九年级上册圆教材分析
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
人教版初三数学九年级上册 第24章 《圆》教材分析 课件(共38张PPT)

能利用垂径定理解决有关简单问题; 能利用圆周角定理及其推论解决有关 简单问题
运用圆的性质的有关 内容解决有关问题
点和圆 的
位置关系
了解点与圆的位置关系
尺规作图(利用基本作图完成):过 不在同一直线上的三点作圆;能利用 点与圆的位置关系解决有关简单问题
图图 形形 与的 几性 何质
直线和圆 的
位置关系
了解直线和圆的位置关系;会判断直 线和圆的位置关系;理解切线与过切 点的半径的关系;会用三角尺过圆上 一点画圆的切线
三角形的内切圆;了解三角形的内心; 有关简单问题;尺规作图(利用基本
了解正多边形的概念及正多边形与圆 作图完成):作三角形的外接圆、内
的关系
切圆,作圆的内接正方形和正六边形
弧长、扇形面 会计算圆的弧长和扇形的面积;会计
积 算圆锥的侧面积和全面积
和圆锥
能利用圆的弧长和扇形的面积解决一 些简单的实际问题
O
O
适当补充“知二推三”,灵活运用所学 知识,特别是体会如何证明圆心在弦上 (某弦是直径)。
O
C
A
B
例. 根据条件求解:
D
(1)已知⊙O半径为5,弦长为6,求弦心距和弓形高.
(2)已知⊙O半径为4,弦心距为3,求弦长和弓形高.
(3)已知⊙O半径为5,劣弧所对的弓形高为2,求弦长和 弦心距.
(4)已知⊙O弦长为2,弦心距为,求⊙O半径及弓形高.
A
B
半径为5dm。则水深______dm.
5.注重数学核心素养的培养
本章的教学内容能进一步发展学生的几何 直观、推理能力等数学核心素养。
在教学过程中引导学生多画图、敢画图, 借助对几何图形直观的感知、分析问题, 并在此基础之上,在解决问题的过程中, 运用合情推理探索思路,发现结论,运用 演绎推理用于证明结论。
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。
人教版九年级数学上册24.1.1《圆》说课稿

人教版九年级数学上册24.1.1《圆》说课稿一. 教材分析《圆》是人民教育出版社出版的九年级数学上册第24.1.1节的内容。
这部分内容是学生在学习了平面几何的基础上,进一步深入研究圆的性质和圆的方程。
本节内容主要包括圆的定义、圆的性质、圆的标准方程和圆的一般方程。
这部分内容在数学学习中占有重要的地位,不仅是中考的热点,也是学生进一步学习高中数学的基础。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何中的线段、角度等概念有一定的了解。
但是,圆作为一个特殊的几何图形,其性质和方程的推导对students 来说是一个挑战。
因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,理解和掌握圆的性质和方程。
三. 说教学目标1.知识与技能:学生能够理解圆的定义,掌握圆的性质,推导圆的标准方程和一般方程。
2.过程与方法:学生通过观察、思考、实践等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够体验到数学的美感,培养对数学的兴趣和热情。
四. 说教学重难点1.圆的性质的推导和理解。
2.圆的标准方程和一般方程的推导和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、实践等方式,自主学习和探索。
2.教学手段:利用多媒体课件,进行动画演示和实例分析,帮助学生直观地理解和掌握圆的性质和方程。
六. 说教学过程1.引入:通过展示生活中的圆形物体,引导学生思考圆的特点和性质。
2.圆的定义:引导学生通过观察和思考,得出圆的定义。
3.圆的性质:引导学生通过实践和观察,推导出圆的性质。
4.圆的方程:引导学生通过思考和实践,推导出圆的标准方程和一般方程。
5.应用:通过实例分析,引导学生运用圆的性质和方程解决实际问题。
七. 说板书设计板书设计主要包括圆的定义、圆的性质、圆的标准方程和一般方程。
通过板书,帮助学生理解和记忆圆的相关知识。
八. 说教学评价教学评价主要包括对学生知识的掌握程度、能力的培养程度和情感态度的培养程度。
人教版数学九年级上册《24.1.1圆》说课稿2

人教版数学九年级上册《24.1.1圆》说课稿2一. 教材分析人教版数学九年级上册《24.1.1圆》是本册教材中的一个重要内容,它主要包括圆的定义、圆的性质、圆的标准方程以及圆的一般方程等内容。
