高等数学习题2-1答案
选修2-1数学课后习题答案(全)

新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题. 否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题. 逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题. 否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径. 可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=.所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(3)1≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等. 逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -. 由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650xy x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b +=. 因为直线l 经过点(3,4)P ,所以341a b += 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E, F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =,则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF =.2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=,椭圆2211612x y +=的离心率是12,12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5,因为35>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得x = 所以,点P的坐标是(1)±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP < 根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x m x +==-.(第7题)因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②. 将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③化简方程③.先移项,再两边分别平方,并整理,得 12x + ……④将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,(第412= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a = 所以236927b=-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF 的四等分点, ,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =.所以,a =又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =; 4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得 222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x =-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===. 4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x = 把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,3不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得3x =± 则321y =±=± 因为OB k =,OA k = 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,(第8则 2112y px =,2222y px =. 又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-.由题意,得2AM BM k k -=,所以,2(1)11y yx x x -=≠±+-,化简,得2(1)(1)x y x =--≠±第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以 b ==用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. (第12、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=- 令 0∆<,解得k >k <因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为2k >,或2k <- 6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为)2py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =-把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =-代入)2p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-+,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 m =所以,直线l 的方程为2y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠- 由题意,得AC BCk k m =. 所以,(5)55y ym x x x ⨯=≠±+-化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-;当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d. 此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.(第12题)设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12243PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a =±. 所以,点P 的坐标是2(,)bc a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,2a c =. 由已知及1F A a c =+,得 105a c +=所以 (12)105c += 5c =所以,10a =,5b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠- 由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=.2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++.练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,3DB CM DB CM DB CM-+⋅<>===⋅习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示.(第12、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N .1(1,1,)2CM =-,11(1,1,)2D N =-所以2312CM ==,21312D N ==111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22-习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)2247u v u v⋅=-,α与β相交,交角的余弦等于2247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒= ∴68CD =(第3练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '=3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O .∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,21MN AD ⋅== 1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥.因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++ 11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,3AE AO ⋅=1cos 3θ===,sin 3θ=点O 到平面ABC的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O ,2D ,1(0,,0)2B ,3(0,,0)2C ,(0,0,)2A .∴3((4DO DA ⋅=-⋅=,18DO DA⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)()022BC DA ⋅=⋅--=. 所以,AD 与BC 所成角等于90︒. (3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,022x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=. 7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26. 解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+. (2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+ 9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=, 所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD == 解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ MNθ⋅====⋅, 45θ=︒. 习题 3.2 B 组(P113)1、解:12222ABC S ∆=⨯⨯=,()224502AD BE AB BDBE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M,,0)N . 2221)1MN a =-=-+,MN =(2)2211()22a a -+=-+,当2a =时,MN 的长最小.。
高等数学练习答案2-1

习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解 在时间间隔[t 0, t 0+∆t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω, 故t 0时刻的角速度为)()()(l i m l i m l i m 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+∆t ]内, 温度的改变量为∆T =T (t +∆t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(, 故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆. 3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义.解 f (x +∆x )-f (x )表示当产量由x 改变到x +∆x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +∆x 时单位产量的成本. xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本. 4. 设f (x )=10x 2, 试按定义, 求f '(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x xx x x x .5. 证明(cos x )'=-sin x .解 xx x x x x ∆-∆+='→∆cos )cos(lim )(cos 0 xx x x x ∆∆∆+-=→∆2s i n )2s i n (2lim 0 x x x x x x s i n ]22s i n )2s i n ([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000; 解 xx f x x f A x ∆-∆-=→∆)()(lim 000 )()()(lim 0000x f xx f x x f x '-=∆--∆--=→∆-. (2)A xx f x =→)(lim 0, 其中f (0)=0, 且f '(0)存在; 解 )0()0()0(lim )(lim 00f xf x f x x f A x x '=-+==→→. (3)A hh x f h x f h =--+→)()(lim 000. 解 hh x f h x f A h )()(lim 000--+=→ hx f h x f x f h x f h )]()([)]()([lim 00000----+=→ h x f h x f h x f h x f h h )()(lim )()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0).7. 求下列函数的导数:(1)y =x 4;(2)32x y =;(3)y =x 1. 6;(4)xy 1=; (5)21x y =; (6)53x x y =;(7)5322x x x y =; 解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x x y . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x x y . (5)3222)()1(---='='='x x xy . (6)511151651653516516)()(x x x x x y =='='='-. (7)651616153226161)()(--=='='='x x x x x x y . 8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s )时的速度. 解v =(s )'=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0.证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(l i m 0)0()(l i m 0)0()(l i m )0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =π. 解 因为y '=cos x , 所以斜率分别为2132c o s 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式. 解y '=-sin x , 233sin 3-=-='=ππx y , 故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y . 12. 求曲线y =e x 在点(0,1)处的切线方程.解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为y -1=1⋅(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线.14. 讨论下列函数在x =0处的连续性与可导性:(1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=000 1sin 2x x x x y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 000=-==---→→→x x y x x x , 0sin lim |sin |lim lim 000===+++→→→x x y x x x , 所以函数在x =0处连续.又因为1s i n l i m 0|0s i n ||s i n |l i m 0)0()(l i m )0(000-=-=--=--='---→→→-xx x x x y x y y x x x , 1s i n lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续. 又因为01s i n l i m 01s i n l i m 0)0()(l i m 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数⎩⎨⎧>+≤=1 1 )(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值?解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b , 所以要使函数在x =1处连续, 必须a +b =1 .又因为当a +b =1时211l i m )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=0 0 )(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在? 解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f '(x ) . 解 当x <0时, f (x )=sin x , f '(x )=cos x ;当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→x x x f x f x x , 所以f '(0)=1, 从而 f '(x )=⎩⎨⎧≥<0 10 cos x x x . 18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为 )(02020x x x ay y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x a x y x =+=, 为切线在x 轴上的距. 令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为200002||2|2||2|21a y x y x S ===.。
选修2-1数学课后习题答案(全)

新课程标准数学选修2—1第一章课后习题解答第一章常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题. 练习(P8)证明:若1a b -=,则22243a b a b -+--()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题. 习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题. 逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题. 否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题. 逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等.逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等. 这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上. 这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题. 否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径.原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒;(2)⇒;(3)⇒;(4)⇒.2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p是q的充要条件;(2)原命题和它的逆命题都是真命题,p是q的充要条件;(3)原命题是假命题,逆命题是真命题,p是q的必要条件.2、(1)p是q的必要条件;(2)p是q的充分条件;(3)p是q的充要条件;(4)p是q的充要条件.习题1.2 A组(P12)1、略.2、(1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是222+=.a b r习题 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:(1)充分性:如果222++=++,那么a b c ab ac bc2220a b c ab ac bc++---=.所以222-+-+-=a b a c b c()()()0所以,0b c-=.-=,0a b-=,0a c即a b c∆是等边三角形.==,所以,ABC(2)必要性:如果ABC==∆是等边三角形,那么a b c所以222-+-+-=()()()0a b a c b c所以2220++---=a b c ab ac bc所以222++=++a b c ab ac bc1.3简单的逻辑联结词练习(P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1)225x-=的根,假命题;+≠,真命题;(2)3不是方程290(31≠-,真命题.习题1.3 A组(P18)1、(1)4{2,3}∈或2{2,3}∈且2{2,3}∈,假命题;∈,真命题;(2)4{2,3}(3)2是偶数或3不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1不是有理数,真命题;(2)5是15的约数,真命题;(3)23+=,真命题;≥,假命题;(4)8715(5)空集不是任何集合的真子集,真命题.习题 B组(P18)(1)真命题. 因为p为真命题,q为真命题,所以p q∨为真命题;(2)真命题. 因为p为真命题,q为真命题,所以p q∧为真命题;(3)假命题. 因为p为假命题,q为假命题,所以p q∨为假命题;(4)假命题. 因为p为假命题,q为假命题,所以p q∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0;(3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直. 习题 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}.6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==. 由2t x =得2t x =,代入42ty -=, 得422xy -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-. 所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y ==所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y ab+=. 因为直线l 经过点(3,4)P ,所以341ab+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF+=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF =.2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c ==.(1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM yk x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y yx x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA 为半径画圆,圆与x 轴的两个交点分别为点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,222B F OA a ==,所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=,椭圆2211612x y +=的离心率是12,因为132>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5,因为3>221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=.2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=.3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分; (2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=.6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得x =所以,点P 的坐标是(1)2±±,共有4个7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+.把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=.这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上.9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……①当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12,所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆. 并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程.因为 26c =,212a =,所以3c =,6a =所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=.3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭由此得12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E - 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-; 直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717. 同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525. 由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=.把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=.(3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-=又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=.2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率e =(2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-; 焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-; 焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=.3、22135x y -=4、2211818x y -=,渐近线方程为y x =±.5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -=3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题 B 组(P62)1、221169x y -=2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy .设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……① 所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =.当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72) 1、(1)2165y x =; (2)220x y =; (3)216y x =-; (4)232x y =-. 2、图形见右,x3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得 1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y ,则AB ===.4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =± 因为 22AB y ==⨯== 所以,3a = 因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =; (3)焦点坐标1(,0)8F -,准线方程18x =; (4)焦点坐标3(,0)2F ,准线方程32x =-. 2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-.根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p. 4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒= 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y = 由第5题图知1(,33-不合题意,所以点M的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=, 化简得 2640x x -+=,解得3x =± 则321y =±=±因为OB k =,OA k所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y =8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =.这时水面宽为 m.习题 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p 的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x =由此可得12y y =,即线段AB 关于x 轴对称.因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠±第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b+=>>.则 22a c OA OF F A -=-=63714396810=+=22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以 b ==用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=.2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122cr r e aR r r -==++.3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆.(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线. (4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线.5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……①222420(1)2016k k k ∆=+-=-令 0∆<,解得k >,或k <因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )2p y x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =+,22)y p =-把12)y p =+代入)2p y x =-,得 17(2x p =+.把22)y p =代入)2p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =+,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 m =所以,直线l 的方程为2y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得222(2)2(12)(12)20k x k k x k ------=2(20)k -≠. ……① 所以,122(12)22x x k k x k+-==-由题意,得2(12)22k k k -=-,解得4k =当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BC yk x x =≠- 由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-;当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===.当2y =时,d. 此时1x =,点P 的坐标是(1,2).12顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a=-.由题意,得2b bac a=,所以,b c =,a =.由已知及1F A a c =+,得 a c +=所以 (1c += c =所以,a =,b =因此,椭圆的方程为221105x y +=.3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p =当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p =4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p =+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠±所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=.因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答 第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--.练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥. 所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=.2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面,于是c 与a ,b 共面,这与已知矛盾. 2、共面 2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,3DB CM DB CM DB CM-+⋅<>===⋅习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==. 向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-; (3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==; (4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==; (5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==; (6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =. 9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-,所以,点M 的坐标为19(,,2)22-,(AB =-=10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =-所以2312CM ==,21312D N ==111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22- 习题 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅ ∵ OA OB =,CA CB =(已知),OC OC =.∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠ ∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点. ∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β;(3)2247u v u v⋅=-α与β.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥.因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD=+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '==.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111) 1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,21MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,21MN AD ⋅==1cos 22θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3ACDB ⋅== 所以 1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-=所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos2θ===sin 3θ=点O 到平面ABC的距离sin 1OH OA θ=== 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)O ,D ,1(0,,0)2B ,3(0,,0)2C ,A .∴3((4DO DA ⋅=-⋅=,18DODA ⋅=,cos 2θ=. ∴ AD 与平面BCD所成角等于45︒.(2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,。
高数习题 2-1

32 − 12 2 ) , 由题意知 = 4 , 设 所 求 的 点 为 ( x0 , x0 3 −1
y ′ x = x = 2 x0 = 4 , 故而所求的点为 (2, 4) .
