二次函数代数综合题 (寒假)
题库-二次函数性质综合题
二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b 或b =(舍), ∴二次函数解析式为y =27x +;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b 舍)或b (舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =2或b =-2时,此时二次函数的解析式分别为y =27x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2=4 ,4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a-,24b a -), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a -=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a+)2+1−2(1)4a a +, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C与直线y3=x-3 除顶点外的另一交点为M,此时点M的横坐标即为m的最大值,由2(2)13y xy x⎧=--⎨=-⎩,解得x=2或x=3,∴m的最大值为3.(3)如解图②所示,由(1)可知:抛物线C与直线l都过点a(h,-1).第8题解图②当0<a≤1时,k>0,在直线l下方的抛物线C上至少存在三个横坐标为整数点,即当x=h+3时,y2>y1恒成立.∴k(h+3)-kh-1>a(h+3-h)2-1,整理得:k>3a.又∵0<a≤1,所以0<3a≤3,所以k>3.9.已知二次函数23 2y ax bx=+-的图象与y轴交于点B,(1)若二次函数的图象经过点A(1,1).①二次函数的图象对称轴为直线x=1,求此二次函数的解析式;②对于任意的正数a,当x>n时,y随x的增大而增大,请求出n的取值范围;(2)若二次函数的图象的对称轴为直线x=-1,且直线y=2x-2与直线l也关于直线x=-1对称,且二次函数的图象在-5<x<-4这一段位于直线l的上方,在1<x<2这一段位于直线y=2x-2的下方,求此二次函数的解析式.解:(1)①由题意得31212a bba⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525ab⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a -< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。
二次函数综合练习题(含答案)
二次函数综合练习题一、选择题1.〔2013,6,3分〕二次函数y =x 2-3x +m 〔m 为常数〕的图象与x 轴的一个交点为(1,0),那么关于x 的一元二次方程x 2-3x +m =0的两实数根是〔 〕. A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=3 【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为〔1,0〕,∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,那么x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .【方法指导】考察一元二次方程的根、二次函数图象与x 轴交点的关系.当b 2-4ac ≥0时,二次函数y =ax 2+bx+c 的图象与x 轴的两个交点的横坐标是一元二次方程ax 2+bx+c =0的两个根.【易错警示】因审题不严,容易错选;或因解方程出错而错选.2.〔2013,8,3分〕方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么方程3210x x +-=的实根0x 所在的围是〔 〕. A .4100<<x B .31410<<x C .21310<<x D .1210<<x 【答案】C .【解析】首先根据题意推断方程x 3+2x -1=0的实根是函数y =x 2+3与xy 1=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x -1=0的实根x 0所在围.解:依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如下图,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x ==4,此时抛物线的图象在反比例函数下方; 当x =13时,y =x 2+2=219,1y x ==3,此时抛物线的图象在反比例函数下方;当x =12时,y =x 2+2=214,1y x==2,此时抛物线的图象在反比例函数上方;当x =1时,y =x 2+2=3,1y x==1,此时抛物线的图象在反比例函数上方.所以方程3210x x +-=的实根0x 所在的围是21310<<x .所以应选C .【方法指导】此题考察了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点〞,还要善于分析各图象的变化趋势.【易错警示】不会得出函数解析式,不会观察图象而出错.3. 〔2013市(A ),12,4分〕一次函数y =ax +b 〔a ≠0〕、二次函数y =ax 2+bx 和反比例函数y =kx(k ≠0)在同一直角坐标系中的图象如下图,A 点的坐标为(-2,0).那么以下结论中,正确的选项是〔〕A .b =2a +kB .a =b +kC .a >b >0D .a >k >0 【答案】D .【解析】∵一次函数与二次函数的图象交点A 的坐标为〔-2,0〕,∴-2a +b =0,∴b =2a . 又∵抛物线开口向上,∴a >0,那么b >0.而反比例函数图象经过第一、三象限,∴k >0. ∴2a +k >2a ,即b <2a +k .故A 选项错误. 假设B 选项正确,那么将b =2a 代入a =b +k ,得a =2a +k ,a =-k .又∵a >0,∴-k >0,即k <0,这与k >0相矛盾,∴a =b +k 不成立.故B 选项错误.再由a >0,b =2a ,知a ,b 两数均是正数,且a <b ,∴b >a >0.故C 选项错误. 这样,就只有D 选项正确.【方法指导】此题考察一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象与性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D 为何正确,可由二次函数y =ax 2+bx 与反比例函数y =k x (k ≠0)的图象,知当x =-2b a =-22aa=-1时,y =-k >-24b a =-244a a =-a ,即k <a .又因为a >0,k >0,所以a >k >0.【易错警示】二次函数a 、b 、c 的符号确实定与函数图象的关系混淆不清. 4. 〔2013,7,4分〕抛物线1)3(22+-=x y 的顶点坐标是〔 〕 A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】:A【解析】抛物线2()y a x h k =-+的顶点是〔h ,k 〕【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式24(,)24b ac b a a--求顶点坐标。
专题:二次函数与代数综合题(解析版)
专题:二次函数与代数综合题【典例1】(2019•自贡)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=17 4的距离?若存在,求出定点F的坐标;若不存在,请说明理由.【点拨】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,﹣a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【解答】解:(1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,得,,解得a=﹣1,c=3,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)存在点F,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,当y=0时,x1=﹣1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=的距离,设F(1,a),连接BF,CF,则BF=BN=﹣3=,CF=CH=,由题意可列:,解得,a=,∴F(1,).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.【精练1】(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.【点拨】(1)先根据题意得出点B 的坐标,再利用待定系数法求解可得;(2)分点P 在点C 上方和下方两种情况,先求出∠OBP 的度数,再利用三角函数求出OP 的长,从而得出答案;(3)分对称轴x =1在a 到a +1范围的右侧、中间和左侧三种情况,结合二次函数的性质求解可得. 【解答】解:(1)∵点A (﹣1,0)与点B 关于直线x =1对称, ∴点B 的坐标为(3,0), 代入y =x 2+bx +c ,得: {1−b +c =09+3b +c =0, 解得{b =−2c =−3,所以二次函数的表达式为y =x 2﹣2x ﹣3;(2)如图所示:由抛物线解析式知C (0,﹣3), 则OB =OC =3, ∴∠OBC =45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3×√33=√3,∴CP=3−√3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=3×√3=3√3,∴CP=3√3−3;综上,CP的长为3−√3或3√3−3;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1−√5(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2+√7(负值舍去);综上,a的值为1−√5或2+√7.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、三角函数的运用、二次函数的图象与性质及分类讨论思想的运用.【精练2】(2019•长春)已知函数y={−x2+nx+n,(x≥n),−12x2+n2x+n2,(x<n)(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.【点拨】(1)①将P (4,b )代入y =−12x 2+52x +52;②当x ≥5时,当x =5时有最大值为5;当x <5时,当x =52时有最大值为458;故函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中,得到n =185,所以185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 和y =−12x 2+n2x +n2中,得到n =2,n =83,所以2≤n <83时图象与线段AB 只有一个交点;(3)利用数形结合的思想,分别画出图象解决问题即可:n >0时,n >n2,①如图1中,当点A 的纵坐标为4时,构建方程解决问题即可.②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D . ③如图3中,当点A 的纵坐标为4时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .构建方程即可解决问题.④如图4中,当n ≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A ,B ,C ,D . 【解答】解:(1)当n =5时, y ={−x 2+5x +5(x ≥5)−12x 2+52x +52(x <5), ①将P (4,b )代入y =−12x 2+52x +52, ∴b =92;②当x ≥5时,当x =5时有最大值为5; 当x <5时,当x =52时有最大值为458;∴函数的最大值为458;(2)将点(4,2)代入y =﹣x 2+nx +n 中, ∴n =185, ∴185<n <4时,图象与线段AB 只有一个交点;将点(2,2)代入y =﹣x 2+nx +n 中, ∴n =2,将点(2,2)代入y =−12x 2+n 2x +n 2中, ∴n =83,∴2≤n <83时图象与线段AB 只有一个交点; 综上所述:185<n <4,2≤n <83时,图象与线段AB 只有一个交点;(3)n >0时,n >n2,函数图象如图实线所示. ①如图1中,当点A 的纵坐标为4时,则有−n 28+n 24+n 2=n 28+n2=4时,解得n =4或n =﹣8(舍去), 观察图象可知:n =4时,满足条件的点恰好有四个,分别是A ,B ,C ,D .②如图2中,观察图象可知,当n ≥8时,恰好有四个点满足条件,分别是图中A ,B ,C ,D .n<0时,n<n2,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:−n24+n22+n=4时,解得n=﹣2﹣2√5或n=﹣2+2√5(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.综上所述,函数图象上有4个点到x轴的距离等于4时,n≤﹣8或n=﹣2﹣2√5或n=4或n≥8.【点睛】本题属于二次函数综合题,考查二次函数的图象及性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题,学会用分类讨论的思想思考问题,学会正确画出函数图象,利用图象法解决问题,属于中考压轴题.【精练3】(2019•绥化)已知抛物线y=ax2+bx+3的对称轴为直线x=12,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m之间的函数解析式.【点拨】(1)将点A(﹣2,0)代入解析式,对称轴为x=−b2a=12,联立即可求a与b的值;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,联立y=﹣mx+5,y=−12x2+12x+3根据韦达定理可得x1+x2=2m+1,x1x2=4,由面积之间的关系:S△CPQ=S△CHP﹣S△CHQ,可求m的值;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,联立有:﹣mx+3m=−12x2+12x+3,解得x=3或x=2m﹣2;由条件可得P(3,0),Q(2m﹣2,﹣2m2+5m),K(0,5﹣2m),所以有HK=|5m﹣5|=5|m﹣1|;①当0<m<1时,HK=5﹣5m,S△PQK=S△PHK+S△QHK=12×HK(x P﹣x Q)=12×(5﹣5m)(5﹣2m)=5m2−352m+252,②当1<m<52时,HK=5m﹣5,S△PQK=﹣5m2+352m−252,③当2m﹣2>3时,如图③,有m>52,S△PQK=12×KQ|y P|=32(2m2﹣5m)=3m2−152m,【解答】解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=−b2a=12,∴a=−12,b=12;∴y=−12x2+12x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y =﹣mx +5,y =−12x 2+12x +3得:﹣mx +5=−12x 2+12x +3,∴x 2﹣(2m +1)x +4=0,∴x 1+x 2=2m +1,x 1x 2=4,∵△CPQ 的面积为3;∴S △CPQ =S △CHP ﹣S △CHQ ,即12HC (x 2﹣x 1)=3, ∴x 2﹣x 1=3,∴(x 1+x 2)2−4x 1x 2=9,∴(2m +1)2=25,∴m =2或m =﹣3,∵m >0,∴m =2;(3)当n =﹣3m 时,PQ 解析式为y =﹣mx +3m ,∴H (0,3m ),∵y =﹣mx +3m 与y =−12x 2+12x +3相交于点P 与Q ,∴﹣mx +3m =−12x 2+12x +3,∴x =3或x =2m ﹣2,当2m ﹣2<3时,有0<m <52,∵点P 在点Q 的右边,∴P (3,0),Q (2m ﹣2,﹣2m 2+5m ),∴AQ 的直线解析式为y =5−2m 2x +5﹣2m , ∴K (0,5﹣2m ),∴HK =|5m ﹣5|=5|m ﹣1|,①当0<m <1时,如图①,HK =5﹣5m ,∴S △PQK =S △PHK +S △QHK =12×HK (x P ﹣x Q )=12×(5﹣5m )(5﹣2m )=5m 2−352m +252,②当1<m <52时,如图②,HK =5m ﹣5,∴S △PQK =﹣5m 2+352m −252, ③当2m ﹣2>3时,如图③,有m >52,∴P (2m ﹣2,﹣2m 2+5m ),Q (3,0),K (0,0),∴S △PQK =12×KQ |y P |=32(2m 2﹣5m )=3m 2−152m , 综上所述,S ={ 5m 2−352m +252(0<m <1)−5m 2+352m −252(1<m <52)3m 2−152m(m >52);【点睛】本题是二次函数的综合题;熟练掌握二次函数的图象及性质,数形结合,分类讨论是解题的主要思想.【精练4】(2019•大庆)如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.【点拨】(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴{−b2=21−b+c=0,即可求解;(2)翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),新图象与直线y=t 恒有四个交点,则0<t <9,由{y =t y =−x 2+4x +5解得:x =2±√9−t ,即可求解; (3)分m 、n 在函数对称轴左侧、m 、n 在对称轴两侧、m 、n 在对称轴右侧时,三种情况分别求解即可.【解答】解:(1)抛物线的对称轴是x =2,且过点A (﹣1,0)点,∴{−b 2=21−b +c =0,解得:{b =−4c =−5, ∴抛物线的函数表达式为:y =x 2﹣4x ﹣5;(2)y =x 2﹣4x ﹣5=(x ﹣2)2﹣9,则x 轴下方图象翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),其顶点为(2,9).