这些内容不仅在理论上有重要意义,而且在实际生活和工作中也有着广泛的应用。
例如,在建筑设计、机械制造、地图绘制等领域都需要运用到圆的相关知识。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认知和理解能力有了进一步的提升。
但是,对于圆这一概念,学生可能还存在着一些模糊的认识,需要通过实例和练习来加深理解。
此外,由于圆的知识点较为抽象,学生可能在学习过程中感到困难,因此需要教师耐心引导,帮助学生建立正确的概念。
三. 说教学目标1.知识与技能:通过学习,使学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 说教学重难点1.重点:圆的定义、性质和方程的掌握。
2.难点:圆的方程的推导和应用。
五. 说教学方法与手段1.教学方法:采用启发式教学法、讨论式教学法和案例教学法等,引导学生主动探究,培养学生的思维能力。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,使抽象的知识形象化、具体化。
六. 说教学过程1.导入:通过展示生活中的圆形物体,如硬币、车轮等,引导学生思考圆的特点,从而引出圆的定义。
2.新课导入:介绍圆的性质,如圆的对称性、圆的周长和面积公式等。
3.知识拓展:讲解圆的标准方程和一般方程,并通过实例让学生理解方程的含义。
4.课堂练习:布置一些相关的练习题,让学生巩固所学知识。
5.总结:对本节课的内容进行总结,强调圆的重要性质和方程的应用。
七. 说板书设计板书设计要简洁明了,能够突出本节课的重点内容。
可以设计如下板书:圆的定义:平面上到定点距离等于定长的点的集合。
华东师大版九年级上册“圆”的教材分析与教学建议

南
教 育
课堂链接
KE T AN G LIAN J IE
关系及圆的 切线判定 方法、 切线长定 理是本 章的第三 个重点.
从具体 情境或从 前提出 发进行合 情推理 得出圆的 有关性质, 及运用圆的有关性质 建立数学模型解决实际 问 题 是 本 章 的 教 学 难 点.
二 、教 学 建 议 1.本 章内容涉及的图 形很多是圆 与直线、圆与三角 形的结合.它是 在学生认识了点、线、面、角、相交线与 平 行线、三 角形、四边 形的基础上学习 圆的相关知 识.教学 时, 教师应注意 复习与学习 内容有 关联的知 识, 把新知 转化为旧 知, 把 未知转化为 已知, 把一 般问题 转化为特 殊问题, 使学生 在学习数学 的活动 中, 体验数 学思考的 方法, 通过自主 探索、合作交流 、实 践应用 , 认 识和掌握 圆的基本 性质; 对于 与圆的 位置关系 及圆中 的计算问 题, 教师应引导 学生积累探 究数学 问题、开展 数学活动 的经验, 发展空间观念, 形成数学能力. 2.教 学中, 教师 要强调学生 动手操作、观察思 考、归 纳结论, 然后有意识地引导学生 说理, 培养 推理能力, 为 学习下一章图形的 全等中的命题与 证明奠定基 础.教师 在教学中一定要根据教材的编写特点, 让学生运用轴对 称、旋转变换、运动变 化的数 学方法去 探索圆 的性质及 点与圆、直线与圆、圆与圆的位置关系, 不能代替学生的 操作, 更不能用 处理传统教 材的方 法进行教 学, 而是将 需要探索的结论设计成问题, 让 学生进行有针对性的 操 作、观察、思考, 获得所需要 的结论 , 然 后引导 学生进行 说理, 培养 学生的问 题意 识和推 理意识 .教 师要 充分发 挥学生在数学活动中的主体作用, 自己仅作为数学活动 过程中的 组织者、引导者、合作 者; 要关注过 程, 充分调 动每个学生的学习兴趣和积极性, 促使学生 人人动手、 动脑, 数学地思考问题, 提高学习效率. 3.教学中 , 教师要 适当 地引导 学生 根据已 知条 件, 结合图形进行拓展 延伸.新课 程改革强调数 学问题的开
人教版数学九年级上册《24.1.1圆》说课稿3

人教版数学九年级上册《24.1.1圆》说课稿3一. 教材分析人教版数学九年级上册《24.1.1圆》这一节的内容,主要介绍了圆的定义、圆心、半径等基本概念,以及圆的性质。
这是学生学习圆相关知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但是,对于圆这一概念,学生可能在生活中有所接触,但对其精确的数学定义和性质可能还不够清晰。