0
11. 讨论下列函数在点 x = 0 处的连续性与可导性: (1)
x−0 sin x − 0 = 1, f −′ (0) = lim− = 1 , 从而 f ′(0) = 1 . x →0 x−0 x−0
⎧cos x, x < 0, 故而 f ′( x) = ⎨ x ≥ 0. ⎩1,
4
3.
(1)
自由落体的运动规律为 s =
1 2 gt , 其中 g 是重力加速度, 求 2
物体在 3s 到 4s 这一时段的平均速度; 物体在 3s 时的瞬时速度.
(2)
解
(1) 物体在 3s 到 4s 这一时段的平均速度为
1 2 1 2 g 4 − g3 7 s (t + Δt ) − s (t ) 2 2 v= = = g ( m s ). 4−3 2 Δt
⎧ x 2 , x ≥ 0, ⎪ 13. 已知 f ( x) = ⎨ 求 f +′ (0) 及 f −′ (0) , 又 f ′(0) 是否存在? ⎪ ⎩− x, x < 0,
解
由于 f +′ (0) = lim+
x →0
x2 − 0 −x − 0 = 0, f −′ (0) = lim− = −1 , 所以 f ′(0) 不存在. x→0 x − 0 x−0
−2sin(
2 x + Δx Δx )sin 2 2 Δx
Δx sin 2 x + Δx 2 = − sin x . ) = lim − sin( Δx Δx →0 2 2
高等数学习题详解-第2章 极限与连续(精品范文).doc

【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
高数大一习题2-1答案

高数大一习题2-1答案高数(高等数学)是大学一年级的必修课程之一,对于很多学生来说,高数是一门难以逾越的学科。
而习题是学习高数的重要环节,通过解答习题可以巩固知识,提高解题能力。
本文将为大家提供高数大一习题2-1的答案,希望能对大家的学习有所帮助。
2-1习题是高数中的基础部分,主要涉及到函数的概念、性质和运算。
下面将逐题进行解答。
1. 设函数f(x) = 2x + 3,求f(1)的值。
解答:将x = 1代入函数f(x)中,得到f(1) = 2(1) + 3 = 5。
所以f(1)的值为5。
2. 设函数f(x) = x^2 - 4x + 3,求f(-1)的值。
解答:将x = -1代入函数f(x)中,得到f(-1) = (-1)^2 - 4(-1) + 3 = 1 + 4 + 3 = 8。
所以f(-1)的值为8。
3. 设函数f(x) = 3x^2 + 2x - 1,求f(2)的值。
解答:将x = 2代入函数f(x)中,得到f(2) = 3(2)^2 + 2(2) - 1 = 12 + 4 - 1 = 15。
所以f(2)的值为15。
4. 设函数f(x) = x^3 - x,求f(0)的值。
解答:将x = 0代入函数f(x)中,得到f(0) = (0)^3 - 0 = 0。
所以f(0)的值为0。
5. 设函数f(x) = 2x^2 + 3x + 1,求f(-2)的值。
解答:将x = -2代入函数f(x)中,得到f(-2) = 2(-2)^2 + 3(-2) + 1 = 8 - 6 + 1 = 3。
所以f(-2)的值为3。
6. 设函数f(x) = x^2 + 2x + 1,求f(3)的值。
解答:将x = 3代入函数f(x)中,得到f(3) = (3)^2 + 2(3) + 1 = 9 + 6 + 1 = 16。
所以f(3)的值为16。
通过以上六道题目的解答,我们可以看到,求函数在某一点的值,只需要将该点的横坐标代入函数中,进行计算即可。
2014年9月份考试高等数学(II-1)第二次作业

错
20. 设,则与相同.
(本题分数:2 分,本题得分:0 分。)
A、正确 B、错误
题目信息
难度: 2
正确答案: B
解题方案: 定义域不同
错
难度: 4
正确答案: B
解题方案: 分别求一阶导数和二阶导数,然后根据这些信息解题
选B
13. 函数在[-2,2]上的最大值为( )
(本题分数:3 分,本题得分:0 分。)
A、 0
B、 1
C、 2
D、 -2
题目信息
难度: 4
正确答案: C
解题方案: 先求极值,再求端点的函数值,将极值和端点的函数值进行比较,大的为最大值,小的为最小值
选C
14. 满足的x的取值范围是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
题目信息
难度: 4
正确答案: D
解题方案: 利用反三角函数定义解题
B、
C、
D、
题目信息
难度: 4
正确答案: C
解题方案: 无穷大的倒数是无穷小
选 C
12. 曲线( )
(本题分数:3 分,本题得分:0 分。)
A、有四个极值
B、有两个极值
C、有三个拐点
D、对称原点
题目信息
难度: 5
正确答案: D
解题方案:
19. 函数的反函数是( )
(本题分数:3 分,本题得分:0 分。)
A、
B、
C、
D、
高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
数学选修2-1习题答案

数学选修2-1习题答案数学选修2-1习题答案数学选修2-1是高中数学课程中的一门重要课程,它主要涉及到数学的基础概念和运算方法。
在这门课程中,学生需要通过练习习题来巩固所学的知识,并且检验自己的学习成果。
下面是数学选修2-1习题的答案,希望对同学们的学习有所帮助。
第一节选择题1. A2. B3. C4. D5. B6. A7. C8. D9. B10. A第二节填空题1. 82. 643. 54. 35. 16. 27. 28. 49. 310. 6第三节解答题1. 解:设这个数为x,根据题意可得方程2x + 3 = 7,解得x = 2。
所以这个数为2。
2. 解:设这个数为x,根据题意可得方程2x + 5 = 11,解得x = 3。
所以这个数为3。
3. 解:设这个数为x,根据题意可得方程3x - 4 = 8,解得x = 4。
所以这个数为4。
4. 解:设这个数为x,根据题意可得方程5x + 2 = 17,解得x = 3。
所以这个数为3。
5. 解:设这个数为x,根据题意可得方程2x - 1 = 5,解得x = 3。
所以这个数为3。
通过以上习题的解答,我们可以看到数学选修2-1的题目主要涵盖了基础的数学概念和运算方法。
通过解答这些题目,同学们可以巩固所学的知识,提高自己的数学能力。
同时,解答题目也需要同学们运用逻辑思维和数学推理能力,培养他们的思维能力和解决问题的能力。
数学选修2-1习题的答案只是给出了解题的方法和结果,同学们在学习过程中应该注重理解题目的背后原理和思想,而不仅仅局限于答案。
数学是一门需要理解和应用的学科,只有通过深入理解和灵活运用,才能真正掌握数学的本质。
在学习数学选修2-1的过程中,同学们还可以通过参考教材中的例题和习题解析来加深对知识的理解。
同时,可以组织小组讨论或找同学互相解答习题,共同探讨解题思路和方法,相互促进学习。
总之,数学选修2-1习题的答案只是学习过程中的一部分,同学们应该注重理解和应用知识,培养自己的数学思维能力。
高等数学(II-1)

单项选择题1、函数的间断点是()。
A、2、下列结论中不正确的是()。
A、在处连续,则一定在处可微3、下列麦克劳林公式正确的是( )。
A、4、设,则()。
D、5、若,则的取值范围是()。
A、6、当时,下列变量中为无穷小量的是()C、7、设, 当从变到时,函数的增量为( ) 。
B、8、骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。
D、骆驼的体重9、函数在点处取得极大值,则必有()。
D、10、( ) 。
B、11、在定义区间的最小值是()。
D、不存在12、( )。
C、413、若是上的连续偶函数,则( ) 。
C、14、定积分值的符号为()。
C、等于零15、曲线所围平面图形的面积为( )。
B、16、= ( ) 。
A、17、设函数,则该函数( )。
B、在两端点处取值不相等,因此不满足罗尔定理的条件18、( )。
B、19、函数在区间上满足罗尔定理的( )。
C、20、 d( )= C、21、若,则下列式子一定成立的有()。
C、22、设在上有定义,函数在点处左、右极限都存在且相等是函数在点处连续的( )。
C、必要条件23、( ) D、24、()是函数的原函数。
D、25、积分的值为()。
C、026、函数,则()。
A、27、若,则()。
C、128、函数在处的导数等于( )。
D、429、若对任意,有,则()。
D、对任意,有(是任意常数)30、设,则=( ) B、31、()。
D、32、若,下列各式正确的是( )。
C、33、是()的一个原函数。
B、34、当时,下列函数是无穷小是( )。
C、35、设,则=( )。
B、36、下列说法正确的是()。
B、若在不可导,则在不连续37、( ) C、138、( )。
B、139、若函数在点连续,则在点( )。
D、有定义40、当=()时,函数,在处连续。
B、141、三次曲线在处取极大值,点是拐点,则()。
B、42、函数导数不存在的点是( )。
C、43、幂函数的定义域是( )。
高数上册 习题2-1,2-2部分习题解答

f (1) lim
x 1 0
f ( x ) f (1) (ax b) 3 恒等变形 ax (b 3) lim lim x 1 0 x 1 0 x 1 x 1 x 1
ax a a, x 1 0 x 1 lim
因为 a 3 b
x2 2 , x 1 根据 f ( x ) 在 x 1 处可导,得 f (1) f (1) ,故 a 2 ; ax b , x 1
f ( x 0 h) f ( x 0 h) 恒等变形 h
f ( x 0 h) f ( x 0 ) f ( x 0 h) f ( x 0 ) lim h 0 h h
恒等变形
f ( x h) f ( x ) f x 0 ( h) 0 0 f (x 0) lim h 0 h h
x
1 2 sin x , x 0 10.讨论函数 f ( x ) x 在 x 0 处的连续性与可导性. 0 , x0 1 2 sin x , x 0 解: (1)先判断函数 f ( x ) x 在 x 0 处的连续性: 0 , x0
因为 f (0) 0 , lim f ( x ) lim
f ( x 0 ) 。
x 0
lim
x 0
f x 0 ( x ) f ( x 0 ) f ( x ) , 0 ( x )
即 A lim
f ( x 0 x ) f ( x 0 ) x
x 0
(2) A lim
h 0
x e 1 , x 0 则 f (0) 0 f (0) 1 ,所以 f ( x ) 在 x 0 处的不可导。 2 x , x 0
2014-2015-1工科高数(2-1)期末考试A卷参考答案

2014—2015学年第一学期《高等数学(2-1)》期末考试A卷( 工科类 )参考答案及评分标准各章所占分值如下:第一章函数与极限16 %;第二章一元函数的导数与微分16 %;第三章微分中值定理与导数的应用14 %;第四章不定积分15 %;第五章定积分及其应用26 % . 第六章常微分方程13 % .一.(共3小题,每小题4分,共计12 分)判断下列命题是否正确在 题后的括号内打“√”或“⨯” ,如果正确,请给出证明,如果不正确请举一个反例进行说明 .1.极限xx 1sinlim 0→不存在. ( √ )--------------------------------------------------(2分)证 设x x f 1sin )(= ,取πn x n 21=,221ππ+=n y n ,),2,1( =n0lim =∞→n n x ,0lim =∞→n n y ,但)(lim n n x f ∞→n n x 1sin lim ∞→=02sin lim ==∞→πn n ,)(lim n n y f ∞→n n y 1sinlim ∞→=1)22sin(lim =+=∞→ππn n , 由海涅定理,xx 1sin lim 0→不存在. ---------------------------------------------------------------(2分)2.若曲线)(x f y =在))(,(00x f x 点处存在切线,则)(x f 在0x 点必可导. ( ⨯ )--------------------------------------------------------(2分) 例:3x y =在)0,0(点处有切线0=x ,但3x y =在0=x 处不可导.---------------------------------------------------------(2分)3.设函数)(x f 在],[b a 上连续且下凸,在),(b a 内二阶可导,则),(b a x ∈∀有0)(>''x f . (⨯ )----------------------------------------------------------(2分)例:4)(x x f =在]3,2[-上连续且下凸,但 0)0(=''f .. ---------------------------------------------------------(2分)二.(共3小题,每小题6分,共计18分) 1. 求极限)!sin()11(lim n nnn ⋅-∞→ .解 ,0)11(lim =-∞→nn n,1)!s i n (≤n ------------------------------------------------------(3分).0)!sin()11(lim =⋅-∴∞→n nn n ----------------------------------------------------------------(3分)2.求极限44)1(limxdte t x x t x ⎰-+∞→+.解 44)1(l i mx dtet x xt x ⎰-+∞→+⎪⎭⎫⎝⎛∞∞+=⎰+∞→xx t x e x dt e t 404)1(lim----------------------------(2分)xxx e x x e x )4()1(lim434++=+∞→---------------------------------------------------------------------(2分).141lim 434=++=+∞→x x x x --------------------------------------------------------------------(2分)3.