∵新图象与直线y =t 恒有四个交点,∴0<t <9,设E (x 1,y 1),F (x 2,y 2).由{y =t y =−x 2+4x +5解得:x =2±√9−t , ∵以EF 为直径的圆过点Q (2,1),∴EF =2|t ﹣1|=x 2﹣x 1,即2√9−t =2|t ﹣1|,解得t =1±√332, 又∵0<t <9,∴t 的值为1+√332;(3)①当m 、n 在函数对称轴左侧时,m ≤n ≤2,由题意得:x =m 时,y =7,x =n 时,y =m ,即:m 2﹣4m ﹣5=7,解得m =﹣2或m =6(舍),n 2﹣4n ﹣5=m ,解得n =2−√7或m =2+√7(舍),解得:﹣2≤x ≤2−√7;②当m 、n 在对称轴两侧时,x =2时,y 的最小值为﹣9,不合题意;③当m 、n 在对称轴右侧时,同理可得:5+3√52≤x ≤6; 故x 的取值范围是:﹣2≤x ≤2−√7或5+3√52≤x ≤6. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本性质性质、图形的翻折等,其中(3),要注意分类求解,避免遗漏.【精练5】(2019•玉林)已知二次函数:y =ax 2+(2a +1)x +2(a <0).(1)求证:二次函数的图象与x 轴有两个交点;(2)当二次函数的图象与x 轴的两个交点的横坐标均为整数,且a 为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x 轴的两个交点A ,B (A 在B 的左侧),与y 轴的交点C 及其顶点D 这四点画出二次函数的大致图象,同时标出A ,B ,C ,D 的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P 使∠PCA =75°?如果存在,求出点P 的坐标;如果不存在,请说明理由.【点拨】(1)将解析式右边因式分解得抛物线与x 轴的交点为(﹣2,0)、(−1a ,0),结合a <0即可得证;(2)结合(1)中一个交点坐标(−1a ,0)及横坐标均为整数,且a 为负整数可得a 的值,从而得出抛物线解析式,继而求出点C 、D 坐标,从而画出函数图象;(3)分点P在AC上方和下方两种情况,结合∠ACO=45°得出直线PC与x轴所夹锐角度数,从而求出直线PC解析式,继而联立方程组,解之可得答案.【解答】解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(−1a,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+12)2+94,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA =75°,∴∠PCO =120°,∠OCB =60°,则∠OEC =30°,∴OE =OC tan∠OEC =33=2√3, 则E (2√3,0),求得直线CE 解析式为y =−√33x +2, 联立{y =−√33x +2y =−x 2−x +2,解得{x =0y =2或{x =√3−33y =√3+53, ∴P (√3−33,√3+53); 如图3,当点P 在直线AC 下方时,记直线PC 与x 轴的交点为F ,∵∠ACP =75°,∠ACO =45°,∴∠OCF =30°,则OF =OC tan ∠OCF =2×√33=2√33, ∴F (2√33,0), 求得直线PC 解析式为y =−√3x +2,联立{y =−√3x +2y =−x 2−x +2, 解得:{x =0y =2或{x =√3−1y =√3−1, ∴P (√3−1,√3−1),综上,点P 的坐标为(√3−33,√3+53)或(√3−1,√3−1). 【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.【精练6】(2019•河北)如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数.【点拨】(1)当x =0时,y =x ﹣b =﹣b ,所以B (0,﹣b ),而AB =8,而A (0,b ),则b ﹣(﹣b )=8,b =4.所以L :y =﹣x 2+4x ,对称轴x =2,当x =2吋,y =x ﹣4=﹣2,于是L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24,顶点C (b 2,b 24)因为点C 在l 下方,则C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1,所以点C 与1距离的最大值为1;(3)由題意得y 3=y 1+y 22,即y 1+y 2=2y 3,得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得x 1=0,x 2=b ,右交点D(b ,0).因此点(x 0,0)与点D 间的距离b ﹣(b −12)=12(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【解答】解:(1)当x =0时,y =x ﹣b =﹣b ,∴B (0,﹣b ),∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4.∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2吋,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x −b 2)2+b 24, ∴L 的顶点C (b 2,b 24)∵点C 在l 下方,∴C 与l 的距离b −b 24=−14(b ﹣2)2+1≤1, ∴点C 与1距离的最大值为1;(3)由题意得y 3=y 1+y 22,即y 1+y 2=2y 3, 得b +x 0﹣b =2(﹣x 02+bx 0)解得x 0=0或x 0=b −12.但x 0≠0,取x 0=b −12,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b−12)=12(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.。
二次函数练习题及答案
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得最大的年利润?
25.(12分)已知抛物线 经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.
(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为 , 和 ,用等式表示 , 、 之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
∵12>5>-4,
∴12+m>5+m>-4+m,
∴y1>y2>y3.
按从小到大依次排列为y3<y2<y1.
故答案为y3<y2<y1.
13.③,④
【解析】找到二次项的系数不是2的函数即可.
解:二次项的系数不是2的函数有③④.
故答案为③,④.
本题考查二次函数的变换问题.用到的知识点为:二次函数的平移,不改变二次函数的比例系数.
投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲、p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
二次函数综合题(10道)(1)
题型四二次函数综合题类型一与图形规律有关的探究问题1. 先阅读,再解决问题.平面直角坐标系下,一组有规律的点:A1(0,1)、A2(1,0)、A3(2,1)、A4(3,0)、A5(4,1)、A6(5,0),…,注:当n为奇数时,A n(n-1,1),n为偶数时A n(n-1,0).抛物线C1经过A1,A2,A3三点,抛物线C2经过A2,A3,A4三点,抛物线C3经过A3,A4,A5三点,抛物线C4经过A4,A5,A6三点,…,此抛1物线C n经过A n,A n+1,A n+2.(1)直接写出抛物线C1,C4的解析式;(2)若点E(e,f1),F(e,f2)分别在抛物线C27,C28上,当e=29时,求证△A28EF是直角三角形;(3)若直线x=m分别交x轴、抛物线C2015,C2016于点P、M、N,作直线A2016M,A2016N,当∠P A2016M=45°时,求sin∠P A2016N的值.解:(1)由顶点式求出C1的解析式为:y1=(x-1)2,C4的解析式为:y4=-(x-4)2+1;【解法提示】由题意可知抛物线C12过A1,A2,A3三点,抛物线C4过A4,A5,A6三点,将这些点代入顶点式可求出C1和C4的解析式分别为y1=(x-1)2,y4=-(x-4)2+1.(2)证明:由特殊出发,可以发现这组抛物线解析式的特点:y1=(x-1)2,y2=-(x-2)2+1,y3=(x-3)2,y4=-(x-4)2+1,…∴抛物线C27、C28的解析式为:y27=(x-27)2,y28=-(x-28)2+1.34如解图①,此时点E (e ,f 1)、F (e ,f 2)分别为点E (29,4),F (29,0);而点A 28的坐标是(27,0).第1题解图①显然△A 28EF 是直角三角形;(3)由(2)中发现的规律可知,抛物线C 2015,C 2016解析式为:y 2015=(x -2015)2,y 2016=-(x -2016)2+1, 顺便指出,由(2)的规律发现,可以退回简单的抛物线C 3,C 4的情况来5研究,分以下两种情况,如解图②, 当m =2014时,M (2014,1)此时有∠P A 2014M =45°,N (2014,-3),相应的sin ∠P A 2016N 的值为31010;如解图③,在A (2015,0)点右侧,当m =2016时,M (2016,1),此时有∠P A 2016M =45°,N (2016,1),相应的sin ∠P A 2016N的值为22.6第1题解图2. 已知,如图,直线l :y =13x +b ,经过点M (0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次在直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0),设x 1=d (0<d <1).(1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示);7(3)当d (0<d <1)的大小变化时,是否存在顶点与x 轴的两个交点所构成的三角形是直角三角形的抛物线?若存在,请你求出相应的d 的值,若不存在,请说明理由.第2题图解:(1)∵M (0,14)在直线y =13x +b 上,∴14=13×0+b ,8∴b =14;(2)由(1)得:y =13x +14,∵B 1(1,y 1)在l 上,∴当x =1时,y 1=13×1+14=712,∴B 1(1,712).∴设抛物线的表达式为y =a (x -1)2+712(a ≠0),又∵x 1=d ,∴A 1(d ,0),∴0=a (d -1)2+712,9∴a =-712(d -1)2, ∴经过点A 1,B 1,A 2的抛物线的解析式为:y =-712(d -1)2(x -1)2+712; 【一题多解】∵x 1=d ,∴A 1(d ,0),A 2(2-d ,0),∴设抛物线的解析式为y =a (x -d )·(x -2+d )(a ≠0),把B 1(1,712)代入得712=a (1-d )·(1-2+d ),得a =-712(d -1)2,∴抛物线的解析式为y=-712(d-1)2(x-d)·(x-2+d).(3)存在.由抛物线的对称性可知,所构成的三角形必是以抛物线顶点为直角顶点的等腰直角三角形,∴此等腰直角三角形斜边上的高等于斜边的一半,又∵0<d<1,∴等腰直角三角形斜边的长小于2,∴等腰直角三角形斜边上的高必小于1,即抛物线的顶点的纵坐标必小于1.1011∵当x =1时,y 1=13×1+14=712<1,当x =2时,y 2=13×2+14=1112<1,当x =3时,y 3=13×3+14=114>1,∴该抛物线的顶点只有B 1,B 2,①若B 1为顶点,由B 1(1,712),则d =1-712=512;②若B 2为顶点,由B 2(2,1112),则d =1-[(2-1112)-1]=1112,综上所述,d 的值为512或1112时,存在满足条件的抛物线.3. 如图①,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x-b1),C1与x轴的正半轴交于点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图②,抛物线C1:y1=a1x(x-b1)经过变换可得到抛物线C2:y2=a2x(x-b2),C2与x轴的正半轴交与点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图③,12可得抛物线C3:y3=a3x(x-b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=________;b1=________;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n(x-b n)与正方形OB n A nD n(n≥1).①请用含n的代数式直接表示出C n 的解析式;②当x取任意不为0的实数时,试比较y2016与y2017的函数值的大小并说明理由.1314第3题图解:(1)1;2;【解法提示】由抛物线C 经过变换得到抛物线C 1,则a 1=1,代入C 1得:y 1=x (x -b 1).y 1=0时,x (x -b 1)=0,x 1=0,x 2=b 1,∴A 1(b 1,0), 由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1,∴B 1(b 12,b 12),∵B 1在抛物线C上,则b 12=(b 12)2,b 1(b 1-2)=0,b115=0(不符合题意),b 1=2.(2)由a 2=a 1=1得,y 2=x (x -b 2), y 2=0得,x (x -b 2)=0,x 1=0,x 2=b 2.∴A 2(b 0,0).由正方形OB 2A 2D 2得:OA 2=B 2D 2=b 2,∴B 2(b 22,b 22),∵B 2在抛物线C 1上,则b 22=(b 22)2-2×b 22,b 2(b 2-6)=0,b 2=0(不合题意), ∴b 2=6,16∴C 2的解析式:y 2=x (x -6)=x 2-6x , 由a 3=a 2=1得,y 3=x (x -b 3), y 3=0时,x (x -b 3)=0,x 1=0,x 2=b 3,∴A 3(b 3,0),由正方形OB 3A 3D 3得:OA 3=B 3D 3=b 3∴B 3(b 32,b 32),∵B 3在抛物线C 2上,则b 32=(b 32)2-6×b 32,b 3(b 3-14)=0,b 3=0(不合题意),b 3=14,∴C3的解析式:y3=x(x-14)=x2-14x;(3)①C n的解析式为:y n=x2-(2n+1-2)x(n≥1);②由①得抛物线C2016的解析式为:y2016=x2-(22016+1-2)x=x2-(22017-2)x,抛物线C2017的解析式为:y2017=x2-(22017+1-2)x=x2-(22018-2)x,∴两抛物线的交点为(0,0).∴当x<0时,y2016<y2017;当x>0时,y2016>y2017.类型二与图形变换有关的探究17问题4. 已知抛物线y=x2-2ax+a2(a为常数,a>0),G为该抛物线的顶点.(1)如图①,当a=2时,抛物线与y 轴交于点M,求△GOM的面积;(2)如图②,将抛物线绕顶点G逆时针旋转90°后,所得新图象与y轴交于A、B两点(点A在点B的上方),D为x轴的正半轴上一点,以OD为一对角线作平行四边形OQDE,其中Q点在第一象限,QE交OD于点C,若QO平分∠AQC,AQ=2QC.求证:△AQO≌△EQO;18(3)在(2)的条件下,若QD=OG,试求a的值.第4题图解:(1)当a=2时,令x=0,则y=a2=4,∴点M(0,4),∵y=x2-2ax+a2=(x-a)2,∴当a=2时,顶点G(2,0),∴OM=4,OG=2,1920 S △GOM =12OM ·OG =12×4×2=4;(2)证明:∵四边形OQDE 为平行四边形,∴QC =CE =12QE ,又∵AQ =2QC ,∴AQ =EQ ,∵QO 平分∠AQC ,∴∠AQO =∠EQO ,∵在△AQO 和△EQO 中, ⎩⎪⎨⎪⎧AQ =EQ∠AQO =∠EQO ,QO =QO∴△AQO ≌△EQO (SAS);(3)∵由题意知G(a,0),∴OG=a,∵QD=OG,∴QD=a,∵四边形OQDE为平行四边形,∴OE=QD=a,即A(0,a),由旋转知,旋转前抛物线点A的坐标为(2a,a),把(2a,a)代入y=x2-2ax+a2得,4a2-2a·2a+a2=a,即a2=a,解得a=1或0.21∵a为常数,a>0,∴a=0不合题意,舍去,∴a=1.5. 如图,已知二次函数y1=ax2+bx 过(-2,4),(-4,4)两点.(1)求二次函数y1的解析式;(2)将y1沿x轴翻折,再向右平移2个单位,得到抛物线y2,直线y=m(m>0)交y2于M、N两点,求线段MN的长度(用含m的代数式表示);(3)在(2)的条件下,y1、y2交于A、B 两点,如果直线y=m与y1、y2的图象形成的封闭曲线交于C、D两点(C2223在左侧),直线y =-m 与y 1、y 2的图象形成的封闭曲线交于E 、F 两点(E 在左侧),求证:四边形CEFD 是平行四边形.第5题图解:(1)将点(-2,4),(-4,4)代入y 1=ax 2+bx ,得⎩⎪⎨⎪⎧4a -2b =416a -4b =4,解得⎩⎨⎧a =-12b =-3,24∴y 1=-12x 2-3x ;(2)将y 1配方,得y 1=-12(x +3)2+92,∴顶点坐标是(-3,92).此顶点沿x 轴翻折(-3,-92),再向右平移2个单位后的点是(-1,-92).翻折后抛物线的方向改变,但开口大小不变,∴翻折后抛物线解析式的二次项系数是12.∴y 2=12(x +1)2-92,即y 2=12x 2+x -4.25令y 2=m ,得12x 2+x -4=m ,即x 2+2x -2(4+m )=0.设此方程的两根为x 1,x 2,则x 1+x 2=-2,x 1x 2=-2(4+m ). ∵x 1,x 2是点M ,N 的横坐标, ∴MN =|x 1-x 2| =(x 1+x 2)2-4x 1x 2 =4+8(4+m )=29+2m ;(3)设点A 的纵坐标为y 0.