因此,在教学过程中,需要引导学生从生活实例中抽象出圆的数学定义,进一步理解和掌握圆的性质。
三. 说教学目标1.知识与技能目标:使学生了解圆的定义、圆心、半径等基本概念,掌握圆的性质,能够运用圆的知识解决一些简单的问题。
2.过程与方法目标:通过观察、实验、推理等方法,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.重点:圆的定义、圆心、半径等基本概念,圆的性质。
2.难点:圆的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组讨论法等,引导学生主动探究,合作学习。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的空间想象能力和理解能力。
六. 说教学过程1.导入:通过展示生活中常见的圆的实例,引导学生思考圆的数学定义,激发学生的学习兴趣。
2.新课导入:介绍圆的定义、圆心、半径等基本概念,引导学生理解圆的性质。
3.实例分析:通过几何画板展示圆的性质,引导学生观察、实验、推理,加深对圆的理解。
4.小组讨论:让学生分组讨论圆的性质,培养学生的团队合作意识和解决问题的能力。
5.总结提升:对圆的性质进行总结,引导学生掌握圆的知识。
6.课堂练习:布置一些相关的练习题,让学生巩固所学知识。
7.课堂小结:对本节课的内容进行总结,引导学生反思学习过程。
人教版数学九年级上册24.1.1《圆》教学设计

人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
人教版九年级数学上册24.1.4圆周角说课稿

1.教学重点:圆周角定理的表述及其推论,能运用圆周角定理解决实际问题。
2.教学难点:圆周角定理的证明,以及如何运用圆周角定理解决复杂几何问题。
在教学过程中,应着重讲解圆周角定理的证明过程,引导学生通过观察、分析、推理等方法,理解并掌握圆周角定理。同时,通过举例和练习,让学生学会如何运用圆周角定理解决实际问题,提高他们的数学应用能力。
4.圆周角定理的推论:引导学生从圆周角定理出发,推理出圆周角定理的推论,加深学生对定理的理解。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习和实践活动:
1.课堂练习:设计一些与圆周角定理相关的练习题,让学生在课堂上进行练习,检验他们对知识点的掌握程度。
2.小组讨论:组织学生进行小组讨论,让他们共同解决一个与圆周角定理相关的实际问题,培养学生的合作能力和应用能力。
(五)作业布置
我的课后作业布置情况如下:
1.作业内容:设计一些与圆周角定理相关的练习题,让学生在课后进行巩固练习。
2.作业目的:检查学生对圆周角定理的理解和应用能力,巩固所学知识。
3.作业要求:学生在完成作业时,要注意思考和总结,遇到问题时可以寻求他人的帮助。
4.作业反馈:教师要及时批改作业,给予学生反馈,指出他们的错误和不足,帮助学生提高。
2.小组讨论:组织学生进行小组讨论,鼓励他们分享思路,培养学生的合作能力和团队精神。
3.成果展示:鼓励学生展示自己的解题过程和结果,让其他同学进行评价和交流,提高学生的表达能力和评价能力。
4.课后实践:布置一些与生活实际相关的数学问题,让学生在课后进行实践,巩固所学知识。
四、教学过程设计
(一)导入新课
2.在小组讨论和实践活动环节,部分学生可能缺乏合作意识和沟通能力,需要教师进行引导和协调。
浙教版数学九年级上册3.1《圆》说课稿3

浙教版数学九年级上册3.1《圆》说课稿3一. 教材分析浙教版数学九年级上册3.1《圆》是本册教材中的重要内容,本节课主要介绍了圆的概念、特征以及圆的画法。
学生通过本节课的学习,能够理解圆的基本概念,掌握圆的画法,为后续学习圆的性质和应用打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的基础。
但是,对于圆的概念和特征,以及圆的画法,可能还存在一定的模糊认识。
因此,在教学过程中,需要引导学生通过观察、思考、实践等方式,深入理解圆的特征,掌握圆的画法。
三. 说教学目标1.知识与技能:理解圆的概念,掌握圆的特征,学会圆的画法。
2.过程与方法:通过观察、思考、实践等方式,培养学生的空间想象能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:圆的概念、特征,圆的画法。