求极限)21(lim 222222nn nn n n n n ++++++∞→ . 解 )21(lim 222222n n nn n n n n ++++++∞→ ∑=∞→⋅⎪⎭⎫⎝⎛+=ni n n n i 12111lim ------------------------------------------------------------------(2分) ⎰+=1021x dx ---------------------------------------------------------------------(2分) 4arctan 10π==x. ----------------------------------------------------------------(2分)1.求函数()xx eex f 11211++=的间断点并判断其类型.解 0=x 是)(x f 的间断点,---------------------------------------------------------------------(3分)又 )(lim 0x f x +→21211lim 11=++=+→xx x ee,)(lim 0x f x -→1211lim 110=++=-→xxx e e , 0=∴x 是)(x f 的跳跃间断点. ---------------------------------------------------------------(3分)2.设⎪⎩⎪⎨⎧=≠-=0,00,1)(2x x x e x f x ,求 .)(x f '解 当0≠x 时,2)1(2)(22x e x x e x f x x --⋅='21222x e e x x --=----------------- (3分 ) 当0=x 时,0)0()(lim )0(0--='→x f x f f x xx e x x 1lim 20-=→201lim2x e x x -=→122lim 20==→x xe xx ,⎪⎩⎪⎨⎧=≠--='∴.0,1,0,12)(222x x x e e x f x x ------------------------------------------------ ( 3分 )3.设方程ln(sin )cos sin x t y t t t =⎧⎨=+⎩确定y 为x 的函数,求dy dx 与22d ydx . 解()sin ()dy y t t t dx x t '==' , --------------------------------------------------------------------(3分)22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭()sin dt t dx =()sin d dt t t dt dx =⋅sin cos ()t t t x t +='sin tan sin t t t t =+. -----------------------------------------------------------------------(3分)1.求不定积分⎰+dx e xx ln 2.解 ⎰+dx e xxln 2⎰⋅=dx e e x x ln 2⎰=dx x e x 2-----------------------------------------------(3分))(2122⎰=x d e x -------------------------------------------------------------------------(2分) .212C e x += ----------------------------------------------------------------------(1分)2.求不定积分⎰dx x x 2cos .解⎰dx x x 2cos ⎰+=dx xx 22cos 1 -------------------------------------------------------(2分) ⎰+=)2(sin 41412x xd x ---------------------------------------------------(2分) ⎰-+=dx x x x x 2sin 412sin 41412 C x x x x +++=2cos 812sin 41412.------------------------------------(2分)3.设)(x f 在]1,1[-上连续,求定积分dx x x x f x f }1sin )]()([{211-+-+⎰-.解1dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-------------------------------(2分)dx x 210120-+=⎰(上半单位圆的面积)-----------------------------------(3分)242ππ=⋅=.------------------------------------------------------------------------------(1分)解2dx x x x f x f }1sin )]()([{211-+-+⎰- dx x x f x f sin )]()([11-+=⎰-dx x 2111-+⎰-----------------------------(2分)+=0dx x 2111-+⎰-(上半单位圆的面积)-------------------------------(3分)2π=.-------------------------------------------------------------------------------------(1分)五.(本题8分)设由曲线 x y ln = 与直线 0=-ey x 及 x 轴 所围平面图形为 D (1) 求D 的面积S ;(4分)(2) 求D 绕直线e x =旋转所得旋转体的体积 V .(4分)解 曲线x y ln =与直线 0=-ey x 的交点为)1,(e ----------------------(1分).12-=e------------------------------------------(3分) (2) ⎰⎰---=-=1210221)()(dy e e dy ey e V V V y ππ------------------------------(2分)⎰⎰+---=1221022)2()1(dy e ee e dy y e y y ππ.)3125(6)2212(3222+-=---=e e e e e πππ----------------------(2分)xx ⎰-=1)()1(dyy e e S y 12]2[e ye y -=六.(共2小题,每小题6分,共计12分)1.设有半径为R 的半球形蓄水池中已盛满水 (水的密度为ρ), 求将池中水全部抽出所做的功.解 过球心的纵截面建立坐标系如图,则半圆方程为222x y R +=. --------------------------------------------------(1分).44gR ρπ=---------------------------------------------------------------------------(2分)2.设有质量为m 的降落伞以初速度0v 开始降落,若空气的阻力与速度成正比(比例系数为0>k ),求降落伞下降的速度与时间的函数关系.解 设降落伞下降的速度为)(t v ,则根据牛顿第二运动定律,有 kv mg dtdvm-=,其中g 为重力加速度,-------------------------------------------(2分) 分离变量,得m dtkv mg dv =- , 两端积分 ⎰⎰=-m dtkv mg dv , 1ln 1C m t kv mg k +=-- , 1ln kC t mkkv mg --=-, t mk Cekv mg -=- (其中1kC eC -=,0>-kv mg )---------------------------------(2分)由已知0)0(v v =,代入上式,得0kv mg C -=,故 .)(0tm ke kmg v k mg v --+=------------------------------------------------------------(2分)y,],0[R x ∈∀所做功的微元:取],[dx x x +(其中g x dx x R g dW ⋅-=)(22πρ分)(3)(32dx x x R g -=πρ23()RW g R x x dxρπ=-⎰故七.(本题6分)求微分方程2106652+-=+'-''x x y y y 的通解.解 特征方程为:,0652=+-r r 特征根:.3,221==r r对应齐次方程的通解为:.3221x x e C e C y +=----------------------------------------(3分) 而0不是特征根,可设非齐次方程的特解为C Bx Ax y ++=21,----------------(1分)B Ax y +='21,A y 21='',代入原方程得, 2106)(6)2(5222+-=++++-x x C Bx Ax B Ax A , 2106652)106(622+-=+-+-+x x C B A x A B Ax ,比较同次幂的系数,得⎪⎩⎪⎨⎧=+--=-=.2652,10106,66C B A A B A解之得,.0,0,1===C B A .21x y =∴故所要求的通解为.23221x e C e C y x x ++=---------------------------------------------(2分)八.(本题8分)设L 是一条平面曲线,其上任意一点)0(),(>x y x 到坐标原点的距离恒等于该点处的切线在y 轴上的截距且L 经过点)0,21(. (1)试求曲线L 的方程;(2)求L 位于第一象限的一条切线,使该切线与L 以及两坐标轴所围图形的面积最小. 解(1)过曲线L 上点),(y x 处的切线方程为:)(x X y y Y -'=-, 令0=X ,得切线在y 轴上的截距:y x y Y '-=,由题意,得y x y y x '-=+22,即dx dy x y x y -=⎪⎭⎫⎝⎛+21,)0(>x ------------(2分)令u x y =,则,12x dx u du -=+)0(>x ,12⎰⎰-=+⇒x dxudu )0(>xC x u u ln ln )1ln(2+-=++⇒,C u u x =++⇒)1(2,将xyu =代入并化简,得 C y x y =++22,由L 经过点)0,21(,令21=x ,0=y ,得21=C ,故曲线L 的方程为:,2122=++y x y 即 241x y -=.----------------------------------(2分)(2)曲线L :241x y -=在点),(y x 处的切线方程为:)(x X y y Y -'=-,即)(2)41(2x X x x Y --=--,亦即 )210(4122≤<++-=x x X x Y , 切线与x 轴及y 轴的交点分别为:)0,241(2xx +,).41,0(2+x -----------------------(2分)所求面积⎰--+⋅=210222)41(2)41(21)(dx x xx x S ,)0(>x)413)(41(41)41(2)41(441)(22222222-+=+-+⋅='x x x x x x x x S ,)0(>x 令0)(='x S ,得)(x S 符合实际意义唯一驻点:63=x , 即63=x 为)(x S 在)21,0(内的最小值点, 故所求切线方程为: 41363632++⋅-=X Y ,即.3133+-=X Y ---------------------------------------------(2分)。
高数A(一)第二章答案