①当y 0≤m <92时,如题图.对于直线y =m 和函数y 1=-12x 2-3x ,由第(2)问的方法求得CD =26 29-2m .对于直线y =-m 和函数y 2=12x 2+x-4,由第(2)问的方法可知EF =29-2m .∴CD =EF .又CD ∥EF ,∴四边形CEFD 是平行四边形. ②当0<m <y 0时,如解图,此时直线y =m 与y 1的右交点为D ,与y 1的左交点为C ,直线y =-m 与y 2的右交点为F ,与y 2的左交点为E .27第5题解图由方程组⎩⎨⎧y =m ,y =-12x 2-3x消去y ,得-12x 2-3x =m ,即x 2+6x+2m =0.解此方程,得x =-3±9-2m . 点D 的横坐标为x D =-3+9-2m .由方程组⎩⎨⎧y =m ,y =12x 2+x -4,消去y ,得12+x-4=m,即x2+2x-2(4+m) 2x=0.解此方程,得x=-1±9+2m.点C的横坐标为x C=-1-9+2m.∴EF=x D-x C=9-2m+9+2m-2.同理,x F=-3+9+2m,x E=-1-9-2m.∴CD=x F-x E=9-2m+9+2m-2.∴CD=EF.∴四边形CEFD是平行四边形.综上所述,当m>0时,所构成的四2829边形CEFD 是平行四边形.6. 如图①,已知抛物线L :y =ax 2+bx -32(a >0)与x 轴交于点A (-1,0)和点B ,顶点为M ,对称轴为直线l :x =1.(1)直接写出点B 的坐标及一元二次方程ax 2+bx -32=0的解;(2)如图②,设点P 是抛物线L 上的一个动点,将抛物线L 平移,使它的顶点移至点P ,得到新抛物线L ′,L ′与直线l 相交于点N .设点P 的横坐标为m .①当m=5时,PM与PN有怎样的数量关系?请说明理由.②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?③是否存在这样的点P,使△PMN 为等边三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第6题图解:(1)如解图①,∵y=ax2+bx-323031(a >0)与x 轴交于点A (-1,0)和点B ,对称轴为直线l :x =1,∴点A 和点B 关于直线l :x =1对称, ∴点B 的坐标为(3,0),∴一元二次方程ax 2+bx -32=0的解为x 1=-1,x 2=3;(2)如解图②,过点P 作PC ⊥l 于点C ,32第6题解图①∵y =12(x -1)2-2,∴当m =5, 即x =5, y =6, ∴P (5,6),∴此时L ′的解析式为y =12(x -5)2+6,点C 的坐标是(1,6).∵当x =1时,y =14,∴点N 的坐标是(1,14),33∵CM =6-(-2)=8,CN =14-6=8,∴CM =CN ,∴PC 垂直平分线段MN , ∴PM =PN ;②PM =PN 仍然成立,由题意有点P 的坐标为(m ,12m 2-m-32).∵L ′的解析式为y =12(x -m )2+12m 2-m -32,∴点C 的坐标是(1,12m 2-m -32),34∴CM =12m 2-m -32+2=12m 2-m +12,∵在L ′的解析式y =12(x -m )2+12m 2-m -32中,∴当x =1时,y =m 2-2m -1, ∴点N 的坐标是(1,m 2-2m -1),∴CN =(m 2-2m -1)-(12m 2-m -32)=12m 2-m +12,∴CM =CN ,∴PC 垂直平分线段MN ,35∴PM =PN ;③存在这样的点P ,使△PMN 为等边三角形.若CN PC =tan30°,则12m 2-m +12=33(m -1),解得m =23+33或m =1(不合题意,舍去)∴点P 的坐标为(23+33,-43).类型三 二次函数性质的探究问题7. 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过A (0,3),B (4,0)两点.(1)用仅含字母a的式子表达这个二次函数的解析式;(2)该二次函数的对称轴不可能是( ),并对你的选择进行证明.A. x=0B. x=1C. x=2D. x=3(3)以-a代替(1)中二次函数y的解析式中的a,得到二次函数y′的解析式.①二次函数y′的图象是否也经过A,B两点?请说明理由;②当x=t(0≤t≤4)时,求|y-y′|的最大值(用仅含字母a的式子表示).3637解:(1)将A (0,3),B (4,0)两点坐标分别代入二次函数y =ax 2+bx +c (a ≠0)得⎩⎪⎨⎪⎧c =316a +4b +c =0, 解得⎩⎨⎧b =-4a -34c =3, ∴该二次函数的解析式为y =ax 2-(4a +34)x +3;(2)C ;【解法提示】对称轴为x =--(4a +34)2a =2+38a ≠2,故选C.(3)①二次函数y ′图象经过A 、B 两点,38理由如下:y ′=-ax 2+bx +c ,由(1)可得y ′=-ax 2-(-4a +34)x +3, 将x =0代入解析式得,y ′=3,故点A (0,3)在抛物线上;将x =4代入解析式得,y ′=-16a +16a -3+3=0,故点B (4,0)在抛物线上;②|y -y ′|=|ax 2-(4a +34)x +3-[-ax 2-(-4a +34)x +3]|=|2ax 2-8ax |=|2a (x 2-4x +4-4)|=|2a (x -2)2-8a |,即|y-y′|=|2a(x-2)2-8a|,当x=t(0≤t≤4)时,|y-y′|的最大值为|-8a|,故|y-y′|的最大值为|-8a|.8. 已知函数关系式是L1:y=kx2+(k -2)x-2.(1)①当k=1时,其顶点坐标为________;②当k=2时,二次函数的图象的对称轴为________.(2)求证:无论k为何值时,函数图象与x轴总有交点;(3)已知二次函数L1的图象与x轴相3940 交于点A ,B ,顶点为P .①若k >0,且△ABP 为等边三角形,求k 的值;②若抛物线L 2与抛物线L 1关于原点成中心对称,且抛物线L 2与x 轴交于点C ,D ,是否存在实数k ,使以A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点?若存在,求出实数k 的值;若不存在,请说明理由.(1)解:①(12,-94);②y 轴;【解法提示】①当k =1时,y =x 241-x -2=(x -12)2-94,此时顶点坐标为(12,-94);②当k =2时,y =2x 2-2,则抛物线的对称轴为y 轴.(2)证明:当k =0时,一次函数y =-2x -2与x 轴有一个交点(-1,0); 当k ≠0时,b 2-4ac =(k -2)2-4k ·(-2)=(k +2)2≥0,此二次函数图象与x 轴有交点,∴无论k 为何值时,函数图象与x 轴总有交点;(3)∵k ≠0,42∴当y =0时,kx 2+(k -2)x -2=0,解得x 1=-1,x 2=2k ,设A (2k ,0),B (-1,0),则顶点P 的坐标为(2-k 2k ,-(k +2)24k), ①当k >0时,AB =2k +1,如解图,作PE ⊥x 轴于点E ,第8题解图43∵△ABP 为等边三角形,∴PE =32AB ,∴(k +2)24k =32(2k +1), 即(k +2)2=23(k +2),解得k 1=-2(舍去),k 2=23-2, ∴k 的值为23-2;②存在实数k ,使以A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点.∵抛物线L 2与抛物线L 1关于原点成中心对称,∴点A 和点B 关于原点的对称点分44别为点C 、D ,∴C (-2k ,0),D (1,0),∴点B (-1,0),D (1,0)为定点,点A (2k ,0),C (-2k ,0)为动点,A ,B ,C ,D 四点中的其中两点成为另外两点之间的线段的三等分点, 当k >0时,当点B 、D 为线段AC 的三等分点时,AC =3BD ,即2k -(-2k )=3×2,解得k =23; 当点A 、C 点为线段BD 的三等分点45时,AC =13BD ,即2k -(-2k )=13×2,解得k =6;当k <0时,同理可得k =-23或k =-6,综上所述,k 的值为±23,±6. 类型四 与新定义有关的探究问题9. 如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2互称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)在图①中,抛物线L1:y=-x2+4x-3与L2:y=a(x-4)2-3互为“伴随抛物线”,则点A的坐标为________,a的值为________;(2)在图②中,已知抛物线L3:y=2x2-8x+4,它的“伴随抛物线”为L4,若L3与y轴交于点C,点C关于L3的对称轴对称点为D,请求出以点D 为顶点的L4的解析式;(3)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的解析式为y =a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.46第9题图解:(2,1),1;【解法提示】(1)∵抛物线L1:y=-x2+4x-3,∴此抛物线的顶点坐标A(2,1),∵抛物线L2过点A(2,1),∴1=a(2-4)2-3,∴a=1.(2)由L3:y=2x2-8x+4化成顶点式,得y=2(x-2)2-4,∴C(0,4),对称轴为x=2,顶点坐标(2,-4),47∴点C关于对称轴x=2的对称点D(4,4),设L4:y=a(x-h)2+k将顶点D(4,4)代入得,y=a(x-4)2+4再将点(2,-4)代入得,-4=4a +4,解得:a=-2,L3的伴随抛物线L4的解析式为:y =-2(x-4)2+4;(3)a1=-a2.理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B在抛物线L1上,设A(m,k),B(h,n),∴可以列出两个方程4849()()⎪⎩⎪⎨⎧++=+-=②①n m h a k k h m a n 2122, ①+②得:(a 1+a 2)(m -h )2=0, ∵伴随抛物线的顶点不重合,∴a 1=-a 2.10. 在平面直角坐标系中,将抛物线L 1:y =12x 2,沿x 轴向右平移m (m >0)个单位长度,得抛物线L 2,顶点为P ,交L 1于点Q .(1)直接写出抛物线L 2的表达式(用字母m 表示);(2)连接OQ 、PQ ,当∠OQP =60°时,点Q 的坐标为________;(3)若将抛物线L1与L2其中任意一条沿着x轴方向水平向左(或向右)平移得到另一条,记抛物线L1的顶点为O,抛物线L2的顶点为P,抛物线L1与L2的交点为点Q,连接OQ、PQ,当∠OQP=90°时,我们称这样的两条抛物线是“共轭抛物线”.①当L1和L2是“共轭抛物线”时,求m的值;②请你根据上述“共轭抛物线”的概念,求出抛物线y=-x2-2x+3的“共轭抛物线”.50。
代几综合题(题目部分)
代几综合题一直是大家的弱项,这个寒假希望同学们有所改善,考虑到大家自己找题很困难,故为同学们安排了练习,请认真完成!请先做56到75,再从1到55,其实题目都不错,只是后面的题目是近年的。
请同学们做的时候关注一下老师对题目的点评!请尽量不要移动图像,按照我排好的格式打印.1、图9是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式.2、(04河北)如图15—1和15—2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图15—1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt△A1B1C1关于直线QN成轴对称的图形;(2)如图15—2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?点评:很好的一道和一次函数有关的点运动的问题!MB1AB图15—1ON PQ MCAB图15—23、记三角形三边长为a 、b 、c ,对应边上的高为a h 、b h 、c h ,请解答: (1)已知a h :b h :c h 4:3:2 ,且这三角形周长为26cm ,求a 、b 、c . (2)若三角形的三条高分别为2、x 、6,求x 的取值范围. (3)若三条高分别为2、x 、6的三角形是直角三角形,求x .(4)若三条高分别为2、x 、6的三角形是等腰三角形,求这等腰三角形的三边长. 点评:这种类型的题我们平时做的少,遇到了一定要弄明白!4、(04河北)探索下列问题:(1)在图12—1给出的四个正方形中,各画出一条直线(依次是:水平方向的直线、竖直方向的直线、与水平方向成45°角的直线和任意的直线),将每个正方形都分割成面积相等的两部分;(2)一条竖直方向的直线m 以及任意的直线n ,在由左向右平移的过程中,将正六边形分成左右两部分,其面积分别记为S 1和S 2.①请你在图12—2中相应图形下方的横线上分别填写S 1与S 2的数量关系式(用“<”,“=”,“>”连接); ②请你在图12—3中分别画出反映S 1与S 2三种大小关系的直线n ,并在相应图形下方的横线上分别填写S 1与S 2的数量关系式(用“<”,“=”,“>”连接).(3)是否存在一条直线,将一个任意的平面图形(如图12—4)分割成面积相等的两部分,请简略说出理由.图12—1图12—3 图12—4图12—2图4 P N M CBA Oy x 5、(04上海)如图4,在△ABC 中,∠BAC =90°,延长BA 到点D ,使AD =21AB ,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于点G ,求证:AG=DG .(无答案,自己证明)6、(04苏州)如图,平面直角坐标系中,四边形OABC 为矩形,点A 、B 的坐标分别为(3,0),(3,4)。
二次函数代数综合题
二次函数代数综合题1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的解析式;(2) 结合函数图象,求不等式m x c bx x +>++2的解集(直接写出答案).2.如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.3.已知抛物线2442y ax ax a=-+-,其中a是常数.(1)求抛物线的顶点坐标;(2)若25a>,且抛物线与x轴交于整数点(坐标为整数的点),求此抛物线的解析式.4.在平面直角坐标系xOy中,抛物线2y mx n=++经过P,A(0,2)两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB、OC、BC距离相等的点的坐标.5.一次函数y=2x+3与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.(4)当x为何值时,一次函数值大于二次函数值?6.已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图象与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO、OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图象的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.7.已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次 函数2241y x x k =++-的图象向下平移8个单位,求平移 后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线1(2y x b b k =+<)与此图象有两个公共点时,b 的取值范围.8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点;(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.9.已知二次函数y=x2-x+c.(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试求直线DE的解析式,并判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.10.已知抛物线y=x²—4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.(1)求平移后的抛物线解析式;=,即为过点(m,0)平行于y (2)由抛物线对称轴知识我们已经知道:直线x m轴的直线,类似地,直线y m=,即为过点(0,m)平行于x轴的直线.请结合图象回答:当直线y=m与这两条抛物线有且只有四个交点,实数m的取值范围;(3)若将已知的抛物线解析式改为y=x²+bx+c(b<0),并将此抛物线沿x轴向左平移-b个单位长度,试回答(2)中的问题.11.已知关于x 的一元二次方程022=++x ax(1)求证:当0<a 时,方程022=++x ax 一定有两个不等的实数根; (2)若代数式22++-x x 的值为正整数,且x 为整数时,求x 的值;(3)当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(m M ;当2a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点)0,(n N ;若点M 在点N 的左边,试比较1a 与2a 的大小.12.已知:关于x 的一元二次方程063)2(22=-+-+m x m x . (1)求证:x 无论为任何实数,方程总有实数根;(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.13.阅读:对于二次函数2y ax bx c=++,如果当x取任意整数时,函数值y都是整数,那么我们把该函数的图象叫做整点抛物线(例如:222y x x=++).回答问题:(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式:.(2)请探索:是否存在二次项系数的绝对值小于12的整点抛物线?若存在,请写出其中一条抛物线的解析式;若不存在,请说明理由.14.已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知抛物线C1:22=-的图象如图所示,把C1的图象沿y轴翻折,得y x x到抛物线C2的图象,抛物线C1与抛物线C2 Array C3.(1)求抛物线C1的顶点A坐标,并画出抛物线C2图象;(2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.16.已知关于x 的方程032)1(32=-+--m x m mx .(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称.①求这个二次函数的解析式;②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;(3)在(2)的条件下,若二次函数y 3=ax 2+bx +c 的图象经过点(-5,0),且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值y 1≥y 3≥y 2均成立.求二次函数y 3=ax 2+bx +c 的解析式.17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.18.已知直线y =kx -3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C ,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,△PQA 是直角三角形;(3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大,若 存在,求出点D 坐标;若不存在,请说明理由.。