2.教学难点:圆的画法,圆的性质。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、实践操作法等教学方法,引导学生主动探究,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、圆规、直尺等教学手段,直观展示圆的特征和画法,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示生活中的圆形物体,引导学生回顾圆的概念,激发学生的学习兴趣。
2.新课导入:介绍圆的特征,引导学生通过观察、思考、实践等方式,探究圆的画法。
3.知识讲解:讲解圆的画法,引导学生动手实践,加深对圆的画法的理解。
4.巩固练习:布置一些有关圆的练习题,让学生巩固所学知识。
5.课堂小结:总结本节课所学内容,引导学生反思自己的学习过程。
七. 说板书设计板书设计要简洁明了,能够突出圆的概念、特征和画法。
可以设计如下板书:•概念:到定点距离相等的点的集合•特征:圆心、半径、直径•画法:圆规、直尺、针线八. 说教学评价教学评价主要通过以下几个方面进行:1.学生的课堂参与度:观察学生在课堂上的发言、讨论、实践等情况,了解学生的学习状态。
人教版九年级数学上册(教案)第二十四章 圆 教材分析

第二十四章圆一、教学目标1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角的关系,探索并了解点和圆的位置关系.2.探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧.3.探索圆周角与圆心角及其所对弧的关系,理解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补.4.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径之间的关系,能判定一条直线是否为圆的切线,会用三角尺过圆上一点画圆的切线.*探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等.5.了解三角形的内心和外心,会利用基本作图作三角形的外接圆、内切圆.6.了解正多边形的概念及正多边形与圆的关系,会利用基本作图作圆的内接正方形和正六边形.7.会计算圆的弧长、扇形的面积.8.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生演绎推理能力;通过本章的教学,进一步培养学生综合运用所学知识,分析问题、解决问题的能力.二、教材分析与三角形、四边形等一样,圆也是基本的平面图形,是人们生活中常见的图形,也是“图形与几何”的主要研究对象.本章将在学生前面学习了一些基本的直线形——三角形、四边形等的基础上,进一步研究一个基本的曲线形——圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力.三、教学建议1.进一步培养逻辑推理的素养能力.从培养学生的逻辑推理能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段.不仅要求学生能熟练地掌握推理的基本形式,表述论证的过程,形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力.2.加强研究方法的引导,通过类比学习相关内容圆是平面几何中一种基本的图形,它是一种特殊的曲线.圆的许多性质是通过与圆有关的线段(如直径、弦、切线等)和角(如圆心角、圆周角等)体现的.在本章的教学中,要注意结合相关内容,体现这种研究圆的思路.例如,垂径定理建立了直径、弧、弦之间的关系;有关弧、弦、圆心角的定理建立了弧、弦、圆心角之间的关系;圆周角定理建立了圆周角与圆心角之间的关系,从而把圆周角与弧、弦联系起来,等等.3.注意把握好知识内容和演绎论证的要求教学内容应当限制在课标和教材范围之内,按照课标要求删减的内容,教学中不要再拣回,以免影响学生对基础知识的学习.对于推理论证的要求,在本章,要求学生对于一些圆的有关性质进行证明,并利用这些性质去证明一些相关的结论.但要注意,这里的证明也要控制难度,对于一般学生,控制在教科书“综合应用”的题目难度内,对于学有余力的学生,可以要求他们完成“拓广探索”栏目的习题.4.关于反证法反证法的思想在七年级上册开始涉及,在后续章节也有相关应用.但当时只是渗透反证法的思想,没有作为一种证明方法提出.5.重视信息技术的应用,在动态变化中发现图形的性质在本章教学中,有条件的学校应重视信息技术工具的使用.利用信息技术工具,可以很方便地制作图形,让图形动起来.许多计算机软件还具有测量功能,这也有利于我们在图形运动变化过程中发现其中不变的位置关系和数量关系,有利于发现图形的性质.。