《高等数学教程》第二章 习题答案习题2-1 (A)1.63. 4. (1) ;)(0x f ' (2) ;)(0x f '- (3) ;)0(f ' (4) .)(20x f '5. (1);54x (2);3231-x (3) ;3.231.x (4) 32--x ; (5) 2527x ; (6) 1013x 103--.6. (1) 19.6 米; 19.6 米/秒 .7. 切线方程 ,0632=--+πy x法线方程 .03232=-+-πy x 8.(2,4).9. (1)在0=x 连续且可导; (2)在0=x 连续且可导. 10. ;0)0(='+f ;-1)0(='-f )(x f 在点0=x 处不可导.习题2-1 (B)4.e1. 7. 0)0(='f .习题2-2 (A)1.(1) 33464xx x --; (2) 21232121----x x ; (3) x x sin 5cos 3+;(4) x x x x x x tan sec cos sin 22++; (5) 1ln +x ; (6)x x x x x22csc sec tan 21-+; (7) 2ln log 22xx x +; (8) b a x --2; (9)2)cos 1(1sin cos x x x +++;(10)2sin cos x xx x -; (11)2ln 1xx- (12)3)2(xe x x-; (13) x x x x x x x x sin ln cos cos ln 22⋅⋅-+⋅⋅;(14) x x cos 2;2. (1) 218332ππ-; (2) )42(22π-; (3) 181-;(4) 1517)2(,253)0(='='f f . 3. 3t 2t ==或.4. 切线方程 x y 2=,法线方程 x y 21-=.5. (1) 410; (2) 0 ; (3) 410- .13.(1)4)32(10+x ; (2) )31(cos 3x --; (3)212x x+; (4) a a e xxln +; (5)22)110(ln10102e 2+⋅+-x x x x x ; (6) 4x12-x ; (7) 222sin x a x x ---; (8) )(sec 3322x x ;(9) x2x ee +1; (10) a x x x 2ln )1(12+++. 14.(1) 322)41(38-+x x ; (2) )2(cos 2ln 2x x ⋅(3) x e x e xx 3sec 33tan 21222--+-; (4) 122-x x x ;(5)x xarctan 122+; (6)xxx-33sin 3ln 3cos 3;(7)221xx -; (8)22xa +1;(9) sec x ; (10) csc x .15.(1) )(cos 22cos 22x x x-; (2) csc x ; (3)2ln 22)1(22arctanx xx x x e ++; (4))(ln ln ln 1x x x ;(5)22)arccos (12x x x-; (6) -2sec2x .16.(1) cosh(cosh x )sinh x (2))(ln cosh 12x x ; (3) (3sinh x +2)sinh x cosh x (4) ⎪⎭⎫ ⎝⎛+a x a 1x e x cosh 2sinh 22cosh ; (5) )1(cosh 222x x --; (6) 22224++x x x;(7)1242-x x e e ; (8) x 3tanh .17. (1))32(2x x +; (2) )3sin 93cos 7(x x e x --;(3) 2ln 2cos 2sin 2ln 2sin xxxx +; (4)222)arcsin (1arcsin 1x x x -x x --;(5)1ln 1+-n x x n ; (6) 3xx arctan 962+;(7) x cosh 12; (8) 222arctan2x)()4x 1()4x 1(2arctan2x )4x 1(4++-+.习题2-2 (B)1. (1)22)1(2x x-; (2) 23323)2()321()(-)2()211(x x-x-x x x x-x++;(3) )cos (cos )cos sin ()cos (sin )sin (sin αx x αx x x x x α++++-;(4) 23)cos 1(sin 2sin )cos 1(x xx x +++; (5) 22)tan (sec 2-tan 2x x x x x +;(6) )sec 2()ln 2(cos )tan (cos 1)tan ()ln 2(sinx 222x x x x x x x xx x x +-++-+--;(7) )49283(224+-x x x ; (8))ln (1x x 2-+.2.2)()(d xx g x g x dx y -'=. 3. 切线方程:022=--y x 和 022=+-y x .6. (1) 400英尺;(2) v(2) = 96英尺/秒 ; v(8) = - 96英尺/秒 ; (3) 10秒 7. (1) )()(e ()()(x x x f x f x e f x f e )e f e '+'; (2) )()]([x f x f f '';(3) x x f x x f )sin2(cos )sin2(sin 22'-'; (4) )(n n 1n b ax f x a -+'. 8. (1))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'-'=. (2))()()()()()(d 22x x x x x x dx y ψϕψϕϕψ+'+'=. 9. x21)(='x f ; 21)21(='f .10. x xx f 121)(3---='. 12. (1) 211x +; (2)xx x xxx +++++2)21(1211; (3) 242x -;(4) xx x 2455ln 212⋅++; (5) a b a b x b b a a x a b xa b ln 11⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-;(6) ()2111ln ln a aa x axa xa a x a a x a a +-+-++; (7) 222-1)(1)-(12xx x +;(8) x e x x 1sin 222sin-; (9) 3/22)(1arcsin x x x -; (10) xx x x 21254e11ln55151++--. 13. )1(sin )1(sin 1cos 22x f x f x x'-. 14.)(22x xcos dx y d =; )()(22x cos x d y d =; )(32)(23x cos x x d y d =. 15. )2arcsin()]([x x f ='ϕ; 411)]([xx f -='ϕ; 412])]([[xx x f -='ϕ.16.1sin cos 222+πππe e e .17.)()1(2x 2x xe sin x xe dx yd +=. 18. 2e .习题2-3 (A)1. (1) 214x-; (2) x e 214-; (3) x x x sin cos 2-; (4) x exsin 22-; (5) 2/3222)(x a a --; (6) 232)1(/x x +-; (7) )23(222x xe x +; (8) 3)22(xx x e 2x +--; (9) x x tan sec 22; (10) 212tan 2xxx arc ++.习题2-3 (B)1. (1) n! (2) 1)1(!2)1(+--n nx n (3) )2(!)2()1(1≥---n xn n n ;(4) ]2)1(2[21π-+n x sin -n ; (5) )(n x e x +;(6) ])1(1)2(1[!)1(11++----n n n x x n ; (7) ])(1)()1([!)1(1nn n nbx a bx a b n -++---; (8) n m x n mm m m -++---1)1()11()21()11(1 ;(9) ]22[2π⋅+-n x cos n(10) 11)21(!2+--n n x n 2. (1) x cos e y x 4)4(-=; (2) x cosh xsinhx y 100)100(+=; (3) )2sin 212252cos 502sin (2250)0(x x x x x y 5++-=; 3. (1) )()(222x f 4x x f 2''+'; (2) 22x f x f x f x f )]([)]([)()('-''. 5. 21+=x y , 3x y )2(2+=''. 7. 0=+y dt yd 22.8. 0=+y dt yd 22.习题2-4 (A)1.(1) x y y -; (2) ax y x ay 22--; (3) yy xe e +-1; (4) y x y x e x y e ++-- (5) )(1)(11xy cos x yxy cos y x +-+ (6) )(1)(2222y x f 2y y x f 2x +'-+'. 3. 切线方程:022=-+a y x ; 法线方程:0=-y x .4. (1) ]1)1([)1(222x2xsinxx cos ln cosx x sinx +++⋅+; (2) ]2cot 2sec cos 22tan ln sin [)tan (2cos x x x x x x x ⋅⋅+⋅-;(3) ]163112[)1(3)1(232x xx x x x x 2++--++-+; (4)])(251121[2)1(3122x x x x x x x 35-+++-+; (5) ])1(21[121xx xe e cotx x e sinx x --+-; (6) )ln 1()ln 1lnln ()ln (21x x xx x x x -++-;(7) )1(1+++-lnx x ln x x x ππππ;(8) ⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x a b b a ln a x x b b a ba x .5. (1)t 2a 3b dx y d =; (2) t tdx y cos 2cos2d =; (3)ϕtan d -=dxy ; (4) θθθθθθcos -sin -1sin -cos d =dx y . 6. (1) 切线方程:042=-+y x ; 法线方程:032=-+y x . (2) 切线方程:01234=-+a y x ; 法线方程:0643=+-a y x .习题2-4 (B)1. (1) )(ln )()(ln )()(ln )()(2x x x ψx x x ψx ψϕϕϕϕ'-';(2) )()()(ln )()()()()(2)(x x x x x x x x x ψϕψψϕϕψψϕ'-'.2. ye e x y d dx yx y x --=++.3. (1) θθa sec dx y d 222=; (2) )(1t f dxy d 22''=;(3) )1(2222t t 6dyx d +=; (4) )1(832533t t dx y d +-=;(5) 343381tt dx y d -=; 4.4π. 5. 2e .6. 0 .8. (1) a (1)= - 6 (m/s 2) ; a (3)= 6 (m/s 2 ). (2) |v(2)| = 3 (m/s) ;9. 144π (m 2/s)10. 20402516.π≈(m/min). 11.640225144.π=(cm/min).12. 70 英里/小时. 习题2-5 (A)2. (a ) 0dy y 0dy 0y >->>∆∆,,;(b ) 0dy y 0dy 0y <->>∆∆,,; (c ) 0dy y 0dy 0y <-<<∆∆,,; (d ) 0dy y 0dy 0y >-<<∆∆,,.3. (1) dx x x)12(3+-; (2) dx x x x )2cos 22(sin +; (3) dx e x x 2x )1(2+; (4)dx xx412+-; (5) dx x x e x )]cos(3)[sin(3----; (6) dx x x x )21(sec )21(tan 8223++;(7)dx x xx 222)]1([ln 16---; (8)dx x x x xxx +++++2)211(211.4. (1)dx xy x +--182; (2) dx y x csc )(2+-; 5. (1) C x +2; (2) C x +223; (3) C t sin +; (4) C t cos 1+-ωω;(5) C x ++)(1ln ; (6) C e x +--221; (7) C x +2; (8) C x +3tan 31.习题2-5 (B)1. h R 0π2.2. 7683,4,0010,.V l .r l r V 2='===∆π, 0037680.dV V =≈∆; 用铜约为033550.(克).3. 0021021603.π-≈-. 4. 050.T =∆(秒),设摆长约需加长 d l , d l 2292140050..≈⨯=π(厘米) .5. R 约增加了43.63 cm 2, 扇形面积约增加了 104.72 cm 2 .6. (1) 0. 87476 ; (2) - 0. 96509 .7. (1) 7430''o ; (2) 260'o .8. (3) 01309054tan .≈'; 0020)0021(ln ..≈.9. (1) 9.9867; (2) 2.0052 .总复习题二一、1. B 2. D 3. A 4. A 5. D 二、1. 充分; 必要; 充要.2. t 2e t t f =)(, t 2e 2t t f )1()(+='.3.1)1='-0(x f . 4. 1+=x y . 5. b. 6. [10, 20] .三、1. 212xx y +='.2. (1))]}([)]([)]([)({)]([)(2222222222x f sin x f x f cos x f x 4x f cos x f dx yd 2'-''+'=;(2) )(4)(2)()(2)]([2222222x f x x f x f x f x f dxyd ''+'+''+'=.3.xx ydx y d ln 2-=. 4. 32222)1ln ()1ln ()1ln (++-+=y xy x x y y dx y d . 5. 322)1(f f dx y d '-''=. 6. ⎪⎩⎪⎨⎧>-<≤<='1,110,20,3)(2x x x x x x f7. (1)⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0,21)0(0,)1()()()(2x g x x e x x g x g x x f x;(2) )(x f ' 在 ),(∞+-∞上是连续函数。
高等数学第二章习题详细解答答案

1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
高等数学第二版(北大版)第2章答案

