,一般应安排在粗加工之后,精加工之前。

3、工艺路线

该主轴零件结构较为复杂,其中涉及到外圆、端面、孔、锥孔、花键、键槽等加工,考虑加工的方便与精确度等因素,制定出表1所示加工方法和加工工艺过程

8、工序具体内容的确定

1、确定工序尺寸

由于主轴零件中多次加工的表面,如各内、外圆柱面、端面等使用的工序基准、定位基准、测量基准与设计基准重合,因此各工序尺寸只与加工余量有关,即各

表面工序尺寸只须在设计尺寸基础上累计加上加工余量即可。具体尺寸参见表2所示:

2、加工设备与工艺装备的选择

1)机床选择

从整个主轴零件的加工工艺过程分析可知其加工内容主要是粗车、半精车、精车、粗磨、半精磨及精磨等,各工序加工内容不多,零件外廓尺寸不是太大,因此多数情况下可以选用CA6140卧式车床

2)夹具选择

由于笨零件为长轴类零件,加工工序内容又主要是车、铣、钻、磨,因此夹具主要采用三爪自定心卡盘。

3)刀具选择

由于主轴材料我选用40cr,所以在CA6140卧式车床上加工时,选用硬质合金刀。

9、指定工序数控加工编程

本工序见下图

加工原点P

G71(外圆粗车循环)W(被吃刀量)R(退刀量)

G71 P(精加工开始程序段的段号) Q(粗加工结束程序段的段号)U(X轴向精加工余量) W(Z轴向精加工余量)

F(f)

G70(精加工循环)

10、零件的检验

主轴零件在加工过程中和加工完以后都要按工艺规程的技术要求进行检验。检验的项目包括表面粗糙度、硬度、尺寸精度、表面形状精度和相互位置精度。

1、表面粗糙度和硬度的检验

硬度是在热处理之后用硬度计抽检。

表面粗糙度一般用样块比较法检验,对于精密零件可采用干涉显微镜进行测量。

2、精度检验

精度检验应按一定顺序进行,先检验形状精度,然后检验尺寸精度,最后检验位置精度。这样可以判明和排除不同性质误差之间对测量精度的干扰。

1)形状精度检验

车床主轴的形状误差主要是指圆度误差和圆柱度误差。

圆度误差为轴的同一截面内最大直径与最小直径之差。一般用千分尺按照测量直径的方法即可检测。精度高的轴需用比较仪检验。

圆柱度误差是指同一轴向剖面内最大直径与最小直径之差,同样可用千分尺检测。弯曲度可以用千分表检验,把工件放在平板上,工件转动一周,千分表读数的最大变动量就是弯曲误差值。

2)尺寸精确检验

在单件小批生产中,轴的直径一般用外径千分尺检验。精度较高(公差值小于0.01mm)时,可用杠杆卡规测量。台肩长度可用游标卡尺、深度游标卡尺和深度千分尺检验。

大批大量生产中,为了提高生产效率常采用极限卡规检测轴的直径。长度不大而精度又高的工件,也可用比较仪检验。

3)位置精度检验

为提高检验精度和缩短检验时间,位置精度检验多采用专用检具,如图所示。检验时,将主轴的两支承轴颈放在同一平板上的两个V型架上,并在轴的一端用挡铁、钢球和工艺锥堵挡住,限制主轴沿轴向稳动。两个V型架中有一个的高度时可调的。测量时先用千分表调整轴的中心线,使它与测量平面平行。平板的倾斜角一般是15°,使工件轴端靠自重压向钢球。

12、致谢

本次的毕业设计,使我对这两年总体知识进行了一次总的复习,同时也对自身在专业领域的不足有了一个总体认识,以方便日后的更好学习,不断完善和充实自己,通过老师的讲解,也明白了很多书本上没有的实际工作经验为以后的工作打下一个坚实的基础。

通过两个多月的忙碌,这次毕业设计已经基本完成,本次的设计得以完成,在这里首先要感谢我的指导老师端木老师和毕老师,,在设计过程中,遇到了种种困难,有了老师的指导,使得这些困难才能迎刃而解。除了佩服两位老师的专业水平外,他们的作风,精神更让我敬佩、

两年的大学生活即将结束,也许我再也不会再有机会进入校园深入的学习,我将不会有机会再接受文化的熏陶,我将不会再有机会聆听各位尊敬师长的教诲,在将要离开的时候,我十分感谢南京广电学校给我提供了一个培养我各方面能力舞台。在这两年里使我得到了更大的发展,也更加清楚地认识了自己,明白了自己将来的人生目标。

相关文档
最新文档