初中数学_13.3《圆》教学设计学情分析教材分析课后反思

13.3 圆教学设计一、教学目标1、经历从现实世界中抽象出圆的过程,发展学生的数学建模意识。
2、能从圆的生成和集合的两个不同的角度去认识圆的概念,经历探索点于圆的位置关系的过程。
3.、理解弦、弧、半圆、等圆、同心圆、等弧的概念。
重点:圆的定义及有关概念难点:从集合的观点定义圆二、教材分析本节让学生在上一学段对圆的初步认识的基础上,经历从现实世界中抽象出圆的模型的过程,用发生法形象地给出圆的发生定义,这与学生平时的直观感受相同从集合的观点定义圆是本节的难点,因此教科书安排了一系列活动,通过对点与圆的位置关系的探究,经历圆的集合定义的形成过程。
进一步增强学生对圆的本质属性的认识。
圆是点的集合,而这个集合是由平面内所有“到定点的距离等于定长”的点组成的。
这里的定点就是圆心,定长就是圆的半径。
把一个几何图形看成是满足某些条件的点的集合的思想,在几何中十分重要,因为这实际上就是轨迹的概念。
在对弧、弦、半圆等概念的介绍中,教科书注重了符号语言的运用。
三、教学方法本节课主要采用观察、引导、思考等方式进行教学,利用学习小组进行合作探究、交流。
让学生从图像中找到自己所需要的知识。
四、教学过程:(一)、设疑激趣,导入新课。
1、什么是圆?2、圆有什么特点?(二)、布置任务,自主学习任务一1、根据课本P161图,你还能举出几个类似的实例吗?2、什么叫圆?圆心?半径?3、以点O为圆心的圆记作圆的定义: 在一个平面内,线段OA饶它的一个端点O旋转一周,另一个端点A随之旋转所形成的的图形叫做圆(circle).固定的端点O叫做圆心(center of a circle),线段OA 叫做半径(radius)以O为圆心的圆,记作“⊙O”,读作“圆O”任务二画一个半径为5厘米的圆,在圆上任意取A, B两点,连接OA与OB1 、你知道OA与OB的长分别是多少?2、如果OC=5厘米,你能说出点C的位置吗?3、如果OM=7厘米,ON=3厘米,你能说出点M,N两点与圆的的位置吗?4、想一想,平面上的点与圆有哪几种位置关系?由圆的定义可知:1、圆上的各点到定点(圆心O)的距离等于定长(半径的长r );2、到定点的距离等于定长的点都在圆上因此,圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.请你用集合的语言描述下面的两个概念:1、圆的内部是所有到定点O的距离小于定长r的点的集合.2、圆的外部是所有到定点O的距离大于定长r的点的集合.题组(一)要点追踪,相信你能行1、已知⊙O的半径为3,A为线段PO的中点,则当OP=6时,点A与⊙O的位置关系().A.点在圆内B.点在圆上C.点在圆外D.不能确定2、正方形ABCD的边长为2,以A为圆心,1为半径作⊙A,则点B在⊙A ;点C在⊙A;点D在⊙A .3、已知点O为圆心,已知线段a为半径,可以做个圆.知识链接生活:任务三圆的有关概念记住下面的概念弦直径弧半圆优弧劣弧扇形点A B C D E 是圆上的点 O 是 圆心 。
浙教版数学九年级上册3.1《圆》说课稿2

浙教版数学九年级上册3.1《圆》说课稿2一. 教材分析《圆》是浙教版数学九年级上册第三章第一节的内容。
本节内容是在学生已经掌握了线段、射线、直线等基本几何知识的基础上进行学习的。
圆是一种特殊的几何图形,它既有长度,又有宽度,而且它的每个点到圆心的距离都相等。
这一节内容主要让学生了解圆的定义、性质和基本画法。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对于图形的认知也有了一定的理解。
但是,圆的概念和性质较为抽象,学生可能难以理解和接受。
因此,在教学过程中,需要教师通过生动形象的比喻和具体的实例,帮助学生理解和掌握圆的概念和性质。
三. 说教学目标1.知识与技能目标:使学生了解圆的定义、性质和基本画法,能够运用圆的知识解决一些实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观目标:激发学生学习圆的兴趣,培养学生的观察能力和创新意识。
四. 说教学重难点1.教学重点:圆的定义、性质和基本画法。
2.教学难点:圆的性质和画法,特别是圆的半径与直径的关系。