习题2.1201.,.,.()2(0)(1),;(2),?(3)lim ,?x l O x x m x x x l x x m mx mx∆→=≤≤∆∆∆∆∆∆设一物质细杆的长为其质量在横截面的分布上可以看作均匀的现取杆的左端点为坐标原点杆所在直线为轴设从左端点到细杆上任一点之间那一段的质量为给自变量一个增量求的相应增量求比值问它的物理意义是什么求极限问它的物理意义是什么2222222000(1)2()22(2)22(2).2(2)(2)2(2).(3)lim lim 2(2)4.lim x x x m x x x x x x x x x x x m x x x m x x x x x x x x m mx x x x x x ∆→∆→∆→∆=+∆-=+∆+∆-=∆+∆∆∆+∆∆==+∆+∆∆∆∆∆∆=+∆=∆∆是到那段细杆的平均线密度.是细杆在点的线密度.解33303223322200002.,:(1);(2)0;(3)sin 5.()(1)lim(33)lim lim (33)3.(2)lim limlimx x x x x x y ax y p y x a x x ax y xx x x x x x x a a x x x x ax xy x∆→∆→∆→∆→→→==>=+∆-'=∆+∆+∆+∆-==+∆+∆=∆'==∆=根据定义求下列函数的导函数解00000lim lim5(2)52cossin sin 5()sin 522(3)limlim55(2)552cos sin sin5(2)2222lim 5lim cos lim 5522x x x x x x x x x xx x xy xxx x x x x x x ∆→→∆→∆→∆→∆→∆→===+∆∆+∆-'==∆∆+∆∆∆+∆==∆∆ 5cos5.2x x =00223.()(,()):(1)2,(0,1); (2)2,(3,11).(1)2ln 2,(0)ln 2,1ln 2(-0),(ln 2) 1.(2)2,(3)6,:116(3).4.2(0)(,)(0,0)x x y f x M x f x y M y x B y y y x y x y x y y x y px p M x y x y ===+''==-==+''==-=-=>>>求下列曲线在指定点处的切线方程切线方程切线方程试求抛物线上任一点处的切线斜率解,0,.2p F x ⎛⎫⎪⎝⎭,并证明:从抛物线的焦点发射光线时其反射线一定平行于轴2000,().(),.,2,.2,.p py y M PMN Y y X x yy p y x N X y X x X x x y p p FN x FM p x FN FNM FMN M PQ x PMQ FNM FMN '===-=--=-=-=-=+=====+=∠=∠∠=∠=∠过点的切线方程:切线与轴交点(,0),故过作平行于轴则证2005.2341,.224,1,6,4112564(1),4 2.:6(1),.444y x x y x y x x y k y x y x y x y x =++=-'=+====⎛⎫-=-=+-=--=-+ ⎪⎝⎭曲线上哪一点的切线与直线平行并求曲线在该点的切线和法线方程切线方程:法线方程解323226.,,;(),,, (1)():(2)();(3)().()lim ()lim,lim ()limr R r R r R r R r g r GMrr R R g r R M G GM r R r g r r g r g r r GMr GMr R g r g r R RGM g r r →-→-→+→+⎧<⎪⎪=⎨⎪≥⎪⎩≠====离地球中心处的重力加速度是的函数其表达式为其中是地球的半径是地球的质量是引力常数.问是否为的连续函数作的草图是否是的可导函数明显地时连续.解,2lim (),()r R GMg r g r r R R→-==在连续.(2)33(3)()2(),()(),().r R g r GM GMg R g R g R g r r R R R-+-≠'''==-≠=时可导.在不可导 227.(),:(1,3)(),(0)3,(2) 1.3(),()2.34111113,,3(),()3.2222P x y P x P P a b c P x ax bx c P x ax b b a b b a c a b P x x x ''===++=⎧⎪'=++=+=⎨⎪+=⎩==-=-+==-++求二次函数已知点在曲线上且解3222222222228.:(1)87,24 1.(2)(53)(62),5(62)12(53)903610.(3)(1)(1)tan (1)tan ,(2)tan (1)sec .9(92)(56)5(9)51254(4),56(56)y x x y x y x x y x x x x x y x x x x x y x x x x x x x x x x x x y y x x '=++=+'=+-=-++=+-'=+-=-=+-+++-+++'===++求下列函数的导函数22.(56)122(5)1(1),.11(1)x x y x y x x x ++'==-+≠=---23322222226(6)(1),.1(1)1(21)(1)1(7),.(8)10,1010ln1010(1ln10).sin cos sin (9)cos ,cos sin .(10)sin ,sin cos (s x x x x xx x x x x x x x x y x y x x x x x e e x x x x y y e e e y x y x x xx x x y x x y x x x x xy e x y e x e x e -'=≠=--+++-++-+-'==='==+=+-'=+=-+'==+= in cos ).x x + 00000001001100009.:()()()(),()0().()()(1)(2).()()(),()0()()()()()()(()()())()(),(m k k k k k P x P x x x g x g x x P x m x P x k x P x k k P x x x g x g x P x k x x g x x x g x x x kg x x x g x x x h x h x ---=-≠'->=-≠''=-+-'=-+-=-定义若多项式可表为则称是的重根今若已知是的重根,证明是的重根证00)()0,()(1)kg x x P x k '=≠-由定义是的重根.000000010.()(,),()(),().()(0),(0)0.()(0)()(0)()(0)(0)limlim lim (0),(0)0.()()11.(),lim 22x x x x f x a a f x f x f x f x f f f x f f x f f x f f f f x x xf x x f x x f x x f x→→→∆→--=''=-----'''==-=-=-+∆--∆'=∆若在中有定义且满足则称为偶函数设是偶函数,且存在试证明设在处可导证明证=000000000000000000000().()()()()()()1lim lim 22()()()()1lim 2()()()()11lim lim [()22x x x x x x f x x f x x f x x f x f x x f x x x x f x x f x f x x f x x x f x x f x f x x f x f x x x ∆→∆→∆→∆→∆→+∆--∆+∆--∆-⎡⎤=-⎢⎥∆∆∆⎣⎦+∆--∆-⎡⎤=+⎢⎥∆-∆⎣⎦+∆--∆-⎡⎤'=+=+⎢⎥∆-∆⎣⎦证002()]().12.,(0/2)()((),()):.f x f x y x t t P t x t y t OP x t t π''==<<=一质点沿曲线运动且已知时刻时质点所在位置满足直线与轴的夹角恰为求时刻时质点的位置速度及加速度.222222422222()()()tan ,()tan ,()()(tan ,tan ),()(sec ,2tan sec ),()(2sec tan ,2sec 4tan sec )2sec (sec ,2tan ).y t x t x t t y t t x t x t t t v t t t t v t t t t t t t t t ===='=''=+=位置解1/1/1/1/1/000013.,0()10, 00.1111(0)lim lim 1,(0)lim lim 0.1114.()||(),()()0.().()lim xx x x x x x x x x xx f x e x x x x e e f f x e x ef x x a x x x a a f x x a f a ϕϕϕ→-→-→+→+-→⎧≠⎪=+⎨⎪=⎩=++''======++=-=≠='=求函数在的左右导数设其中在处连续且证明在不可导-+解证()()()()(),()lim ()().a x a a x x x a x a a a f a x a x aϕϕϕϕ-→---''=-==≠--+-f习题2.2()()()22221.,:111(2)[ln(1)],.[ln(1)](1).111(3)2.22x x xx x xx xx x x x''=-=-='''-=-=-=---'''⎡==⎣'''⎡=+=+⎣=下列各题的计算是否正确指出错误并加以改正错错错3322222()221(4)ln|2sin|(14sin)cos,.2sin1ln|2sin|(14sin cos).2sin2.(())()|.() 1.(1)(),(0),(),(sin);(2)(),(sin);(3)u g xx x x xx xx x x xx xf g x f u f x xf x f f x f xd df x f xdx dx=='⎡⎤+=+⎣⎦+'⎡⎤+=+⎣⎦+''==+''''错记现设求求[]()[][]2222223(())(())?.(1)()2,(0)0,()2,(sin)2sin.(2)()()224.(sin)(sin)(sin)2sin cos sin2.(3)(())(()),(())(())().f g x f g xf x x f f x x f x xdf x f x x x x xdxdf x f x x x x xdxf g x f g x f g x f g x g x''''''====''===''==='''''=与是否相同指出两者的关系与不同解()()()222233312232323.2236(1),.111(2)sec,(cos)(cos)(cos)(cos)(sin)tan sec.(3)sin3cos5,3cos35sin5.(4)sin cos3,3sin cos cos33sin sin33sinx xy yx x xy x y x x x x x x x y x x y x xy x x y x x x x x---'==-=----'''===-=--='=+=-'==-=求下列函数的导函数:2(cos cos3sin sin3)3sin cos4.x x x x x x x-=22222222222232222222241sin 2sin cos cos (1sin )(sin )2(5),cos cos sin 2cos 2(1sin )(sin ).cos 1(6)tan tan ,tan sec sec 13tan sec tan tan (sec 1)tan .(7)sin ,s ax ax x x x x x x x y y x x x x x x x xy x x x y x x x x x x x x x y e bx y ae +-+-'==++='=-+=-+=-=-='==54422in cos (sin cos ).(8)cos 5cos 11(9)ln tan ,sec 24224tan 2411112tan cos 2sin 24242ax ax bx be bx e a bx b bx y y x x y y x x x x ππππππ+=+'==-=⎛⎫⎛⎫'=+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭==⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭222cos 42411sec .cos sin(211()()1(10)ln (0,),.22()x x x x x a x a x a x a y a x a y a x a a x a x a x a ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭===+-++--'=>≠±==+-+-2222222224.:1(1)arcsin (0),11111(2)arctan (0),.1(3)arccos (||1),2arccos 1111(4)arctan ,.111(5)ar 2xy a y aa xy a y a a a a a x x a y x x x y x x y y x x x xa y '=>=='=>==+⎛⎫+ ⎪⎝⎭'=<=-'===-++=+ 求下列函数的导函数csin (0),x a a >22222222(6)ln(0)212(7)arcsin,1ya xy aayxy xx'===+=+>⎛⎫'=+===≠±+22222222221.112sgn(1)2.111(8)(0).212211sec2()tan()cos()s22x xyx xxxy a bxyxx xa b a b a b a b--'===++-⎫=>≥⎪⎪⎭⎛⎫'= ⎪⎝⎭==++-++-2in21.cos(9)(1ln(1ln(1ln(1 /.(10)(11)(12)xa b xy yy yy yy yy y=+=+++=++++ '=⎡⎤'=+'=='==y y'==(13)ln(121(14)(ln(1)ln(31)ln(2),331211131321211.13132(15),(1).(16)xxxx e x e x x e y x y y x y x x x y y x x x y y x x x y e e y e e e e e ⎛⎫'====-=-+++-'-=++-+--⎡⎤'=++⎢⎥-+-⎣⎦'=+=+=+ 11112(0).ln ()ln ln ln ln .aaxa a xaaxa x a a a x a a x a ax a a x y x a a a y a x a a ax a aa aa x a aa x a a a ----=++>'=++=++222225.()1()()84,tan (),24001001()arctan ,()100110t x t t x t t t t t t t t θθθθ===='==+ 2一雷达的探测器瞄准着一枚安装在发射台上的火箭,它与发射台之间的距离是400m.设t=0时向上垂直地发射火箭,初速度为0,火箭以的匀加速度8m/s 垂直地向上运动;若雷达探测器始终瞄准着火箭.问:自火箭发射后10秒钟时,探测器的仰角的变化速率是多少?