二次函数单元综合测试卷(含答案)
二次函数综合测试卷一、填空:(30分)1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.已知二次函数y=x2-2(k+1)x+k2+2的图象与x轴交点的横坐标分别为x1,x2,且(x1+1)(x2+1)=8,则k的值为__________.4.如果y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.如果抛物线y=-23x2+(m+2)x+27m的对称轴为直线x=32,则m的值为_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,则m=_______,n=_______.8.二次函数y=a x2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a(x+1)(x-4)与x轴交于A、B两点,与y•轴交于点C.•若∠ACB=90°,则a的值为________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为()12.在同一直角坐标系内,函数y=ax2+bx与y=bx(b≠0)的图象大致为()13.给出下列四个函数:y=-2x,y=2x-1,y=3x(x>0),y=-x2+3(x>0),其中y随x•的增大而减小的函数有()A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是() A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=a x2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个标准x度.月份用电量(度)交电费总数(元)2月 80 253月 45 106.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题:(10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩ 当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空: 1.y=-16x 2+56x-1 (52,124)2.13±63 3.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4). 与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC ⊥AB ,所以CO 2=OA·OB ,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x(80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H . 附加题:配方法; 消元法; y=-4x.。
专题13二次函数综合问题(共40题)【原卷版】
专题13二次函数综合问题一.解答题(共40小题)1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D的坐标;(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c (a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD =8S△A'BD时,求直线A′B与二次函数的交点横坐标.6.(2022•湘潭)已知抛物线y=x2+bx+c.(1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.(Ⅰ)求该抛物线所表示的二次函数表达式;(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD 为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB 与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N 为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.11.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;(2)若∠ACO=∠CBD,求m的值;(3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.12.(2022•嘉兴)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.13.(2022•乐山)如图1,已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点A(﹣1,0)、B(2,0),与y 轴交于点C ,且tan ∠OAC =2.(1)求二次函数的解析式;(2)如图2,过点C 作CD ∥x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连结PB 、PC ,若S △PBC =S △BCD ,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连结OP 交BC 于点Q .设点P 的横坐标为t ,试用含t 的代数式表示的值,并求的最大值.14.(2022•衡阳)如图,已知抛物线y =x 2﹣x ﹣2交x 轴于A 、B 两点,将该抛物线位于x 轴下方的部分沿x 轴翻折,其余部分不变,得到的新图象记为“图象W ”,图象W 交y 轴于点C .(1)写出图象W 位于线段AB 上方部分对应的函数关系式;(2)若直线y =﹣x +b 与图象W 有三个交点,请结合图象,直接写出b 的值;(3)P 为x P 作PM ∥y 轴交直线BC 于点M ,交图象W 于点N ,是否存在这样的点P ,使△CMN 与△OBC 相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.15.(2022•宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(2≤x≤8,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?16.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.17.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.18.(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.19.(2022•泰安)若二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0,﹣4),其对称轴为直线x=1,与x轴的另一交点为C.(1)求二次函数的表达式;(2)若点M在直线AB上,且在第四象限,过点M作MN⊥x轴于点N.①若点N在线段OC上,且MN=3NC,求点M的坐标;②以MN为对角线作正方形MPNQ(点P在MN右侧),当点P在抛物线上时,求点M的坐标.20.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式△≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=,x1x2=”.此关系通常被称为“韦达定理”.21.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF ∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.22.(2022•江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为 ;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为 ;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.23.(2022•武威)如图1,在平面直角坐标系中,抛物线y=(x+3)(x﹣a)与x轴交于A,B(4,0)两点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).(1)求此抛物线的表达式;(2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;(3)连接BD.①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;②如图3,连接CE,当CD=AE时,求BD+CE的最小值.24.(2022•云南)已知抛物线y =﹣x 2﹣x +c 经过点(0,2),且与x 轴交于A 、B 两点.设k 是抛物线y =﹣x 2﹣x +c 与x 轴交点的横坐标,M 是抛物线y =﹣x 2﹣x +c 上的点,常数m >0,S 为△ABM 的面积.已知使S =m 成立的点M 恰好有三个,设T 为这三个点的纵坐标的和.(1)求c 的值;(2)直接写出T 的值;(3)求的值.25.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表:②该蔬莱供给量y 供给(吨)关于售价x (元/千克)的函数表达式为y 供给=x ﹣1,函数图象见图1.③1~7月份该蔬莱售价x 售价(元/千克)、成本x 成本(元/千克)关于月份t的函教表达式分别为x 售价=t +2,x 成本=t 2﹣t +3,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.26.(2022•达州)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(﹣1,0),B (3,0),与y轴交于点C.(1)求该二次函数的表达式;(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定27.(2022•舟山)已知抛物线L1:y=a(x+1)2﹣4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8﹣t,s),Q(t﹣4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.28.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.29.(2022•安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN 长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).30.(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C 落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME 的值最小,若存在,求出点M的坐标;若不存在,请说明理由.31.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.32.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c 向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.33.(2022•丽水)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x﹣2)2﹣1(a>0)的图象上,且x2﹣x1=3.(1)若二次函数的图象经过点(3,1).①求这个二次函数的表达式;②若y1=y2,求顶点到MN的距离;(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.34.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.35.(2022•重庆)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P 的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.Ⅷ36.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B 两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'37.(2022•德阳)抛物线的解析式是y=﹣x2+4x+a.直线y=﹣x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,﹣3)关于x轴对称.(1)如图①,求射线MF的解析式;(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x 轴上方的抛物线上有一动点P,设射线AP与直线y=﹣x+2交于点N.求的最大值.38.(2022•南充)抛物线y=x2+bx+c与x轴分别交于点A,B(4,0),与y轴交于点C(0,﹣4).(1)求抛物线的解析式.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.39.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).(1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;(3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.40.(2022•遂宁)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).(1)求抛物线的解析式;(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,﹣2),求△DEF 周长的最小值;(3)如图2,N为射线CB M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM 的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.21 / 21。
二次函数综合测评卷(含答案)
二次函数综合测评卷一、选择题(每题3分,共30分) 1.下列各式中,y 是x 的二次函数的是( ).A.x 2+2y 2=2B.x =y 2C.3x 2-2y =1D.21x +2y -3=0 2.对于二次函数y =(x -1)2+3的图象,下列说法正确的是( ). A.开口向下 B.对称轴是直线x =-1 C.顶点坐标是(1,3) D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个矩形花园的最大面积是( ).A.16m 2B.12m 2C.18m 2D.以上都不对 4.如果抛物线y =mx 2+(m -3)x -m +2经过原点,那么m 的值等于( ). A.0 B.1 C.2 D.3 5.如图所示,直线x =1是抛物线y =ax 2+bx +c 的对称轴,那么有( ). A.abc >0 B.b <a +c C.a +b +c <0 D.c <2b(第5题) (第6题) (第7题) (第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是( ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y =ax 2+bx +c 的顶点为点P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为( ). A.343 B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB =8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC =1m ,则门高OE 为( ).A.9mB.764m C.8.7m D.9.3m 9.已知二次函数y =x 2+bx +c 与x 轴只有一个交点,且图象过A (x 1,m ),B (x 1+n ,m )两点,则m ,n 满足的关系为( ). A.m =21n B.m =41n C.m =21n 2 D.m =41n 2 10.已知二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( ). A.25 B.2 C. 23 D. 21二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y =3x 2的图象重合,那么这个二次函数的表达式可以是 (只要写出一个).12.如图所示,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P (5,0)在抛物线上,则9a -3b +c 的值为 .(第12题)(第13题) (第14题) (第15题)13.