五. 说教学方法与手段在本节课的教学过程中,我将采用以下教学方法与手段:1.情境教学法:通过生活实例引入圆的概念,让学生感受到圆的存在。
2.直观演示法:利用实物和模型,让学生直观地了解圆的性质和基本画法。
3.小组合作学习法:引导学生分组讨论,共同探究圆的性质和画法。
4.信息技术辅助教学:利用多媒体课件,展示圆的相关图像和实例,帮助学生更好地理解和掌握圆的知识。
六. 说教学过程1.导入新课:通过展示生活中常见的圆的实例,如车轮、地球等,引导学生思考圆的特点,从而引入新课。
2.探究圆的定义与性质:让学生通过观察和动手操作,探究圆的定义和性质。
教师在这个过程中给予适当的引导和指导。
3.学习圆的基本画法:讲解圆的画法,并让学生动手实践,掌握圆的画法。
4.巩固知识:通过一些练习题,让学生运用所学的圆的知识解决问题。
浙教版数学九年级上册《3.1 圆》教学设计3

浙教版数学九年级上册《3.1 圆》教学设计3一. 教材分析浙教版数学九年级上册《3.1 圆》是整个初中数学的重要内容,主要让学生了解圆的定义、圆的性质、以及圆的方程。
这一章节为后续学习圆的周长、面积、弧、扇形等知识打下基础。
本节课的内容主要包括圆的定义、圆心和半径、圆的性质等。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
但是,对于圆这一概念,学生可能在生活中有所接触,但对其严格定义和性质的理解还有待提高。
此外,学生对于圆的方程的学习可能存在一定的困难,需要教师在教学中给予引导和帮助。
三. 教学目标1.理解圆的定义,掌握圆心和半径的概念。
2.掌握圆的性质,包括圆的对称性、唯一性等。
3.会用圆的方程表示圆,并理解其意义。
4.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的方程的推导和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现圆的性质。
2.使用多媒体课件,生动展示圆的图形,帮助学生直观理解圆的性质。
3.采用合作学习的方式,让学生在小组讨论中共同解决问题,提高学生的沟通能力。
4.注重学生数学思维的培养,引导学生从直观到抽象的思维过程。
六. 教学准备1.多媒体课件和教学素材。
2.圆规、直尺等绘图工具。
3.练习题和测试题。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾之前学过的几何图形,如三角形、四边形等,然后提出问题:“有没有一种图形,它的所有边都相等,并且对折后可以重合?”让学生思考并尝试描述这种图形。
呈现(10分钟)教师通过多媒体课件呈现圆的图形,让学生直观地感受圆的特点。
然后,教师给出圆的定义:“圆是平面上所有到定点距离相等的点的集合。
”同时,介绍圆心和半径的概念。
操练(15分钟)教师引导学生使用圆规和直尺绘制圆,并测量圆的直径、半径等。
学生通过实际操作,加深对圆的理解。
巩固(10分钟)教师提出一系列问题,如:“圆心和半径对圆的性质有什么影响?”“圆的直径和半径有什么关系?”让学生在小组内讨论并回答问题。
第十单元《圆》教材分析

第十单元《圆》教材分析1. 引言本文将对教材《圆》这一单元进行分析,通过对教材内容的梳理和总结,帮助同学们更好地理解和掌握《圆》这一概念。
2. 教材概述《圆》这一单元主要介绍了圆的相关知识,包括圆的定义、圆的要素、圆的性质等内容。
2.1 圆的定义在教材中,圆被定义为平面上的一组点,这些点到圆心的距离都相等。
2.2 圆的要素教材中指出,圆主要包括圆心、半径和周长三个要素。
•圆心:圆心是圆的中心点,用字母O表示。
•半径:半径是从圆心到圆上任一点的距离,用字母r表示。
•周长:周长是圆上一点到另一点的距离,也可以理解为圆周的长度。
3. 圆的性质3.1 圆的对称性圆具有很强的对称性,教材中提到,圆心是圆的对称中心。
即,如果将圆沿着圆心进行旋转一定角度后,圆的形状仍然保持不变。
3.2 圆的元素关系教材中还介绍了圆的元素关系,包括: - 弦与半径的关系:教材指出,过圆心的弦与半径垂直,并且它们互相平分对方。
- 弧与半径的关系:教材中提到,弧都是以半径为直径的圆弧,因此弧与半径的位置关系非常紧密。
3.3 圆的计算公式教材给出了求解圆的相关计算公式: - 圆的周长计算公式:C = 2πr, 其中C表示圆的周长,r表示半径。
- 圆的面积计算公式:S = πr^2, 其中S表示圆的面积,r 表示半径。