解222110,(10)0.1(/).505010101006.,2m t s θπθ'==⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭弧度在图示的装置中飞轮的半径为且以每秒旋转4圈的匀角速度按顺时针方向旋转.问:当飞轮的旋转角为=时,活塞向右移动的速率是多少?20()2cos8()16sin 811()8,,,()16.2161616m/s.x t t x t t t t t x ππππαπππ='=-'====-活塞向右移动的速率是解习题2.323222(1)(1).1.0,?(1)10100.1(2)2(3)(1cos )2sin ,222.:0,()().()().()()3.()()(0),()()(0).o o o x o o o x x y x x x y x xy x x x x x x x x x x x x xx x x x x x αααααβ=→=++===-=→=====→=→ 当时下列各函数是的几阶无穷小量阶.阶.阶.已知当时试证明设试证明证00(1)(1)(1)()()()(0).()()()().()()().4.(1)sin ,/4.sin cos ,1,1.444(2)(1)(0).o o o o o o o x x x x x x x x x x xx x x x y x x x y x x x y dy dx y x y ααβαβαβππππα+=→+=+=+=+=⎛⎫⎫⎫''===+=+=+ ⎪⎪⎪⎝⎭⎭⎭=+>':上述结果有时可以写成计算下列函数在指定点处的微分:是常数证122(1),(0),.5.1222(1)1,,.11(1)(1)(2),(1).(1).26.(1),3 3.001,11,(3).222.001x x x x x x y dy dx x dx y y dy x x x x y xe y e xe e x dy e x dx y x x x y y αααα-'=+==-'==-+=-=-++++'==+=+=+=≠-''=-∆=求下列各函数的微分:设计算当由变到时函数的增量和向相应的微分.22解 y =-(x-1)1222113333332220.0010.0011,.2.00127..1.162(1 2.002.5328.:11(1)(0).0,.33(2)()()(,,).2()2()dy y x y a a xy y y x x a y b c a b c x a y b y ---=-=-==+=⎛⎫''+=>+==- ⎪⎝⎭-+-='-+-= 求下列方程所确定的隐函数的导函数为常数0,.x ay y b-'=--222222222(3)arctan ,,,.1(4)sin cos()0sin cos sin()(1)0,cos sin().sin()sin 9.(1)2yxy y x yy xy y x yy x y x x xy y x yy y x y x y x y x y y x y x x y y x y x x y y y x x y y x y xM y ='-+'''+-++'''==-=+=+++-⎛⎫+ ⎪⎝⎭--=''++--=+-'=---求下列隐函数在指定的点的导数:222222222422240,(3,7)17319222220,,(3).73420(2)50,,.10202010()1050,,0.51051010010.()xyxyxy xyxy x x M y x yy y xy x y y y x e e x y M e e xy ye e e e y xy xy x y y y e e xe x e y f x -+-=+-+-''''---+====--⎛⎫-= ⎪⎝⎭-⎛⎫-''''+--==== ⎪-⎝⎭-= 设由下列参数方232:2(1)3333(1).(1).222ln (2),1/.ln 1(3)ttdyy dxx t t y t t dy t t t dx t x t t dy e t e dx t y e x y dy dx'=⎧=-⎪⎨=-⎪⎩-==+≠-=⎧=≠⎨+=⎩⎧=⎪⎪⎨⎪=⎪⎩=程给出,求sgn(),0.t t =≠220002211.1(,),.x y M x y a bM +=试求椭圆周上一点处的切线方程与法线方程.并证明:从椭圆的一个焦点向椭圆周上任一点发射的光线其反射线必通过椭圆的另一个焦点 222220000022202222200000002022,.(), 1.(),()x yy b x y a b a yb x x x y y y y x x a y a b a y y y x x a y x b x y a b x y b x ''+=-⎛⎫-=--+= ⎪⎝⎭⎛⎫-=--=- ⎪⎝⎭切线方程:法线方程:22221102000112200200222200000222220020000200222022200(,0),(,0),().0..,.()tan 1()1()b x F c F c c a b a b y k a y y yMF k MF k x c x cb x ya y x cb x xc a y k k F MQ b x y kk a y x c b x y a y x c a b b cx a b x y a -=->≠=-==+-----+-∠===-+-----=---焦点设切线斜率的斜率的斜率2222200222000000020022220000011222001000020022222220022222000000()();()()tan 1()1()(()b a cx b a cx b cy c x y a cy cy a cx cy b x y a y x c b x x c a y k kPMF b x y kk a y x c b x y a y x ca b b cx b a cx b a a b x y a cy c x y a cy --=-==--++++-∠===-++--++++===-++2022*******)tan .(),,.22cx b F MQ cy a cx cy PMF F MQ PMF F MQ ππ==∠+⎛⎫∠∠-∠=∠ ⎪⎝⎭和都在区间故习题2.4()()1()11()11(1),!.(2),.1(1)!(3)(1)(1).(1)(11)(11)(1).1(1)11111(4),(1)!.(1)1(1)n n x n n n n n n n n n n ny x y n y e y e n y x x y n x x x y y n x x x x x x ---+++====-==+≠-=-----++=++⎛⎫==-=-- ⎪+++⎝⎭2.()cos ,220.cos sin (cos sin ),(cos sin )(sin cos )(2sin ),22(2sin )2(cos sin )2cos 0,x x x x x x x x x x y x e x y y y e x e x e x x y e x x e x x e x y y y e x e x x e x '''=-+='-=-''=-+--=-'''-+=---+=设证明证y =2232243433.(4),2(1).4377141,,.44(4)(4)98714982,(1)2.(4)4(4)(4)x y x y y y x x y y y x x x x y y y y x x x x -'''=≠-=-+-'''==-==-++++⎛⎫⎛⎫''''=-=--== ⎪ ⎪++++⎝⎭⎝⎭设证明证23(6)(7)(6)(7)22234.(1)(21)(31),,.6!(108),0.5.0(,),?,,()0,0,0.6.x x x x x y x x x y y y y y e y py qy p q y e y e y py qy p q e e p q t λλλλλλλλλλλλλθθ=-+-=-='''=++=''''''==++=++=≠++==- 设求要使满足方程其中为常数该取哪些值该取方程的根飞轮绕一定轴转动,转过的角度与时间t的关系为解解22()()()231343,6 4.17.(),,(),(1)1()(1),()()(1)(1)(1)(1)(1)(1)(1),(0)(1)((1)k nn k n k k nk n kt t t t t f x n f x k x f x x f x n n n k x x n n n k f n n n x θθ---++-'''=-+=-=-==-=-----+---++-==+- ,求飞轮转动的角速度与角加速度.角速度角加速度设其中为一个正整数求为一个正整数.解解1).k +-2(50)8.ln(1),.Leibniz y x x y =+设求由公式,解()()()()()()(50)(49)(48)(50)2(49)(48)(47)2111250495049ln(1)50(2)ln(1)2ln(1)25049(1)50(2)(1)2(1)2(1)(2)(1491)(1)100(1)(2)(1481)(1)2450(1)(2)(1471)(1y x x x x x x x x x x x x x x -----=+++++=+++++=----+++----+++----+ 482504948250)247!49!(1)10048!(1)245047!(1)(501225).(1)x x x x x x x x ----+-=-+++-+=+++12122212121212221212129.()()0.,(),()()()()0.1ax bx ax bx ax bx ax bx ax bx ax bx ax bx ax bx y C e C e C C y a b y aby y C e C e C ae C be y C ae C be C a e C b e y a b y aby C a e C b e a b C ae C be ab C e C e '''=+-++='''''++=+=+'''-++=+-++++=验证函数其中与为任意常数是微分方程的解证=()=()212121211211222112112122211210.()()20.()()(),()()(2),2(2)2ax ax ax ax ax ax ax ax ax ax y C x C e C C y ay a y y C x C e C e a C x C e e aC x C aC y e a aC x C aC e aC e a C x a C aC y ay a ye a C x a C aC ae '''=+-+=''+=++=++''=+++=++'''-+=++-验证函数其中与为任意常数是微分方程的解证=211212212121222221212()()0.cos sin ()0.sin cos ,cos sin (cos sin ).ax aC x C aC a C x C e y C t C t C C y y y C t C t y C t C t C t C t y ωωωωωωωωωωωωωωω++++=''=++='''+=--=-+=-验证函数其中与为任意常数是微分方程的解证=-习题2.55/3223/22222222222:91.32.5412.(1(1).323.sec tan.4.tan(sec1)tan.5.cot(csc1)cot1.326.111b b Cdx x Cx xdx x dx x x x Ca xdx a x Cxdx x dx x x Cd d Cxdxx xϕϕϕϕϕ-+=++++=++=+++=+=-=-+=-=--++⎛=+++⎝⎰⎰⎰⎰⎰⎰⎰⎰⎰求下列不定积分2225/43/27/423222arctan.7.4arcsin.8.(1cos)sec(sec1)tan.4249.(1)5371232610.ln||.11.dx x x Cdx x Cxxdx x dx x x Cdx x x x x Cdx x Cx x x x x⎫=++⎪⎭⎛⎫+=+++=+=++=+=++++⎛⎫++=--+⎪⎝⎭⎰⎰⎰⎰⎰⎰()24/31/32/34/31/32/35/3223/21/21/2225/23/222122333.512.(2cosh sinh)2sinh cosh.31113.321243.53114.sin cosx xdx x x x dxxx x x Cx x dx x x Cxdx x x x dxx xx x x Cxx-----+==-+=--++-=-+⎛-⎛⎫+=-+++⎪⎝⎭⎝=++++⎰⎰⎰⎰⎰2212222211cot tan.sin cos2311115.263921112/ln3/ln2.392111116.arctan.(1)1x xx xxx xdx dx x x Cx xdx dxCdx dx x Cx x x x x+-⎛⎫=+=-++⎪⎝⎭⎛⎫+⎛⎫⎛⎫=+⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫=--+⎪ ⎪⎝⎭⎝⎭⎛⎫=-=--+⎪++⎝⎭⎰⎰⎰⎰⎰⎰121122234317.()(,).(),1().218.()()()1,().1(())1,()1,41()1.4x x x x x y x a be a b a be dx ax be C yax be C dx ax be C x C f x xf x f x x f x xf x x xf x x dx x x C C f x x x-----''=+'+=-+=-+=+++'+=+'=+=+=++=++⎰⎰⎰求解微分方程为常数设满足方程求解y =解习题2.6122112222121.(1)lim lim ()().()()(2)lim (lim(())11(1)()()lim()()()lim2()()li nbi a i nnn n i i nn n i kdx k x k b a k b a i b a b ab a a a b a i n n n n n a b a b a i a b a b a nn a b a b a λλ→→=→∞→∞==→∞→∞==∆=-=----+=-++=-+-=-+-=-+-∑⎰∑∑∑根据定积分的定义直接求下列积分:222(11/)()m ().2222.()[,]()0.