如图所示,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 .15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w (元)与降价x (元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 . 16.已知抛物线y =a (x -1)(x +a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 . 三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y =4x -21x 2的图象的一段,斜坡的截线OA 是一次函数y =21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.19.(8分)若直线y =x +3与二次函数y =-x 2+2x +3的图象交于A ,B 两点,(1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x (km ),乘坐地铁的时间y 1(min )是关于x 的一次函数,其关系如下表所示:1(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x +78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.21.(10分)已知二次函数y =ax 2+bx +21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a =21时,求点A 的坐标. (2)过点A 的直线y =x +k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.22.(12分)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.23.(12分)如图1所示,点P (m ,n )是抛物线y =41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H . 【特例探究】(1)当m =0时,OP = ,PH = ;当m =4时,OP =,PH = . 【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【拓展应用】(3)如图2所示,图1中的抛物线y =41x 2-1变成y =x 2-4x +3,直线l 变成y =m (m <-1).已知抛物线y =x 2-4x +3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y =m (m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y =m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程. ②求m 的值及点N 的坐标.(第23题)二次函数综合测评卷一、选择题(每题3分,共30分) 1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x =y 2C.3x 2-2y =1D.21x+2y -3=0 2.对于二次函数y =(x -1)2+3的图象,下列说法正确的是(C ). A.开口向下 B.对称轴是直线x =-1 C.顶点坐标是(1,3) D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个矩形花园的最大面积是(C ).A.16m 2B.12m 2C.18m 2D.以上都不对 4.如果抛物线y =mx 2+(m -3)x -m +2经过原点,那么m 的值等于(C ). A.0 B.1 C.2 D.3 5.如图所示,直线x =1是抛物线y =ax 2+bx +c 的对称轴,那么有(D ). A.abc >0 B.b <a +c C.a +b +c <0 D.c <2b(第5题) (第6题) (第7题) (第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y =ax 2+bx +c 的顶点为点P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ). A.343 B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB =8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC =1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m 9.已知二次函数y =x 2+bx +c 与x 轴只有一个交点,且图象过A (x 1,m ),B (x 1+n ,m )两点,则m ,n 满足的关系为(D ). A.m =21n B.m =41n C.m =21n 2 D.m =41n 2 10.已知二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为(D ). A.25 B.2 C. 23 D. 21(第10题答图)【解析】二次函数y =-(x -1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x =m 时y 取最小值,即2m =-(m -1)2+5,解得m =-2或m =2(舍去).当x =n 时y 取最大值,即2n =-(n -1)2+5,解得n =2或n =-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x =m 时y 取最小值,由①知m =-2.当x =1时y 取最大值,即2n =-(1-1)2+5,解得n =25,或x =n 时y 取最小值,x =1时y 取最大值,2m =-(n -1)2+5,n =25,∴m =811.∵m <0,∴此种情形不合题意.∴m +n =-2+25=21.故选D. 二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y =3x 2的图象重合,那么这个二次函数的表达式可以是 y =3(x +2)2+3 (只要写出一个).12.如图所示,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P (5,0)在抛物线上,则9a -3b +c 的值为 0 .(第12题)(第13题) (第14题) (第15题)13.如图所示,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 (-2,0) .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 y =-34x 2+38x +1 . 15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w (元)与降价x (元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 y =60+x . 16.已知抛物线y =a (x -1)(x +a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小? 【答案】(1)设抛物线的函数表达式为y =a (x -2)2-3,把(1,- 25)代入,得-25=a -3,即a =21. ∴抛物线的函数表达式为y =21x 2-2x -1.图略. (2)∵抛物线对称轴为直线x =2,且a >0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y =4x -21x 2的图象的一段,斜坡的截线OA 是一次函数y =21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y =4x -21x 2=-21(x -4)2+8,∴网球抛出的最高点的坐标为(4,8). (2)由题意得4x -21x 2=21x ,解得x =0或x =7.当x =7时,y =21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y =x +3与二次函数y =-x 2+2x +3的图象交于A ,B 两点, (1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA =3,OA 边上的高线长是1.∴S △OAB =21×3×1=23. (3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x (km ),乘坐地铁的时间y 1(min )是关于x 的一次函数,其关系如下表所示:(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x +78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx +b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x的函数表达式为y 1=2x +2.(2)设李华从文化宫回到家所需的时间为y .则y =y 1+y 2=2x +2+21x 2-11x +78=21x 2-9x +80.∴当x =9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min . 21.(10分)已知二次函数y =ax 2+bx +21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a =21时,求点A 的坐标. (2)过点A 的直线y =x +k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y =ax 2+bx +21 (a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a ×21=b 2-2a =0.∵a =21,∴b 2=1.∵b <0,∴b =-1.∴二次函数的表达式为y =21x 2-x +21.当y =0时,21x 2-x +21=0,解得x 1=x 2=1,∴A (1,0). (2)∵b 2=2a ,∴a =21b 2,∴y =21b 2x 2+bx +21=21 (bx +1)2.当y =0时,x =-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y =x +k ,得k =b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b -1)x +21-b 1=0,解得x 1=-b 1,x 2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m =22bb -.∴m =22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b 1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3. 22.(12分)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y =x +1,y =x 2+3x +1,图略.(2)不论k 取何值,函数y =kx 2+(2k +1)x +1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y =kx 2+(2k +1)x +1,得k (x 2+2x )+(x -y +1)=0.当x 2+2x =0,x -y +1=0,即x =0,y =1,或x =-2,y =-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k =0时,函数y =x +1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k +1)2-4k =4k 2+1>0,函数图象与x 轴有两个交点,∴函数y =kx 2+(2k +1)x +1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k <0,∴函数y =kx 2+(2k +1)x +1的图象在对称轴直线x =-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k <0时,k k 212+=-1-k 21>-1.∴m ≤-1.23.(12分)如图1所示,点P (m ,n )是抛物线y =41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m =0时,OP = 1 ,PH = 1 ;当m =4时,OP = 5 ,PH = 5 .【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y =41x 2-1变成y =x 2-4x +3,直线l 变成y =m (m <-1).已知抛物线y =x 2-4x +3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y =m (m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y =m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】 (1)1,1,5,5.(2)猜想:OP =PH .证明:设PH 交x 轴于点Q ∵P 在y =41x 2-1上,∴P (m ,41m 2-1),PQ =∣41m 2-1∣,OQ =|m |.∵△OPQ 是直角三角形,∴OP =22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH =yp -(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP =PH . (3)①∵M (2,-1),∴CM =MN =-m -1.GN =CG -CM -MN =-m -2(-m -1)=2+m .②点B 的坐标是(3,0),BG =1,GN =2+m .由勾股定理得BN =22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y =m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m =-45. ∵GN =2+m =2-45=43,∴N (2,-43).。
2024年福建中考数学专题复习:二次函数综合题(含答案)
2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。
二次函数综合题练习
一.解答题(共30小题)1.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c 的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B (3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.3.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6交x轴于A(﹣4,0)、B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.若tan∠AED=,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A时,判断动点Q的轨迹并求动点Q所经过的路径长.4.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.(4)若点P为坐标系中的一点,OP=4,则2PC+PB的最小值为.6.如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.7.如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)交x轴于A(﹣1,0),B(4,0),交y轴于点C.(1)求该抛物线解析式;(2)点P为第四象限内抛物线上一点,连接PB,过C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线y=ax2+bx﹣2(a≠0)向右平移经过点Q,得到新抛物线y=a1x2+b1x+c1(a1≠0),点E在新抛物线的对称轴上,是否存在平面内一点F,使得A,P,E,F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.9.已知抛物线y=ax2+bx+4经过点A(2,0),B(﹣4,0)与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第二象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.10.在平面直角坐标系中,过点A(3,4)的抛物线y=ax2+bx+4与x轴交于点B(﹣1,0),与y轴交于点C,过点A作AD⊥x轴于点D.(1)求抛物线的解析式.(2)如图1,点P是直线AB上方抛物线上的一个动点,连接PD交AB于点Q,连接AP,当S△AQD=2S△APQ时,求点P的坐标.(3)如图2,点G是线段OC上一个动点,连结DG,求DG+CG的最小值.11.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为.(2)如图1,是否存在点P,使四边形BOCP的面积为9?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请直接写出点D的坐标.(4)如图3,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标.12.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.13.如图1,抛物线y=﹣+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点C在y轴上,点B的纵坐标为﹣.(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+P A的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠P AB=∠CAC1,求点P的横坐标.15.如图1,在平面直角坐标系中,一次函数y=x﹣2的图象与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.