4. 练习与应用为了帮助同学们更好地理解和应用所学的知识,教材还提供了一些练习题和应用题。
这些题目包括计算圆的周长、面积,以及利用圆的性质解决实际问题等。
5. 总结通过对教材《圆》这一单元的分析,我们了解了圆的定义、要素、性质以及计算公式等重要内容。
同时,我们还通过练习和应用题目的训练,提高了我们对圆的理解和运用能力。
在学习这一单元的过程中,我们应该重点掌握圆的性质和计算公式,并能够熟练解决相关问题。
希望同学们通过本文的阅读,能够更好地掌握《圆》这一单元的知识,为日后的学习打下坚实的基础。
以上为对《圆》这一单元的教材分析,希望能对同学们有所帮助。
九年级数学圆的教材分析

九年级数学圆的教材分析(一)圆在教材中的地位、作用和意义1.本课时内容是在学生学过了几种平面几何图形的基础上进行教学的。
对于平面几何图形中点、线、面以及轴对称图形等基本概念已经有了初步的认识。
圆的概念是从日常生活和生产中常见实物或实物图形中引出的。
由于在小学一般不介绍圆的定义,只说明所见实物的外形或图形是圆,所以教学中观察与操作的成份很大。
2.学习“圆”使学生对平面几何图形的认识,从直线段、图形扩大到曲线图形,不仅对进一步学习圆的周长和面积是十分重要的基础,也是将来学习立体图形的基础,同时对发展学生的空间观念也有很重要的作用。
(二)教学目标的确定1.教学目标可以从以下三个方面考虑:(1)在基础知识上,应考虑通过教学使学生掌握哪些知识点。
特别应考虑到在平面几何图形概念教学中,本班学生在认知上的薄弱环节是什么,这样才能抓住关键重点突破。
(2)我们的教学目标不仅要明确使学生学会知识,还应考虑通过教学培养学生哪些能力(当然要培养的能力是多方面的,不可能面面俱到)。
在本课时中,对于圆的特征,直径、半径、对称轴等概念的理解,都是建立在课堂演示,动手操作基础上的,所以观念、动手操作、分析综合、抽象概括应做为培养能力的重点目标。
(3)“圆的半径都相等”,还是“在同一圆内圆的半径都相等”。
“圆的直径是对称轴”还是“圆的直径所在的直线是圆的对称轴”。
诸如此类的认识,都反映出学生的抽象思维发展的不同层次。
所以,我们在教学中,还要从培养学生的思维品质的角度入手,渗透辩证唯物主义的观点引导学生能初步运用这些观点分析问题、解决问题。
2.教学目标(1)使学生认识圆,掌握圆的特征及在同一圆内直径与半径的关系;知道圆是轴对称图形;会用工具画圆。
(2)培养学生空间观念及观察、分析、综合、概括的能力。
(3)引导学生用辩证唯物主义的观点认识问题。
本课时是起始课。
所以课前准备主要是重温已学过的平面图形的认识,使学生对点、线(段线、直线)和对称图形等基本概念清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册圆教材分析
本章主要介绍了圆的相关概念和位置关系,以及弧长、扇形面积等计算公式。
学生需要理解垂径定理、圆心角、弧、弦之间的相等关系定理、圆周角和圆心角的关系定理等内容。
同时,还需要掌握切线的概念和判定方法,以及过圆上一点画圆的切线方法。
此外,还需要理解正多边形和圆的关系,以及弧长和扇形面积公式的应用,以及圆锥的侧面积和全面积的计算方法。
在教学过程中,需要引导学生进行观察、测量、平移、旋转、推理证明等活动,帮助学生理解等量关系,掌握定理和公式。
同时,还需要鼓励学生动手、动口、动脑,并进行同伴之间的交流。
在探索圆周角和圆心角之间的关系的过程中,需要让学生形成分类讨论的数学思想和归纳的数学思想。
通过平移、旋转等方式,帮助学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力。
最后,通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验,激发学生求知、探索的欲望。
1.垂径定理指出,平分弦(不是直径)的直径垂直于弦,
并且平分弦所对的两条弧相等。
2.在同圆或等圆中,相等的圆心角所对的弧相等,对应的
弦也相等。
3.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等
于这条弧所对的圆心角的一半。
4.半圆(或直径)所对的圆周角是直角,90°的圆周角所
对的弦是直径。
5.三个不在同一直线上的点可以确定一个圆。
6.直线L和圆O相交当且仅当它们的距离d小于半径r;
直线L和圆O相切当且仅当它们的距离d等于半径r;直线L
和圆O相离当且仅当它们的距离d大于半径r。
7.圆的切线垂直于过切点的半径。