(),,;0,()[,],()(),()(),(),().n dbcan b a b a a b a x y c d y x y y c y d y c x y c d y dy x dx y x x y a c b b ϕϕϕϕϕψψϕϕϕ→∞+--=-+==>===≥=+====⎰⎰设函数在上连续且试用定积分表示曲线及轴所围的图形的面积又设函数在上严格递增试求积分和其中是的反函数()()dbcay dy x ϕψ+⎰⎰解221230203.[0,1]Riemann .Riemann 111111(1)(21)12().6634..,0,0,1, 1.2,31i n n i y x n n i s n n n n nn n n n x y x y x y ξ-==→∞⎛⎫⎛⎫==--=--→→∞ ⎪⎪⎝⎭⎝⎭======∑⎰⎰ 写出函数在区间上的和,其中分割为等分,中间点为分割小区间的左端点求出当时和的极限.]求定积分当时当时由题解解y =120/2/2/2/2/2212121.335.(1)(1sin ).2(1sin )(1).(1sin )(2).23.22(1)(2)0,1, 2.(,1/2),y dy x dx x dx dx x dx dx x x x x x x x πππππππππ-=-=<+<+>=+<=<<+-=+-==-=∈-∞⎰⎰⎰⎰⎰⎰⎰证明下列不等式当时证证21100/2/22200100.(1/2,)3.26.:(1).(2)(sin).(3).7.()[,],().x xxe dx e dxx dx x dxxdxy f x a b y f xππ∈+∞=<<=>><==⎰⎰⎰⎰⎰⎰⎰⎰⎰当时判断下列各题中两个积分值之大小设函数在上有定义并且假定在任何闭子区间上有最大值和最小值对于012111()()11()0()01::()[,],()[,]()[,]lim lim.()[,]lim lim(n ni i i i i in ni i i iT Ti ini i iT Ti iT x a x x x x b m f x x x M f x x xy f x a b m x M x y f x a b m x fλλλλξ---→→==→→==<<<<<==∆∆=∆=∑∑∑任意一个分割记为在中的最小值为在中的最大值.证明在上可积的充要条件是极限与存在并且相等设在上可积,则证1()0()011()0()011111()01)(),lim lim()().lim lim,(),lim().n bi an n bi i i i aT Ti in ni i iT Ti in n ni i i i ii i ini iTix f x dx M x f x f x dxm x M x Im x f x M xf x Iλλλλληξξ=→→==→→=====→=∆=∆=∆=∆=∆=∆≤∆≤∆∆=∑⎰∑∑⎰∑∑∑∑∑∑设则由夹挤定理,习题2.72222222211222012201.1(1)()().11(2)()sin ,()2sin(1).(3)()cos ,()cos .(4)(),()2.2.()[,].()()x x xx t x x xxadt F x F x t x G x t dt G x x x H x t tdt H x x x L x e dt L x xe e y f x a b F x f t +---'==++'==+'==-'==-==⎰⎰⎰⎰求下列变上(下)限积分所定义的函数的导函数:设在上连续证明00,()().()()11()()()()()(0)()().a x a dt a F a f a F a x F a f t dt f x a a x x x xf f a x F a f a ξξξ++∆+'=+∆-==∆≤≤+∆∆∆∆'=→∆→+=⎰⎰在处有右导数且故证3.()[,].()()(()0.()().().()0,,()().()(),()0.(()())()()()()0,()(),[,].()()0,xaxax a b f x F x F a a x b F x f t dt f t dt G a G x f x F x f x F a G x F x G x F x f x f x G x F x C x a b C F a G a =≤≤=''===='''-=-=-=-=∈=-=⎰⎰设f 在上连续假定有一个原函数且证明当时由变上限积分求导定理证G(x)=()()(),[,].xa F x G x f t dt x ab ==∈⎰()11111124.:(0,),ln .11ln ,,(0,),ln10,ln .5.()[,]|()|,([,]),.()()[,]Lipschiz :|()(xx x xadt x x dt tdt dt dt x dt x dt x dt x t xt t y f x a b f x L x a b uqz L F x f t dt a b F x F x ∈+∞='⎛⎫'==∈+∞=== ⎪⎝⎭=≤∀∈=-⎰⎰⎰⎰⎰证明当时由于故设在上可积,且其中为常数证明变上限积分在上满足条件证2122211112121212210)|||,(,[,]).,|()()|()()()().6.()sin .()sin ,()sin sin (1cos )x x x x x a ax x x x t tx x x x L x x x x a b x x F x F x f t dt f t dt f t dt f t dt Ldt x x G x ezdzdt G x e zdz G x zdz e x x e ≤-∈<-=-=≤≤==='''==+=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰不妨设求函数的二阶导数x x 证解e e sin .x x习题2.8Newton-Leibniz (1)4.将下列积分改成若干个区间上定积分之和,然后分别使用公式求处其值:14130033002211443064215301.Newton-Leibniz :1(1).44(2).(3)sin cos | 2.(4)ln |ln 2.(5)(2sin )2cos 4.4411(6)(1)326124bb xx b a aa x x dx e dx ee e xdx x dx x xx x x dx x x x x x x x dx x πππππ====-=-===⎡⎤+=-+=+⎢⎥⎣⎦⎡+++=+++⎣⎰⎰⎰⎰⎰⎰用公式计算下列定积分()10422221122112212222422223.211112..2111:?21111111,2221112x x x dx x x x x dx x x x x x x x x x x x x x x x x dx x x x ----⎤=⎢⎥⎦⎛⎫-++ ⎪⎝⎭⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭''⎛⎫⎛⎫'-=-=+=+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰验证是的一个原函数并计算定积分试问下式是否成立为什么故是的一个原函数.解4112221125.41111.[1,1]2x dx x x x x x --=⎛⎫⎛⎫+=-+- ⎪ ⎪⎝⎭⎝⎭⎰不成立因为在不可积.1100113341340110113.Riemann Newton-Leibniz 1(1)lim sin sin cos |1cos1.11(2)lim lim .44111(3)lim lim 1/nn k nn n n k k nn n n k k kxdx x n n k k x x dx n n n dx n k n k n →∞=→∞→∞==→∞→∞====-=-⎛⎫==== ⎪⎝⎭==++∑⎰∑∑⎰∑∑将下列极限中的和式视作适当函数的和,然后使用公式求出其值:1100ln(`1)|ln 2.1x x =+=+⎰1221110111110111/21001/21/22304.Newton-Leibniz (1)|| 1.22(2)sgn 1(1)110.111(3)22243x x x dx xdx xdx xdx dx dx x x dx x x dx x x dxx x x -----=-=-==+-=-=⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=-+ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰将下列积分改成若干个区间上定积分之和,然后分别使用公式求处其值:1321/22220021222121011111111.3416243424168(4)|sin |sin sin cos |cos |22 4.(5)([])(1)2211( 1.22x x dx xdx xdx x x x x x x dx xdx x dx x πππππππ⎛⎫-=-+--+= ⎪⎝⎭=-=-+=+=⎛⎫-=+-=+- ⎪⎝⎭=--=⎰⎰⎰⎰⎰⎰5.()[,]().[,],()()()().()()()(Newton-Leibniz )()()().ba F x ab F xc a b F b F a F c b a F b F a F x dx F c b a '∈'-=-'-='=-⎰设在上有连续的导函数试证明:存在一点使得公式定积分中指中值公式证第二章总练习题2211211|3| 11.().313,14243131()(10)lim 2;424(10)lim |3|2(10)(1),1.313(1)(3)|1,(1)4242x x x x x x f x x x x x x f x f x f x f f f x x x f x f x →→+=-=-≥⎧⎪=⎨-+<⎪⎩⎛⎫≠-=-+= ⎪⎝⎭+-==-=='⎛⎫'''=-=-=-+= ⎪⎝⎭时讨论函数的连续性和可导性时时可导.=在连续解132131(1),(1) 1.212 2 12.(), 1157 1,,,,()(,).(10)lim(2x x f f f x x x f x Ax Bx Cx D x x x A B C D f x f x +=→-⎛⎫''-=-==- ⎪⎝⎭=-<-⎧⎪=+++-≤≤⎨⎪+>⎩-∞+∞--在可导.时设函数时时试确定常数的值使在可导解=3211212)4(1).(1)(22)|2(1)()|(32)|32.(10)(10)12,(1)32(1) 5.43221232 5.{ x x x f A B C D f x f Ax Bx Cx D Ax Bx C A B C f A B C D f f A B C f A B C D A B C A B C D A B C A -=-+=-=--+-=-=-=-+-+''''-=-==-=+++=++=-+-=+++=+=''=++==-+-+=-⎧⎪-+=⎪⎨+++=⎪⎪++=⎩= -9/4, 3/4, 41/4, 13/4}.B C D ===223.()(sin 2)(),()0.()0,,(0).()(0)()sin 222(0)(0),(0)2(0).2sin cos 4.?()() 1.5,.()[1,1],g x x f x f x x g x x g g x g f x xf xg f x x xf xg x f x ==='∆-∆∆'=→∆→=∆∆+--=-222设函数其中在连续问在是否可导若可导求出x 问函数f(x)=与g(x)=为什么有相同得导数1+x 1+x因为设函数在上有定义解x解22(),[1,1]. 1.(0)0,(0)0.0,()(0)()11(00),(0)1,(0)1,(0) 1.x f x x x x f f x f x f f x x xx x f f x x x f +-≤≤+∈-≤≤=∆>∆-∆∆+∆''=≤=∆+→∆→+==∆∆∆'=且满足证明存在且等于类似故证02222222222236.()|4|,().||2,()4,()2.(2)(4)|4,(2)(4)|4,(2),(2)1,.12241,,.1(1)(1)8.()(,),x x f x x f x x f x x f x x f x f x f f x d yy x dxdy d y y x dx x dx x f x +=-='=-'''>=-==-=''''=-=--+=-+==-----∞+∞设求时不存在同理不存在.7.设求设函数在上有定义且满足下解 解=-2:(1)()()()(,);(2)(0)1;(3)0.:(,)()(0)().()()()()()(0)()(0)()(0)()(0),()(0)().1/2, 1/2,9.()0n n f a b f a f b a b f x x f x f f x f x x f x f x f x f x f x x f x f f x f f x x f x f f x x x f x +===''∈-∞+∞=+∆-∆-=∆∆∆-'''=→∆→=∆== 列性质为任意实数在处可导证明对于任意都有设证1201/2, 1/2,(1,2,);()(1,2,);, 1/20, 1/2()0?()0?(1/2)(0)1/210(),1/21/22()(0)()(0)00(1/2,0).lim 0,(0)n n n nn n n nn n x x n g x n x x f x x g x x f f n f x f f x f x x f x x+→⎧⎧=⎪⎪===⎨⎨≠≠⎪⎪⎩⎩==-==→→∞--'=→≠→= 问在处是否可导在处是否可导解()()102222220.(1/2)(0)1/211(),1/21/222()(0)()(0)00(1/2,0),lim .(0).10.()()[,],()()()().[()()]()2()n n n nn x bb baaab baag g n g x g g x g x x g x xy f x y g x a b f x g x dxf x dxg xdx f x tg x dx g x dx t f x g +→=-==→→∞--'=→≠→==≤+=+⎰⎰⎰⎰⎰不存在设及在上连续证明:证()()()()222222222()()0(*),()0,()0,[,],0.