(1)求二次函数的表达式.(2)如图2,连接AC,点M为线段BC上的一点,设点M的横坐标为t,过点M作y 轴的平行线,过点C作x轴的平行线,两者交于点N,将△MCN沿MC翻折得到△MCN'.①当点N'落在线段AB上,求此时t的值;②求△MCN′与△ACB重叠的面积S与t的函数关系式.(3)如图3,点D在直线BC下方的二次函数图象上,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.16.抛物线y=x2﹣bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,其顶点为D,直线BD与y轴交于点E.(1)求顶点D的坐标;(2)如图,设点P为线段BD上一动点(点P不与点B、D重合),过点P作x轴的垂线与抛物线交于点F,求△BDF的面积最大值;(3)点Q在线段BD上,当∠BDC=∠QCE时,求点Q的坐标(直接写出结果,不必写解答过程).17.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.18.已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时,①如图1,当点D在AC上时,请直接写出BE与AD的数量关系:;②如图2,当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由;(2)当n=90时,①如图3,探究线段BE与AD的数量关系,并说明理由;②当BE∥AC,AB=3,AD=1时,请直接写出DC的长.19.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,等腰Rt△ABC的顶点A在△BDC内,∠ADB=45°,BD=6,将线段AD绕点A逆时针旋转90°至AE,点D、E、B恰好共线,直接写出△BDC的面积.20.如图,在等边三角形ABC中,E是边AC上一定点,D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.【问题解决】如图①,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图②,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系,并直接写出这三条线段之间的数量关系.21.【知识再现】学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称“HL”定理)”是判定直角三角形全等的特有方法.【简单应用】(1)如图1,在△ABC和△DCB中,∠A=∠D=90°,AC=DB,AC和DB交于点E,则线段AE和线段DE的数量关系是;(2)如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E分别在边AC、AB上,且CE=BD.求证:AE=AD;【拓展延伸】(3)如图3,在△ABC中,∠BAC为钝角,AB=AC,点D、E分别在边AC、AB上,且CE=BD,则线段AE与线段AD相等吗?如果相等,请给出证明;如果不相等,请说明理由.22.如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A 为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,证明:NE=ND.23.如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF.(1)求证:△ABF≌△EAD;(2)如图2.若AB=9,CD=5,∠ECF=∠AED,求BE的长;(3)如图3,若BF的延长线经过AD的中点M,求的值.24.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F 分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE 绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.25.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM =cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB=CD,AB⊥BC 于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2,BC=2,求四边形ABCD的面积.26.如图,△ABC中,∠B=∠C=30°,∠DEF=30°,且点E为边BC的中点.将∠DEF绕点E旋转,在旋转过程中,射线DE与线段AB相交于点P,射线EF与射线CA相交于点Q,连结PQ.(1)如图1,当点Q在线段CA上时,①求证:△BPE∽△CEQ;②线段BE,BP,CQ之间存在怎样的数量关系?请说明理由;(2)当△APQ为等腰三角形时,求的值.27.【基础巩固】(1)如图1,在△ABC中,∠ACB=90°,直线l过点C,分别过A、B两点作AE⊥l,BD⊥l,垂足分别为E、D.求证:△BDC∽△CEA.【尝试应用】(2)如图2,在△ABC中,∠ACB=90°,D是BC上一点,过D作AD的垂线交AB 于点E.若BE=DE,,AC=20,求BD的长.【拓展提高】(3)如图3,在平行四边形ABCD中,在BC上取点E,使得∠AED=90°,若AE=AB,,CD=,求平行四边形ABCD的面积.28.“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”(1)探究发现:如图②,若m=n,点E在线段AC上,则=;(2)数学思考:①如图3,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.29.已知等边△ABC,D为边BC中点,M为边AC上一点(不与A,C重合),连接DM.(1)如图1,点E是边AC的中点,当M在线段AE上(不与A,E重合)时,将DM 绕点D逆时针旋转120°得到线段DF,连接BF.①依题意补全图1;②此时EM与BF的数量关系为:,∠DBF=°.(2)如图2,若DM=2MC,在边AB上有一点N,使得∠NDM=120°.直接用等式表示线段BN,ND,CD之间的数量关系,并证明.30.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ 的面积等于,求线段AP的长度.。
二次函数综合题
二次函数综合题1.已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线A M 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ; (2)如图11,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,A N ′与x 轴交于点D ,连结C D ,求a 的值和四边形A D C N 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.(图11)2. 已知:抛物线1C : 2445y ax ax a =++-的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1. (1)求抛物线的解析式和顶点P 的坐标;(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线2C 的顶点为M ,当点P 、M 关于点B 成中心对称时,求平移后的抛物线2C 的解析式; (3)直线35y x m =-+与抛物线1C 、2C 的对称轴分别交于点E 、F ,设由点E 、P 、F 、M构成的四边形的面积为s, 试用含m 的代数式表示s .3.Rt△ABC(C∠是直角)放在平面直角坐标系中的第二象限,使顶点A在y轴上,顶点B在抛物线22=+-上,顶点C在x轴上,坐标为(1y ax ax-,0).(1)点A的坐标为,点B的坐标为;(2)抛物线的关系式为,其顶点坐标为;(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达AB C''△的位置.请判断点B'、C'是否在(2)中的抛物线上,并说明理由.4. 已知:抛物线2=-++-与x轴有两个不同的交点.y k x kx k(1)22(1)求k的取值范围;(2)当k为整数,且关于x的方程31=-的解是负数时,求抛物线的解析式;x kx(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长.5.在平面直角坐标系中,抛物线223=+-与x轴交于A、B两点,(点A在点B左侧).y x x与y轴交于点C,顶点为D,直线CD与x轴交于点E.(1)请你画出此抛物线,并求A、B、C、D四点的坐标.(2)将直线CD向左平移两个单位,与抛物线交于点F(不与A、B两点重合),请你求出F点坐标.(3)在点B、点F之间的抛物线上有一点P,使△PBF的面积最大,求此时P点坐标及△PBF的最大面积.(4)若平行于x轴的直线与抛物线交于G、H两点,以GH为直径的圆与x轴相切,求该圆半径.6.如图,已知抛物线C1:()522-+=xay的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.二次函数综合题答案1.(1)()411133M a N a a ⎛⎫--⎪⎝⎭,,,.……………1分 (2)由题意得点N 与点N ′关于y 轴对称,N '∴4133a a ⎛⎫-- ⎪⎝⎭,,N '在22y x x a =-+上∴21168393a a a a -=++,10a ∴=(不合题意,舍去),294a =-.……………2分334N ⎛⎫∴- ⎪⎝⎭,,∴点N 到y 轴的距离为3. 904A ⎛⎫- ⎪⎝⎭ ,,N ' 334⎛⎫⎪⎝⎭,, ∴直线A N '的解析式为94y x =-,……………………3分它与x 轴的交点为)0,49(D点D 到y 轴的距离为94.1919918932222416A C N A C D A D C N S S S ∴=+=⨯⨯+⨯⨯=△△四边形.……………4分(3)在抛物线上存在点P ,使得以P ,A ,C ,N 为顶点的四边形是平行四边形,当点P 1在y 轴的左侧时,若N ACP 1是平行四边形,则N P 1平行且等于AC ,∴把N 向上平移2a -个单位得到1p ,坐标为4733a a ⎛⎫- ⎪⎝⎭,,………………………5分 27168393a a a a -=-+∴03=a (不舍题意,舍去),834-=a ,)87,21(1-∴p …………………………………………………………………6分 当点2P 在y 轴的右侧时,若CN AP 2是平行四边形,则A C 与N P 2互相平分, .,2ON OP OC OA ==∴2P ∴与N 关于原点对称, )31,34(2a a P -,………………………………………………7分∴21168393a a a a =++,05=∴a (不合题意,舍去),8156-=a ,∴25528P ⎛⎫- ⎪⎝⎭,. ∴存在这样的点11728P ⎛⎫- ⎪⎝⎭,或25528P ⎛⎫- ⎪⎝⎭,,能使得以P A C N ,,,为顶点的四边形是平行四边形.…………………………………………………………………8分2. (1)由抛物线C 1:2445y ax ax a =++-得244(45)162,524aa a aa a---=-=- ∴顶点P 的坐标为(-2,-5) -------------------1分 ∵点B (1,0)在抛物线C 1上,∴a =59∴抛物线C 1的解析式为252025999y x x =+----------------------2分(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且PB =MB∴△PBH ≌△MBG --------------------------------------3分 ∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5) ∴抛物线2C 的表达式为()54952+--=x y -----------------------4分(3)依题意得,E(-2,65m +),F(4, 125m -+),HG=6① 当E 点的纵坐标小于-5时, PE=6315()55m m --+=--,MF=12375()55m m --+=-∴1313718()662555s m m m =--+-⨯=-+-----------------5分 ② 当E 点的纵坐标大于-5且F 点的纵坐标小于5时, PE=631(5)55m m +--=+,MF=12375()55m m --+=-∴2045s = --------------6分③ 当F 点的纵坐标大于5时, PE=631(5)55m m +--=+,MF=1237555m m -+-=-+∴1865s m =----------7分3. 解:(1)A (0,2), B (3-,1). ·································································· 2分(2)解析式为211222y x x =+-; ······························································· 3分顶点为(11728--,). ········································································· 4分(3)如图,过点B '作B M y '⊥轴于点M ,过点B 作BN y ⊥轴于点N ,过点C '作C P y '⊥ 轴于点P .在Rt △AB ′M 与Rt △BAN 中,∵ AB =AB ′, ∠AB ′M =∠BAN =90°-∠B ′AM , ∴ Rt △AB ′M ≌Rt △BAN .∴ B ′M =AN =1,AM =BN =3, ∴ B ′(1,1-). 同理△AC ′P ≌△CAO ,C ′P =OA =2,AP =OC =1, 可得点C ′(2,1); 将点B ′、C ′的坐标代入211222y x x =+-,可知点B ′、C ′在抛物线上. ·································································· 7分 (事实上,点P 与点N 重合)4. 解:(1)△244(1)(2)k k k =---128k =-,依题意,得 1280,10.k k ∆=->⎧⎨-≠⎩∴k 的取值范围是23k >且1k ≠. ① …………………………… 2分(2)解方程31x kx =-,得13x k-=-. …………………………………………………………… 3分∵方程31x kx =-的解是负数,∴30k ->. ∴3k <. ② ……………………………… 4分 综合①②,及k 为整数,可得 2k =.∴抛物线解析式为 24y x x =+. ……………………………… 5分(3)如图,设最大正方形ABCD 的边长为m ,则B 、C 两点的纵坐标为m -,且由对称性可知:B 、C 两点关于抛物线对称轴对称.∵抛物线的对称轴为:2x =-.∴点C 的坐标为(2,)2m m -+-. ……………… 6分 ∵C 点在抛物线上, ∴2(2)4(2)22mmm -++-+=-.整理,得 24160m m +-=.∴22m ==-±∴2m =. …………………… 7分5. 解:(1))4,1(),3,0(),0,1(),0,3(----D C B A .....................................................(2分)(2))3,2(--F ...........................................................(3分)(3)过点P 作y 轴的平行线与BF 交于点M ,,与x 轴交于点H 易得F (-2,-3),直线BF 解析式为1-=x y .设P (x ,322-+x x ),则M (x ,x -1), .......................................(4分) ∴PM 22+--=x xPM 的最大值是49. ..........................................................(5分) 当PM 取最大值时PBF ∆的面积最大34921⨯⨯=+=∆∆∆PBM PFM PBF S S S △PFB 的面积827的最大值为 ............................................................(6分)(4)如图,①当直线GH 在x 轴上方时,设圆的半径为R (R>0),则H (R-1,R ), 代入抛物线的表达式,解得2171+=R ......................................................(7分)②当直线GH 在x 轴下方时,设圆的半径为r (r>0),则H (r-1,-r ), 代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. .......................................................(8分)6. 解:(1)由抛物线C 1:()522-+=x a y 得 顶点P 的为(-2,-5) ………2分∵点B (1,0)在抛物线C 1上∴()52102-+=a解得,a =59………4分 (2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称∴PM 过点B ,且PB =MB∴△PBH ≌△MBG∴MG =PH =5,BG =BH =3∴顶点M 的坐标为(4,5) ………5分抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到∴抛物线C 3的表达式为()54952+--=x y ………6分(3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到∴顶点N 、P 关于点Q 成中心对称由(2)得点N 的纵坐标为5设点N 坐标为(m ,5)作PH ⊥x 轴于H ,作NG ⊥x 轴于G 作PK ⊥NG 于K∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6 ∴FG =3,点F 坐标为(m +3,0)H 坐标为(2,0),K 坐标为(m ,-5),根据勾股定理得PN 2=NK 2+PK 2=m 2+4m +104PF 2=PH 2+HF 2=m 2+10m +50NF 2=52+32=34 ………8分①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0) ②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0) ③∵PN >NK =10>NF ,∴∠NPF ≠90º综上所得,当Q 点坐标为(193,0)或(230)时,以点P 、N 、F 为顶点 的三角形是直角三角形. ………9分。