8.经过半径的外端并且垂直于这条半径的直线是圆的切线,可以用它解决一些具体问题。
9.从圆外一点引出的两条切线的切线长相等,这一点和圆
心的连线平分两条切线的夹角。
10.两圆的位置关系:外离当且仅当它们的距离d大于两
半径之和r1+r2;外切当且仅当它们的距离d等于两半径之和
r1+r2;相交当且仅当它们的距离d小于两半径之和r1+r2且大
于两半径之差|r2-r1|;内切当且仅当它们的距离d等于两半径
之差|r1-r2|;内含当且仅当它们的距离d小于两半径之差|r2-r1|。
11.正多边形和圆中的半径R、边心距r、中心角θ之间有
等量关系,可以用它解决具体问题。
12.n°的圆心角所对的弧长为L=nπR/180,n°的圆心角的扇形面积是S扇形=nπR²/360,可以用这两个公式进行计算。
13.圆锥的侧面积和全面积可以通过公式计算。
教学难点:
1.垂径定理的探索与推导,以及利用它解决实际问题。
2.弧、弦、圆心有关的定理的探索与推导,以及运用它解
决实际问题。
3.圆周角的定理的探索与推导,以及其他运用。
4.点与圆的位置关系的应用。
5.三点确定一个圆的探索与应用。
6.直线和圆的位置关系的判定以及应用。
7.切线的判定定理与性质定理的运用。
8.切线长定理的探索与运用。
9.圆和圆的位置关系的判定以及应用。
10.正多边形和圆中的半径R、边心距r、中心角θ之间的关系的应用。
11.n的圆心角所对的弧长L=nπR/180以及S扇形
=nπR²/360的公式的应用。
12.圆锥侧面展开图的理解。
教学关键:
1.引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、性质、位置关系并推理证明等活动。
2.注重学生思考方式的多样化,注重学生计算能力的培养与提高。
本章教学不仅包括数学知识,更重要的是教授数学思维方法。
例如,圆周角定理证明中可以通过分类讨论,将一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时可以采用分类的思想;研究正多边形的问题可以通过将问题转化为解直角三角形来解决;正多边形的画图可以通过等分圆来完成。
通过这些方法的教学,可以帮助学生学会将未知变为已知,将复杂问题简化为简单问题,将一般问题转化为特殊问题或将特殊问题转化为一般问题的思考方法,从而提高学生分析和解决问题的能力。
此外,本章还通过理论联系实际,进行了唯物论认识论的教育,通过圆的性质与其他图形之间的联系,以及一般与特殊之间的关系等,对学生进行了辩证唯物主义观点的教育,培养了学生的民族自豪感和振兴中华的使命感,同时也教育学生明确研究目的,培养良好的个性品质。
在教学中,需要进一步培养学生的推理论证能力。
在“圆”这一阶段,学生已经初步掌握了推理论证方法的基础,需要进一步巩固和提高。
不仅要求学生能够熟练地使用综合法证明命题,熟悉探索法的推理过程,还需要了解反证法。
教学中要重视推理论证的教学,进一步提高学生的思维能力。
教科书也非常重视这一点。
除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还有一些图形的性质是直接由已有的结论经过推理论证得出的。
此外,为了巩固并提高学生的推理论证能力,本章的定理证明中采用了探索式的证明方法。
这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。
这些方法可以激发学生的研究兴趣,活跃学生的思维,对发展学生的思维能力有好处。
在教学中,需要注
意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。
在教学中,要注意帮助学生建立正确的研究态度和方法,培养他们的自学能力和创造性思维能力。
教师应当引导学生在研究中积极思考、勇于探究和实践,培养他们的探究精神和实践能力。
同时,要注重培养学生的团队合作精神,让他们在小组中相互交流、合作,共同解决问题,提高研究效果。
在教学中,还应注意把握好教学目标和教学内容的难度,根据学生的实际情况进行分层教学,让每个学生都能够得到适当的挑战和提高。
同时,要注重知识的系统性和综合性,让学生能够将所学知识应用于实际问题的解决中,提高他们的综合运用能力。
总之,圆的研究是数学研究中的重要部分,教师应当注重教学方法的创新和教学手段的多样化,让学生在轻松愉悦的氛围中研究,提高他们的研究兴趣和研究效果。
同时,要注重培养学生的数学思维能力和实际应用能力,让他们在未来的研究和生活中能够受益匪浅。