()0,2()()4()()0,()()()().bbaab aba bbba aab b baaax dx t f x dx g x dx g g x x a b g x dx f x g x dx g x dxf x dx f xg x dxf x dxg xdx +≥==∈>-≤≤⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰如果则由的连续性不等式两端都是如果(*)左端的二次函数恒非负,故其判别式非正,2212122111.111()222/2(/2)1,()(),(1),1/2222.222122(),(1).2222212./2(/2)(),1/2(1()n n n n n n n n n f x x x x x x x f x f x f x n n n nf x x x f x x f x x f x +-+=+++-'==-++++=-''=+++=+++-=-'= 求出函数在点的导数再将函数写成的形式再求由此证明下列等式:1212由类似上题的办法证明证1211221210/2(1)(/2)(1/2))(1/2)(1/2)(/2(/2)),(1/2)(1/2(1)(1/2))(1/2)(1/2)(1/21/2)(1)1/22(1(1)/2)11/22.21(1)(1)(1)113.()[0,1]()()n n n n n n n n n n x x x x x n f n n n x nx x x y f x f x d f x ++++-+-+---++-'=+=-++-=--++≠-=⎰设在连续且>0证明11111.()1().()14.ln 111()ln 1(0)1111111()ln 1;23231nx f x dxdx f x dx dx f x dt x t a n n n n b n n n ≥=≤=⎛⎫<+<> ⎪+⎝⎭+++<<++++-⎰⎰⎰⎰⎰⎰ 1证1=111111/11/11/1111()1.111(1)ln 1.111/1231111(2)ln ln ln 111,121121111ln ln 11.12nn n n n c ee n dt dtdt n n n t n n n n n n n n n -++++⎛⎫<+< ⎪⎝⎭⎛⎫=+=<= ⎪++⎝⎭⎛⎫⎛⎫==++++<+++ ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫=++++>++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰证11111/11/11/111l 1()1.111(1)ln 1.111/1231111(2)ln ln ln 111,121121111ln ln 11.121(3)1nn n n n nn c ee n dt dtdt n n n tn n n n n n n n n e n -++++⎛⎫<+< ⎪⎝⎭⎛⎫=+=<= ⎪++⎝⎭⎛⎫⎛⎫==++++<+++ ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫=++++>++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+= ⎪⎝⎭⎰⎰⎰ 证111n 1111.n nn n e e ⎛⎫+- ⎪⎝⎭++>=第二章总练习题2211211|3| 11.().313,14243131()(10)lim 2;424(10)lim |3|2(10)(1),1.313(1)(3)|1,(1)4242x x x x x x f x x x x x x f x f x f x f f f x x x f x f x →→+=-=-≥⎧⎪=⎨-+<⎪⎩⎛⎫≠-=-+= ⎪⎝⎭+-==-=='⎛⎫'''=-=-=-+= ⎪⎝⎭时讨论函数的连续性和可导性时时可导.=在连续解132131(1),(1) 1.212 2 12.(), 1157 1,,,,()(,).(10)lim(2x x f f f x x x f x Ax Bx Cx D x x x A B C D f x f x +=→-⎛⎫''-=-==- ⎪⎝⎭=-<-⎧⎪=+++-≤≤⎨⎪+>⎩-∞+∞--在可导.时设函数时时试确定常数的值使在可导解=3211212)4(1).(1)(22)|2(1)()|(32)|32.(10)(10)12,(1)32(1) 5.43221232 5.{ x x x f A B C D f x f Ax Bx Cx D Ax Bx C A B C f A B C D f f A B C f A B C D A B C A B C D A B C A -=-+=-=--+-=-=-=-+-+''''-=-==-=+++=++=-+-=+++=+=''=++==-+-+=-⎧⎪-+=⎪⎨+++=⎪⎪++=⎩= -9/4, 3/4, 41/4, 13/4}.B C D ===223.()(sin 2)(),()0.()0,,(0).()(0)()sin 222(0)(0),(0)2(0).2sin cos 4.?()() 1.5,.()[1,1],g x x f x f x x g x x g g x g f x xf xg f x x xf xg x f x ==='∆-∆∆'=→∆→=∆∆+--=-222设函数其中在连续问在是否可导若可导求出x 问函数f(x)=与g(x)=为什么有相同得导数1+x 1+x因为设函数在上有定义解x解22(),[1,1]. 1.(0)0,(0)0.0,()(0)()11(00),(0)1,(0)1,(0) 1.x f x x x x f f x f x f f x x xx x f f x x x f +-≤≤+∈-≤≤=∆>∆-∆∆+∆''=≤=∆+→∆→+==∆∆∆'=且满足证明存在且等于类似故证02222222222236.()|4|,().||2,()4,()2.(2)(4)|4,(2)(4)|4,(2),(2)1,.12241,,.1(1)(1)8.()(,),x x f x x f x x f x x f x x f x f x f f x d yy x dxdy d y y x dx x dx x f x +=-='=-'''>=-==-=''''=-=--+=-+==-----∞+∞设求时不存在同理不存在.7.设求设函数在上有定义且满足下解 解=-2:(1)()()()(,);(2)(0)1;(3)0.:(,)()(0)().()()()()()(0)()(0)()(0)()(0),()(0)().1/2, 1/2,9.()0n n f a b f a f b a b f x x f x f f x f x x f x f x f x f x f x x f x f f x f f x x f x f f x x x f x +===''∈-∞+∞=+∆-∆-=∆∆∆-'''=→∆→=∆== 列性质为任意实数在处可导证明对于任意都有设证1201/2, 1/2,(1,2,);()(1,2,);, 1/20, 1/2()0?()0?(1/2)(0)1/210(),1/21/22()(0)()(0)00(1/2,0).lim 0,(0)n n n nn n n nn n x x n g x n x x f x x g x x f f n f x f f x f x x f x x+→⎧⎧=⎪⎪===⎨⎨≠≠⎪⎪⎩⎩==-==→→∞--'=→≠→= 问在处是否可导在处是否可导解()()102222220.(1/2)(0)1/211(),1/21/222()(0)()(0)00(1/2,0),lim .(0).10.()()[,],()()()().[()()]()2()n n n nn x bb baaab baag g n g x g g x g x x g x xy f x y g x a b f x g x dxf x dxg xdx f x tg x dx g x dx t f x g +→=-==→→∞--'=→≠→==≤+=+⎰⎰⎰⎰⎰不存在设及在上连续证明:证()()()()222222222()()0(*),()0,()0,[,],0.()0,2()()4()()0,()()()().bbaab aba bbba aab b baaax dx t f x dx g x dx g g x x a b g x dx f x g x dx g x dxf x dx f xg x dxf x dxg xdx +≥==∈>-≤≤⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰如果则由的连续性不等式两端都是如果(*)左端的二次函数恒非负,故其判别式非正,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题2-1
1.解:当自变量从x 变到1x 时,相应地从y ()=8f x x 1变到1()=8f x x ,所以导数
111111
()()8()lim
lim 8x x x x f x f x x x y x x x x →→−−′==−−=. 2.解:由导数的定义可知 022020()()
()lim
()()( lim 2 lim 2h h h f x h f x f x h
a x h
b x h
c ax bx c h
axh h bh ax b h →→→+−′=++++−++=++==+)。
3.解:0022()22()lim lim x x x x x sin sin cos x x cos x cos x x
x
Δ→Δ→+ΔΔ−⋅+Δ−′==ΔΔ 0022lim lim 2
2x x x sin x x -sin sin x Δ→Δ→Δ+Δ=⋅Δx =− 4. 解:(1)不能,(1)与()f x 在0x 的取值无关,当然也就与()f x 在0x 是否连续无关,故是0()f x ′存在的必要条件而非充分条件.
(2)可以,与导数的定义等价.
(3)可以, 与导数的定义等价.
5. 解:(1)4
5x ; (2)3212x −−; (3)157227x ; (4)1
ln 3x ; (5)5
616x −; (6). 22x e 6. 解:物体在t 时刻的运动速度为:,故物体在时的速度为:2
()()3()V t S T t m /s ′==2t =s 22()3212()t m /s ==⋅=V t . 7.证明:由导数定义,知:
00()(0)()(0)(0)lim
lim 0x x f x f f x f f x x
→→−−′==−− 00()(0)()(0)lim lim (0)0t x t t f t f f t f f t t =−→→−−′==−=−−− 所以,。
(0)0f ′=
8. 解:,故在点(2的切线平行于直线;同理在点242y x x ,y ′====45,4)4y x =−39,24⎛⎞−⎜⎟⎝⎠
的切线垂直于直线26. 5x y −+=09.解:过点(11)(39),,,的直线的斜率为:91431
K −==−,而2()2y x x ′′==,令,得:,所以该抛物线上过点的切线平行于此割线.
24x =2x =(2,4)10.解:(1)连续,但因为
23000/f (h )f ()h
h +−−==1h 因而2300(0)(0)1lim lim /h h f h f h
h →→+−==+∞,即导数为无穷大。
(2)21000x sin ,x y x ,x ⎧≠⎪=⎨⎪=⎩
∵,而20001lim lim 0x x x y x sin y x =→→===,所以函数在处连续而0x =201
lim 00x x sin
x x →=−,所以函数在点处可导. 0x =11.解:要使函数()f x 在1x =处连续且可导,则应满足
011
(1)(1)lim ()lim ()(1),lim x x x f x f f x f x f x +−Δ→→→+Δ−==Δ存在, 11lim ()lim ()x x f x ax b a b ++→→=+=+∵11()lim x x x lim f x e e a b e −−
→→==∴+= , 又 00(1)(1)(1)lim lim x x f x f a x b e x x
++Δ→Δ→+Δ−+Δ+−=ΔΔ∵ 100(1)(1)lim lim x x x f x f e e e x x
−−+ΔΔ→Δ→+Δ−−==ΔΔ∵, 要使0(1)(1)lim x f x f x Δ→+Δ−Δ存在,则00(1)lim lim ()x x a x b e a b e a e x x
++Δ→Δ→+Δ+−+−=+ΔΔ==, 00a b e a e,b a e
+−=⎧∴∴=⎨=⎩。
12.解:因为2
00()(0)(0)=lim lim 0x x f x f x f x x
+++Δ→Δ→Δ−Δ′==ΔΔ 00()(0)(0)=lim lim 1x x f x f x f x x
−−−Δ→Δ→Δ−−Δ′==ΔΔ−− (0)(0)1f f +−′′∴≠=,所以不存在.
(0)f ′
13.解:当时,0x >3()f x x =是初等函数,所以2
()3f x x ′=;同理,当时0x <2
()3f x x ′=−;当时0x =300(0)=lim 0x x f x −−→−−′=,300(0)=lim 0x x f x ++→−′=,故,所以或. (0)0f ′=223,0()0,030x x f x x x x ⎧−<⎪′==⎨⎪>⎩
223,0()3,x x f x x x ⎧−≤′=⎨>⎩0)14.(1)证明:设()(f x f x −=,且()f x 可导,则由导数定义
000()()[()]()()lim
lim ()() lim ()h h h f x h f x f x h f x f x h h f x h f x f x h →→→−+−−−−−−′−==−−′=−=−− 即结论可证。
(2)略.
15.解:当时,不妨设,则在的某一邻域中有,故(0)0f ≠(0)0f >0x =()0f x >|()|()f x f x =,所以|()|f x 在处也可导;
0x =当时,由于(0)0f =|()||(0)|()(0)sgn 00
f x f f x f x x x −−=−−,其中 10010,x sgn x ,x ,x >⎧⎪=⎨⎪−<⎩
0=||,分别在处计算左、右极限,得在处的左导数为,右导数为|(,所以|(0x =0x =|(0)f ′−0)f ′)|f x 在处也可导的充分必要条件。
0x =(0)0f ′=16.略
17.略。