代数综合问题(含答案)
代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。
二次函数代数综合
二次函数代数综合一.二次函数与一次函数综合一次函数()0y kx n k =+≠的图象l 与二次函数()20y ax bx c a =++≠的图象G 的交点,由方程组2y kx ny ax bx c =+⎧⎨=++⎩的解的数目来确定: 1.方程组有两组不同的解时⇔l 与G 有两个交点; 2.方程组只有一组解时⇔l 与G 只有一个交点; 3.方程组无解时⇔l 与G 没有交点.二.二次函数与不等式综合二次函数与不等式的联系.如下表(以0a >为例):判别式:24b ac ∆=- 0∆>0∆= 0∆<二次函数2y ax bx c =++(0)a >的图象不等式的解集20ax bx c ++>(0)a >1x x <或2x x >2b x a≠-任意实数20ax bx c ++<(0)a >12x x x <<无解 无解三.二次函数与方程及代数式综合二次函数与方程及代数式综合主要是二次函数与一元二次方程综合及二次函数与代数式的化简求值,与方程综合注意分类讨论以及整数解问题,与代数式综合的解题思想是“消元降次,整体代入”.x 2x 1Oyxx 1=x 2O yxO xy知识精讲三点剖析二次函数代数综合一.考点:二次函数代数综合.二.重难点:二次函数与一次函数综合,二次函数与不等式综合,二次函数与方程及代数式综合.三.易错点:1.二次函数与一次函数综合中求解参数的取值范围时容易漏解或者是分不清取值范围的上限或者下限;2.二次函数与不等式综合问题解题时不要直接硬算,要结合函数图像,利用函数的增减性来求解参数的取值范围;3.二次函数与代数式综合除了极少数情况下可以直接计算之外,一般情况下都是通过“消元降次,整体代入”的方法来求解;4.二次函数与方程综合注意二次项系数的分类讨论.题模一:与不等式综合例1.1.1如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【答案】(1)y=12x2-12x-1(2)(-1,0)(3)-1<x<4【解析】题模精讲(1)∵二次函数y=ax 2+bx+c 的图象过A (2,0),B (0,-1)和C (4,5)三点, ∵42011645a b c c a b c ++=⎧⎪=-⎨⎪++=⎩,∵a=12,b=-12,c=-1,∵二次函数的解析式为y=12x 2-12x -1; (2)当y=0时,得12x 2-12x -1=0; 解得x 1=2,x 2=-1, ∵点D 坐标为(-1,0); (3)图象如图,当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4.例 1.1.2已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题:①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围; ②如果满足10y >且2y ≤0时的自变量x 的取值范围内恰有一个整数,直接写出a 的取值范围.【答案】(1)1112y x =-;2(,4)a a -(2)24x <≤;13562a ≤<【解析】(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,∴ 20,4 1.k b k b +=⎧⎨+=⎩,解得1,21.k b ⎧=⎪⎨⎪=-⎩…………………………… 1分 ∴1112y x =--------------------------------------------2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………… 3分(2)①当25=a 时,4522+-=x x y .………… 4分 如图10,因为10y >且20y ≤,由图象得24x <≤.…… 6分 ②13562a ≤<.……………………………7分题模二:与一次函数综合例1.2.1在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-.(1)求B 点坐标;(2)直线142y x m n =++经过点B .①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G与直线142y x m n =++只有两个公共点时,d 的取值范围是________.【答案】(1)()4,0(2)2142y x x =--;122y x =-(3)502d -<<【解析】该题考查的是函数综合. (1)依题意,可得抛物线的对称轴为212mx m-=-=.………………………1分 ∵抛物线与x 轴交于A ,B 两点,点A 的坐标为()2,0-, ∴点B 的坐标为()4,0………………………2分(2)∵点B 在直线142y x m n =++上, ∴024m n =++①∵点A 在二次函数22y mx mx n =-+的图象上, ∴044m m n =++② ………………………3分 由①,②可得12m =,4n =-………………………4分 ∴抛物线的解析式为2142y x x =--,直线的解析式为122y x =-……………5分 (3)502d -<<………………………7分例1.2.2在平面直角坐标系xOy 中,抛物线222y mx mx =--()0m ≠与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在21x -<<-这一段位于直线l 的上方,并且在23x <<这一段位于直线AB 的下方,求该抛物线的解析式.【答案】(1)()1,0(2)22y x =-+(3)2242y x x =-- 【解析】该题考察的是一次函数和二次函数综合. (1)当0x =时,2y =∴ 点A 的坐标为()0,2-, …………………1分 将222y mx mx =--配方,得()212y m x m =---,∴ 抛物线的对称轴为直线1x =,∴ 点B 的坐标为()1,0, …………………2分(2)由题意,点A 关于直线1x =对称点的坐标为()2,2-.………………………………3分 设直线l 的解析式为y kx b =+ ∵ 点()1,0和点()2,2-在直线l 上, ∴022k b k b =+⎧⎨-=+⎩, 解得22k b =-⎧⎨=⎩∴ 直线l 的解析式为22y x =-+.………………………………………………4分 (3)由题意可知,抛物线关于直线1x =对称,直线AB 和直线l 也关于直线1x =对称∵ 抛物线在23x <<这一段位于直线AB 的下方, ∴ 抛物线在10x -<<这一段位于直线l 的下方, 又∵ 抛物线在21x -<<-这一段位于直线l 的上方,∴ 抛物线与直线l 的一个交点横坐标为1- , …………………………………5分 ∴ 由直线l 的解析式22y x =-+ 可得这个店的坐标为()1,4-,………………6分 ∵ 抛物线222y mx mx =--经过点()1,4-, ∴2m =.∴ 所求抛物线的解析式为2242y x x =--. …………………………………7分 例1.2.3在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线y=x ﹣1交于点A ,点A 关于直线x=1的对称点为B ,抛物线C 1:y=x 2+bx+c 经过点A ,B . (1)求点A ,B 的坐标;(2)求抛物线C 1的表达式及顶点坐标;(3)若抛物线C 2:y=ax 2(a ≠0)与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (3,2),B (﹣1,2). (2)y=x 2﹣2x ﹣1.顶点坐标为(1,﹣2). (3)2a<29≤.【解析】(1)当y=2时,则2=x ﹣1, 解得:x=3, ∴A (3,2),∵点A 关于直线x=1的对称点为B , ∴B (﹣1,2). (2)把(3,2),(﹣1,2)代入抛物线C 1:y=x 2+bx +c 得: 2=9+3b+c2=1-b+c ⎧⎨⎩解得:21b c =-⎧⎨=-⎩∴y=x 2﹣2x ﹣1.顶点坐标为(1,﹣2).(3)如图,当C 2过A 点,B 点时为临界,代入A (3,2)则9a=2,解得:a=29, 代入B (﹣1,2),则a (﹣1)2=2, 解得:a=2,∴2a<29≤. 题模三:与代数式综合例1.3.1已知关于x 的方程()03132=+++x m mx .(1)求证:不论为m 任意实数,此方程总有实数根;(2)若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式; (3)若点P (1x ,1y )与点Q (n x +1,2y )在(2)中抛物线上,(点P 、Q 不重合),且21y y =,求代数式81651242121++++n n n x x 的值. 【答案】(1)见解析(2)243y x x =++(3)24【解析】(1)当0m =时,原方程化为,03=+x 此时方程有实数根 x = -3. 当0m ≠时,原方程为一元二次方程.∵()()2223112961310m m m m m ∆=+-=-+=-≥. ∴此时方程有两个实数根.综上,不论m 为任何实数时,方程 03)13(2=+++x m mx 总有实数根. (2)∵令0y =, 则 03)13(2=+++x m mx . 解得 13x =-,21x m=-. ∵ 抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,m 为正整数,∴1m =. ∴抛物线的解析式为243y x x =++. (3)∵点()11,F x y 与()12,Q x n y +在抛物线上, ∴2211121143,()4()3y x x y x n x n =++=++++.∵12y y =,∴22111143()4()3x x x n x n ++=++++. 可得 04221=++n n n x ,即 0)42(1=++n x n . ∵ 点P , Q 不重合,∴ 0n ≠.∴ 124x n =--.∴ 222211114125168(2)265168x x n n n x x n n n ++++=+⋅+++ 22(4)6(4)516824.n n n n n =++--+++=随练1.1如图,二次函数213y ax bx =++的图象与x 轴相交于点()3,0A -、()1,0B ,交y 轴点C , C 、D 是二次函数图象上的一对对称点,一次函数2y mx n =+的图象经过B 、D 两点. (1)求二次函数的解析式及点D 的坐标;(2)根据图象写出21y y >时,x 的取值范围.【答案】(1)223y x x =--+(2)2x <-或1x >随堂练习【解析】本题考查了一次函数和二次函数综合应用. (1)∵二次函数经过()3,0A -,()1,0B设二次函数解析式为()()31y a x x =+-,代入()0,3C ,解得1a =-, 二次函数解析式为()()23123y x x x x =-+-=--+∵C 、D 是二次函数图象上的一对对称点,二次函数对称轴为1x =- ∴()2,3D -(2)两函数的交点为()1,0B ,()2,3D -,所以当21y y >时,根据图象可得2x <-或1x >. 随练1.2已知:抛物线()2220y ax a x =+--=过点()3,4A .(1)求抛物线的解析式;(2)将抛物线()2220y ax a x =+--=在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为_________. 【答案】(1)22y x x =--(2)①10m -≤≤或12m ≤≤②4k ≤或4k ≤- 【解析】该题考查的是二次函数综合.(1)∵抛物线()222y ax a x =+--过点()3,4A ,∴()93224a a +--=. 解得1a =.∴抛物线的解析式为22y x x =--. --------------2分(2)①当0y =时,220x x --=.∴1x =-或2.∴抛物线与x 轴交于点()1,0A -,()2,0B .-----3分 当2y =-时,222x x --=- . ∴0x =或1.∴抛物线与直线2y =-交于点()0,2C -,()1,2D -.∴C ,D 关于直线1y =-的对称点()'0,0C ,()'1,0D .----4分 ∴根据图象可得10m -≤≤或12m ≤≤.----------------5分m②的取值范围为4k ≥或4k ≤-.----------------7分随练1.3已知抛物线2221y x mx m =-+-+与x 轴交点为A 、B (点B 在点A 的右侧),与y 轴交于点C .(1)试用含m 的代数式表示A 、B 两点的坐标;(2)当点B 在原点的右侧,点C 在原点的下方时,若△BOC 是等腰三角形,求抛物线的 解析式;(3)已知一次函数y kx b =+,点(),0P n 是x 轴上一个动点,在(2)的条件下,过点P 作 垂直于x 轴的直线交这个一次函数的图象于点M ,交抛物线2221y x mx m =-+-+于点N ,若只有当14n <<时,点M 位于点N 的下方,求这个一次函数的解析式.【答案】(1)()1,0A m -;()1,0B m +(2)243y x x =-+-(3)1y x =-+ 【解析】该题考查的是二次函数综合. (1)令0y =,有22210x mx m -+-+=. ∴()210x m --+=. ∴()21x m -=. ∴11x m =+,21x m =-. ∵点B 在点A 的右侧,k∴()1,0A m -,()1,0B m +.…………………………………………2分(2)∵点B 在原点的右侧且在点A 的右侧,点C 在原点的下方,抛物线开口向下, 10m ->.∴1m >. ∴1OB m =+.令0x =,有21y m =-+.∴21OC m =-.∵△BOC 是等腰三角形,且 90BOC ∠=︒, ∴OB OC =.即211m m +=-. ∴210m m --=.∴12m =,21m =-(舍去). ∴2m =.∴抛物线的解析式为243y x x =-+-.………………………………4分(3)依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为1和4,由此可得交点坐标为()1,0和()4,3-.将交点坐标分别代入一次函数解析式y kx b =+中, 得043k b k b +=⎧⎨+=-⎩解得11k b =-⎧⎨=⎩一次函数的解析式为1y x =-+.…………………………………………7分随练1.4已知关于x 的一元二次方程()2221230x k x k k -++--=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最小的整数时,求抛物线()222123y x k x k k =-++--的顶点坐标以及它与x 轴的交点坐标;(3)将(2)中求得的抛物线在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y x m =+有三个不同公共点时m 的值.yxO 123 4 12 3 4 5【答案】(1)1k >-(2)()1,0-或()3,0(3)1m =或134m =【解析】该题考查抛物线的性质与几何变换(1) 由题意,得,()()224142316160k k k k ∆=+---=+>∴1k >-∴k 的取值范围为1k >-.…………2分 (2)∵1k >-,且k 取最小的整数,∴0k = ∴()222314y x x x =--=--则抛物线的顶点坐标为()1,4-…………………3分 ∵223y x x =--的图象与轴相交, ∴2230x x --=∴13x =-或∴抛物线与轴相交于()1,0A -,()3,0B …………4分(3)翻折后所得新图象如图所示.…………5分平移直线y x m =+知: 直线位于和时,它与新图象有三个不同的公共点.①当直线位于时,此时过点()1,0A - 1.01m =-+,即1m =………………6分②当直线位于时,此时与函数()22313y x x x =-++-≤≤的图象有一个公共点,∴方程223x m x x +=-++,即230x x m --+=有两个相等实根,∴()1430m ∆=--= 即134m =………………7分 x x 1l 2l 1l 1l 2l 2l当134m =时,1212x x ==满足13x -≤≤ 由①②知1m =或134m =. 随练1.5已知二次函数22(3(1)22)t y t x x =++++在0x =与2x =的函数值相等. (1)求二次函数的解析式; (2)若一次函数6y kx =+的图象与二次函数的图象都经过点()3,A m -,求m 与k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧 ),将二次函数的图象B ,C 间的部分(含点B 和点C )向左平移n (0n >)个单位后得到的图象记为G ,同时将(2)中得到的直线y kx b =+向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围。
二次函数综合题
二次函数综合题类型一㊀对称性㊁增减性问题1.已知二次函数y =ax 2-2ax.(1)二次函数图象的对称轴是直线x =㊀;(2)当0ɤx ɤ3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ɤx 1ɤt +1,x 2ȡ3时,均满足y 1ȡy 2,请结合函数图象,直接写出t 的取值范围.(2)当=解:(1)a 1>;0时,ȵ该函数图象的对称轴为直线x 1,ʑ当x =1时,y 有最小值为-a ,当x =3时,y 有最大值为3a ,ʑ3a -(-a )=4,ʑa =1,ʑ二次函数的表达式为y =x 2-2x.当a <0时,同理可得,y 有最大值为-a ;y 有最小值为3a ,ʑ-a -3a =4,ʑa =-1,ʑ二次函数的表达式为y=-x2+2x,综上所述,该二次函数的表达式为y=x2-2x或y=-x2+2x;(3)-1ɤtɤ2.ʌ解法提示ɔȵa<0,该函数图象的对称轴为直线x=1,ʑx<1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=-1和x=3时的函数值相等.ȵtɤx1ɤt+1,x2ȡ3时,均满足y1ȡy2,ʑtȡ-1,t+1ɤ3,ʑ-1ɤtɤ2.2.在平面直角坐标系xOy中,点(m-2,y1),(m, y2),(2-m,y3)在抛物线y=x2-2ax+1上,其中mʂ1且mʂ2.(1)求出该抛物线的对称轴(用含a的式子表示);(2)当m=0时,若y1=y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.解:(1)ȵy=x2-2ax+1,ʑ抛物线对称轴为直线x=--2a2=a; (2)y1>y2.理由如下:ȵm=0,y1=y3,ʑ点(-2,y1)与点(2,y3)关于抛物线对称轴对称,ʑ抛物线对称轴为直线x=-2+22=0,即a=0,ʑy=x2+1,ʑ抛物线开口向上,顶点坐标为(0,1),ʑy2=1为函数最小值,ʑy1>y2;(3)将(m-2,y1),(m,y2),(2-m,y3)分别代入y=x2-2ax+1,得y1=m2-4m-2am+4a+5,y2=m2-2am+1,y3= m2-4m+2am-4a+5,ȵy1>y2>y3,ʑm2-4m-2am+4a+5>m2-2am+1>m2-4m+ 2am-4a+5,解得m-1<a<1.ȵm>1,ʑ0<a<1.3.已知抛物线y=2x2-4mx+2m2-1.(1)求该抛物线的顶点坐标;(2)若直线y =n 与该抛物线交于点A ,B ,且AB=2,求n 的值;(3)若抛物线y =2x 2-4mx +2m 2-1经过点P (t ,y 1),Q (t +1,y 2),y 1y 2<0,求y 1的取值范围.解:(1)ȵy =2x 2-4mx +2m 2-1=2(x -m )2-1,ʑ该抛物线顶点坐标为(m ,-1);(2)ȵAB =2,抛物线对称轴为直线x =m ,1,n ),(m +1,n )ʑ抛物线与直线y =n 的两个交点坐标为(m -,将(m +1,n )代入y =2(x -m )2-1得n =2-1=1;(3)ȵ抛物线y =2(x -m )2-1,a =2>0,ʑ抛物线开口向上,对称轴为直线x =m ,令2(x -m )2-1=0,解得x 1=m -22,x 2=m +22,ʑx 2-x 1=2>1.ȵy 1y 2<0,ʑy 1<0,y 2>0或y 1>0,y 2<0,如解图①,当y 1<0,y 2>0时,t <m +22<t +1,ʑm+22-1<t<m+22,第3题解图①当t=m时,y1取最小值为-1,ʑ-1ɤy1<0,如解图②,当y第3题解图②t<m-22<t+1,ʑm-22-1<t<m-22,将t=m-22-1代入y=2(x-m)2-1得y=2(m-22-1-m)2-1=2+22,ʑ0<y1<2+22,综上所述,-1ɤy1<0或0<y1<2+22.类型二㊀公共点问题考向一㊀定抛物线与动线段1.如图,已知直线y =2x +1与抛物线y =2x 2+bx +c 交于点A (0,1),B (3,7),点C (4,m )在该直线上.(1)求该抛物线的顶点坐标;(2)将线段AC 沿着y 轴向上或向下平移,使平移后的线段AᶄCᶄ(点Aᶄ,Cᶄ分别为点A ,C 的对应点)与该抛物线只有一个公共点,设点Aᶄ的纵坐标为n ,求n 的取值范围.解:(1)将点A (0,1),B (3,7)代入y =2x 2+bx +c ,得c =1,2ˑ32+3b +c =7,{解得b =-4,c =1,{ʑy =2x 2-4x +1=2(x -1)2-1,ʑ该抛物线的顶点坐标为(1,-1);(2)将C(4,m)代入y=2x+1得,m=2ˑ4+1=9,ʑC(4,9),当x=4时,y=2x2-4x+1=2ˑ42-4ˑ4+1=17.①若线段AC向上平移,当线段AC向上平移17 -9=8个单位时,线段AᶄCᶄ与抛物线有一个交点Cᶄ(4,17),此时点Aᶄ的坐标为(0,9).若向上平移超过8个单位,则抛物线与线段AᶄCᶄ没有交点,ʑ1<nɤ9;②若线段AC向下平移,设线段AC向下平移a个单位,令2x+1-a=2x2-4x+1,整理得2x2-6x+a=0,令(-6)2-4ˑ2a=0,解得a=92,ʑn=1-92=-72,综上所述,n的取值范围为1<nɤ9或n=-72.2.在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a ʂ0)经过点A (3,-4)和B (0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A ,B 之间的部分记为图象M (含A ,B 两点).将图象M 沿直线x =3翻折,得到图象N.若过点C (9,4)的直线y =kx +b 与图象M ㊁图象N 都相交,且只有两个交点,求b 的取值范围.解:(1)将点A (3,-4)和B (0,2)代入抛物线y =ax 2+4x +c (a ʂ0),可得9a +12+c =-4,c =2,{解得a =-2,c =2,{ʑ抛物线的表达式为y =-2x 2+4x +2.ȵy =-2x 2+4x +2=-2(x -1)2+4,ʑ抛物线的顶点坐标为(1,4);(2)设点B (0,2)关于x =3的对称点为Bᶄ,则点Bᶄ(6,2).如解图,若直线y =kx +b 经过点C (9,4)和Bᶄ(6,2),可得b =-2.若直线y =kx +b 经过点C (9,4)和A (3,-4),可得b =-8.当直线y =kx +b 平行x 轴时,b =4,综上所述,第2题解图考向二㊀动抛物线与定线段(直线) 1.已知:抛物线y=x2-2x+3a+1(a为常数).(1)当a=1时,求该抛物线的顶点坐标;(2)抛物线上有两点M(-1,yM ),N(2,yN),请比较y M与y N的大小;(3)在平面直角坐标系中,若该抛物线在xɤ3的部分与直线y=2x-3有两个交点,求a的取值范围.解:(1)当a=1时,抛物线为y=x2-2x+4=(x-1)2+3,则该抛物线的顶点坐标为(1,3);(2)由题意易知抛物线的对称轴为直线x= --22ˑ1=1,ȵ抛物线开口向上,且1-(-1)=2,2-1=1,2>1,ʑy M>y N;(3)ȵ二次函数的图象在xɤ3的部分与一次函数y=2x-3的图象有两个交点,令x2-2x+3a+1=2x-3,整理得x2-4x+3a+4=0,由根的判别式得16-4(3a+4)>0,解得a<0,把x=3代入y=2x-3,得y=3ˑ2-3=3,把(3,3)代入y=x2-2x+3a+1得3=9-6+3a+1,解得a=-13,ʑa的取值范围为-13ɤa<0.2.(2021燕山区二模)在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(aʂ0).(1)求抛物线的对称轴及抛物线与y轴交点坐标;(2)已知点B(3,4),将点B向左平移3个单位长度,得到点C.若抛物线与线段BC恰有一个公共点,结合函数的图象,求a的取值范围.解:(1)ȵ抛物线y=ax2-2ax-3a,ʑ抛物线的对称轴是直线x=--2a2a=1,令x=0,则y=-3a,ʑ抛物线与y轴交点坐标为(0,-3a); (2)y=ax2-2ax-3a=a(x2-2x-3)=a(x+1)(x-3),ʑ抛物线与x轴交于点A(-1,0),D(3,0),与y 轴交于点E(0,-3a),顶点坐标是(1,-4a).由题意得点C(0,4),B(3,4),①当a>0时,如解图①,显然抛物线与线段BC 无公共点;②当a<0时,若抛物线顶点在线段BC上,如解图②,则顶点坐标为(1,4),ʑ-4a=4,ʑa=-1;③当a<0时,若抛物线的顶点不在线段BC上,如解图③,ȵ抛物线与线段BC恰有一个公共点,ʑ-3a>4,ʑa<-43,综上所述,a的取值范围是a<-43第2题解图考向三㊀动抛物线与动直线1.(2021西城区一模)在平面直角坐标系xOy中,抛物线y=ax2-2a2x+1(aʂ0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)直接写出抛物线的对称轴;(2)若AB=4,求抛物线所对应的函数解析式;(3)已知点P(a+4,1),Q(0,a+1),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.解:(1)抛物线的对称轴为直线x=a;ʌ解法提示ɔȵ抛物线y=ax2-2a2x+1(aʂ0),ʑ抛物线的对称轴为直线x=--2a22a=a. (2)由题意可知抛物线的对称轴为直线x=ʃ2,ʑa=ʃ2,ʑ抛物线所对应的函数解析式为y=2x2-8x+1或y=-2x2-8x+1;(3)当a>0时,如解图①,抛物线过点P(a+4, 1)时,则a+42=a,解得a=4,ʑQ(0,5),此时,抛物线与线段PQ有一个公共点.当a<0时,如解图②,抛物线过点P(a+4,1)时,a+4=0,解得a=-4,㊀图②第1题解图此时,Q(0,-3),抛物线与线段PQ有一个公共点;综上所述,当0<aɤ4或-4ɤa<0时,抛物线与线段PQ恰有一个公共点.类型三㊀整点问题1.(2021顺义区一模)在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0)与y轴交于点A.(1)求点A和抛物线顶点的坐标(用含a的式子表示);(2)直线y=-ax+3a与抛物线y=ax2-4ax+3a围成的区域(不包括边界)记作G.横㊁纵坐标都为整数的点叫做整点.①当a=1时,结合函数图象,求区域G中整点的个数;②当区域G中恰有6个整点时,直接写出a的取值范围.解:(1)ȵy=ax2-4ax+3a=a(x-2)2-a,ʑ抛物线的顶点的坐标为(2,-a).ȵ抛物线y=ax2-4ax+3a(a>0)与y轴交于点A,ʑA(0,3a);(2)①当a=1时,直线y=-x+3,抛物线y=x2-4x+3,可得直线y=-x+3与抛物线y=x2-4x+3的交点为(3,0),(0,3);则(1,1),(2,0)是区域G中的两个整点,即区域G中整点的个数为2个;②32<aɤ2.ʌ解法提示ɔ联立直线y=-ax+3a与抛物线y= ax2-4ax+3a,可得交点为(0,3a),(3,0),ʑ区域G由0ɤxɤ3,-aɤyɤ3a组成;当x=1时,与直线的交点为(1,2a),与抛物线的交点为(1,0),同理可得,当x=2时,与直线的交点为(2,a),与抛物线的交点为(2,-a),区域G中的整点不包括边界,整点有6个,如解图,当0<a< 1时,G中最多有1个整点;当a=1时,G中有2个整点;当1<aɤ1.5时,G中最多有5个整点;当1.5<aɤ2时,G中最多有6个整点;当2<aɤ3.5时,G中最多有13个整点;ʑ当32<aɤ2时,区域G中恰有6个整点.第1题解图2.在平面直角坐标系xOy中,抛物线y=ax2-2ax+ a-1(其中a是常数,a>0)与y轴交于点A.我们将横㊁纵坐标都是整数的点叫做 整点 .(1)求该抛物线的顶点坐标;(2)如果线段OA(包含端点)上的 整点 个数大于3个且小于8个,求a的取值范围;(3)若抛物线与x轴围成的区域(含边界)内有6个整点,求a的取值范围.解:(1)ȵy=ax2-2ax+a-1=a(x-1)2-1,ʑ该抛物线的顶点坐标为(1,-1);(2)ȵ点A为抛物线与y轴的交点,ʑ点A的坐标为(0,a-1).ȵa>0,线段OA(包含端点)上的整点个数大于3个且小于8个,则a-1>2,且a-1<7,ʑa的取值范围为3<a<8;(3)当a=1时,抛物线的解析式为y=x2-2x,如解图,此时抛物线与x轴围成的区域(含边界)内有4个整点,第2题解图当a=14时,抛物线与x轴围成的区域(含边界)内有6个整点,当a=19时,抛物线与x轴围成的区域(含边界)内有8个整点,ȵ抛物线的顶点坐标为(1,-1),ʑ要使抛物线与x轴围成的区域(含边界)内有6个整点,则x=-2所对应的y值要大于0,且x =-1所对应的y值小于等于0,ʑ4a+4a+a-1>0,a+2a+a-1ɤ0,解得a>19,且aɤ14,ʑ当抛物线与x轴围成的区域(含边界)内有6个整点时,a的取值范围为19<aɤ14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数代数综合题1.已知直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的解析式;(2) 结合函数图象,求不等式m x c bx x +>++2的解集.2.如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使P A +PD 最小,求出点P 的坐标.3.已知抛物线2442y ax ax a=-+-,其中a是常数.(1)求抛物线的顶点坐标;(2)若25a>,且抛物线与x轴交于整数点(坐标为整数的点),求此抛物线的解析式.4.在平面直角坐标系xOy中,抛物线2y mx n=++经过P,A(0,2)两点.(1)求此抛物线的解析式;(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;(3)在(2)的条件下,求到直线OB、OC、BC距离相等的点的坐标.5.(2009年娄底)已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y 轴的交点为C ,它的顶点为M ,求直线CM 的解析式.6.(2009年孝感)已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值.7. 已知二次函数y =x 2-(2m +4)x +m 2-4(x 为自变量)的图象与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO 、OB •满足3(•OB -AO )=2AO ·OB ,直线y =kx +k 与这个二次函数图象的一个交点为P ,且锐角∠POB •的正切值4.(1)求m 的取值范围;(2)求这个二次函数的解析式;(3)确定直线y =kx +k 的解析式.8.已知:二次函数y =2(32)220(0)mx m x m m -+++=>. (1)求证:此二次函数的图象与x 轴有两个交点;(2)设函数图象与x 轴的两个交点方程的分别为(1x ,0),(2x ,0)(其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 满足什么条件时,2y m ≤.9(1)f(x)=x 2+bx +c 对任意实数t 都有f(2+t)=f(2-t),那么( ) A. f ⑵<f ⑴<f ⑷ B.f ⑴<f ⑵<f ⑷ C.f ⑵<f ⑷<f ⑴D.f ⑷<f ⑵<f ⑴(2)方程x 2-2|x|=a(a ∈R)有且仅有两个不同的实数根,则实数a 的取值范围是_______.(3)关于x 的方程x 2-2ax +9=0的两个实数根分别为α、β,则(α-1)2+(β-1)2的最小值是 _______________(4)已知函数y =x 2-4ax +2a +30的图象与x 轴无交点,求关于x 的方程3 a x=|a -1|+1的根的范围.(5)若关于x 的二次方程7x 2-(p +13)x +p 2-p -2=0的两根α、β满足0<α<1<β<2,求实数p 的取值范围.10. 设a ,b 为实常数,k 取任意实数时,函数y =(k 2+k +1)x 2-2(a +k)2x +(k 2+3ak +b)的图象与x 轴都交于点A(1,0). ① 求a 、b 的值;② 若函数与x 轴的另一个交点为B ,当k 变化时,求|AB|的最大值11.(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.12.(2010四川省广元市)如图,抛物线y=x+bx+3与x轴正半轴、y轴正半轴分别交于点A、B,顶点为D,tan∠OAB=3.(1)求该抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将抛物线y=x2+bx+2沿y轴向上或向下平移后,经过点C,求点C的坐标和平移后抛物线的解析式;(3)设(2)中平移后的抛物线与y轴的交点为B1,顶点为D1.点P在平移后的抛物线上,且满足△PBB1的面积是△PDD1的面积的两倍,求点P的坐标.13.(2009年广西梧州)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.图(9)-1图(9)-214.(2009年宁德市)如图,已知抛物线C1:()5ay的顶点为P,与x轴相交=x+22-于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.15、(2009年嘉兴市)如图,曲线C 是函数xy 6=在第一象限内的图象,抛物线是函数422+--=x x y 的图象.点),(y x P n (12n = ,,)在曲线C 上,且x y ,都是整数. (1)求出所有的点()n P x y ,;(2)在n P 中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.16.已知抛物线C 1:22y x x =-的图象如图所示,把C 1的图象沿y 轴翻折,得到抛物线C 2的图象,抛物线C 1与抛物线C 2的图象合称图象C 3(1)求抛物线C 1的顶点A 坐标,并画出抛物线C 2的图象;(2)若直线y kx b =+与抛物线2(0)y ax bx c a =++≠有且只有一个交点时,称直线与抛物线相切. 若直线y x b =+与抛物线C 1相切,求b 的值;(3)结合图象回答,当直线y x b =+与图象C 3 有两个交点时,b 的取值范围.17.已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.18.已知:关于x 的一元二次方程063)2(22=-+-+m x m x .(1)求证:x 无论为任何实数,方程总有实数根;(2)抛物线m x m x y 63)2(22-+-+=与x 轴交于A 、B 两点,A 在原点左侧,B 在原点右侧,且OA =3OB ,请确定抛物线的解析式;(3)将(2)中的抛物线沿x 轴方向向右平移2个单位长度,得到一个新的抛物线,请结合函数图象回答:当直线y =m 与这两条抛物线有且只有四个交点时,实数m 的取值范围.19.已知二次函数y=x2-x+c.(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x2-x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>n)在二次函数y=x2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当22≤OP≤2+2时,试求直线DE的解析式,并判断直线DE与抛物线y=x2-x+c+38的交点个数,并说明理由.20.已知关于x 的方程032)1(32=-+--m x m mx .(1)求证:无论m 取任何实数时,方程总有实数根;(2)若关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称. ①求这个二次函数的解析式;②已知一次函数222-=x y ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值y 1≥y 2均成立;(3)在(2)的条件下,若二次函数y 3=ax 2+bx +c 的图象经过点(-5,0),且在实 数范围内,对于x 的同一个值,这三个函数所对应的函数值y 1≥y 3≥y 2均成立. 求二次函数y 3=ax 2+bx +c 的解析式.。