层次分析数学模型
数学建模——层次分析法模型
危害性分级模型的建立与求解1.基于层次分析模型对恐怖袭击事件危害性指标建立层次结构模型考虑到恐怖袭击事件的危害性、人员伤亡、经济损失、发生的时机、地域、针对的对象等等诸多因素有关,在构建指标体系时,无法全部考虑到所有指标,因此本文采用层次分析模型,以定性和定量相结合的方法处理指标。
根据上述分析可知, 影响恐怖事件危险性级别的因素有很多,但是,在构建综合评价指标体系时,很难一次性考虑全部细节,此时可以将问题分解成多个层次,而每个层次又包含多个要素,依据大系统理论的分解协调原理,由粗到细,从全局到局部地逐步深入分析,把危险性级别评价的诸多影响因素条理化、层次化,从而建立一个递阶层次分析模型具体的层次分析模型如图1所示。
通过附件1对所有数据指标分析,建立系统的递阶层次结构,第一层为目标层分为5大类,第二层为准则层,第三层为子准则层,第四层为方案层。
其结果目标层准则层子准则层方案层恐怖袭击危害性指标响应级别人员伤亡死亡人数级别1级别2级别3级别4级别5受伤人数被绑人数经济损失损失程度1损失程度2损失程度3损失程度4攻击类型攻击设施攻击个人攻击群体武器类型无杀伤力中小型杀伤力攻击设施1.2 构造成对比较矩阵上一层因素的同一层诸因素,用成对比较法和1~9比较尺度构建成对比较矩阵[1],直到最底层。
表2 标度------比较尺度解释标度 定义1 因素i 与因素j 相同重要 3 因素i 比因素j 稍重要 5 因素i 比因素j 较重要 7 因素i 比因素j 非常重要 9 因素i 比因素j 绝对重要2,4,6,8因素i 与因素j 的重要性的比值介于上述两个相邻等级之间倒数1,1/2,1/3,1/4,1/5,1/6,1/7,1/8,1/9因素j 与因素i 比较得到判断值为ij a 的互反数,ijji a a 1=1=ii a设要素为i F ,j F ;当i F 与j F 相比同等重要,有ij R =1 ;当i F 与j F 相比略为重要,有ij R =3/1 ;当i F 与j F 相比相当重要,有ij R =5/1 ;当i F 与j F 相比明显重要,有ij R =7/1 ;当i F 与j F 相比绝对重要,有ij R =9/1。
层次分析模型(数学建模)
第k层nk个元素对于第k-1层上第j个元素为 准则的单排序向量 uj(k)=(u1j(k),u2j(k),…,un j(k))T j=1,2,…nk-1 其中不受第j个元素支配的元素权重取零,
于是可得到nk×nk-1阶矩阵
u (k ) u21 = ( ) unk1 k
(k ) 11
1 A = ( aij ) n×n , aij > 0, a ji = aij
1/ 2 1 1/ 7 1/ 5 1/ 5 4 7 1 2 3 3 5 1/ 2 1 1
3 成对比较阵 5 A~成对比较阵 1 / 3 是正互反阵 A是正互反阵 1 1
要由A确定 要由 确定C1,… , Cn对O的权向量 确定 的权向量
1. 正互反阵的最大特征根和特征向量的性质 正互反矩阵A 是正单根, 正互反矩阵 的最大特征根λ是正单根, Ak e T 对应正特征向量w, 对应正特征向量 , lim T k = w, e = (1,1, L ,1) k →∞ e A e 定理1 定理1 正互反阵的最大特征根是正数, 正互反阵的最大特征根是正数, 特征向量是正向量。 特征向量是正向量。 定理2 定理2 n阶正互反阵 的最大特征根λ ≥ n , 阶正互反阵A的最大特征根 λ= n是A为一致阵的充要条件。 为一致阵的充要条件。 是 为一致阵的充要条件 一致性指标 CI =
“选择旅游地”思维过程的归 选择旅游地” 选择旅游地 纳 • 将决策问题分为 个层次:目标层 ,准则层 , 将决策问题分为3个层次 目标层O,准则层C, 个层次: 方案层P;每层有若干元素, 方案层 ;每层有若干元素, 各层元素间的关系 用相连的直线表示。 用相连的直线表示。 • 通过相互比较确定各准则对目标的权重,及各方 通过相互比较确定各准则对目标的权重, 案对每一准则的权重。 案对每一准则的权重。 • 将上述两组权重进行综合,确定各方案对目标的 将上述两组权重进行综合, 权重。 权重。 层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。 完成以上步骤,给出决策问题的定量结果。
层次分析法-数学建模
层次分析法一、分析模型和一般步骤二、建立层次结构模型三、构造成对比较矩阵四、作一致性检验五、层次总排序及决策一.层次分析模型和一般步骤层次分析法是一种定性与定量分析相结合的多因素决策分析方法。
这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。
层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类, 建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。
建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。
也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。
把各种所要考虑的因素放在适当的层次内。
用层次结构图清晰地表达这些因素的关系。
〔例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:例2〕选拔干部模型对三个干部候选人二、厶、宀,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人二、厶、宀,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型例3〕评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。
主要考虑以下几个因素:(1)教师队伍(包括平均学历和年龄结构)(2) 教学设施(3) 教学工作(包括课堂教学,课外活动,统考成绩和教学 管理) (4) 文体活动三、构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重、来描述。
数学建模(层次分析法(AHP法))省公开课获奖课件市赛课比赛一等奖课件
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
例2 大学毕业生就业选择问题 取得大学毕业学位旳毕业生,在“双向选择”时,
用人单位与毕业生都有各自旳选择原则和要求。就 毕业生来说选择单位旳原则和要求是多方面旳,例 如:
①能发挥自己才干作出很好贡献(即工作岗位适合 发挥自己旳专长);
wn
1
w1 w2
即 aik akj aij i, j 1,2,, n
A
但在例2旳成对比较矩阵中, a23 7, a21 2, a13 4 a23 a21 a13
在正互反矩阵A中,若 aik akj aij ,(A 旳元素具有 传递性)则称A为一致阵。
定理:n 阶正互反阵A旳最大特征根max n, 当且仅当 =n时A为一致阵
这种措施旳特点是在对复杂旳决策问题旳 本质、影响原因及其内在关系等进行进一 步分析旳基础上,利用较少旳定量信息使 决策旳思维过程数学化,从而为多目旳、 多准则或无构造特征旳复杂决策问题提供 简便旳决策措施。
是对难于完全定量旳复杂系统作出决策旳 模型和措施。
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面旳管理决策中都 有广泛旳应用。
比较同一层次中每个原因有关上一层次 旳同一种原因旳相对主要性
在拟定各层次各原因之间旳权重时,假如只是定 性旳成果,则经常不轻易被别人接受,因而Saaty 等人提出构造:成对比较矩阵A = (aij)nn,即: 1. 不把全部原因放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽量降低性质不同旳诸 原因相互比较旳困难,以提升精确度。
【数学建模浅谈层次分析法】
浅谈层次分析法摘要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。
层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
关键词:层次分析多目标多准则成对比较一致性检验前言数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。
随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。
众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。
数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。
从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。
1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。
若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。
构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤:⑴模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。
数学建模第三讲层次分析法
数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。
它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。
那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。
比如说,我们要选择一个旅游目的地。
这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。
这些因素就构成了不同的层次。
然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。
为了更清楚地理解层次分析法,我们来看看它的具体步骤。
第一步,建立层次结构模型。
这是层次分析法的基础。
我们需要把问题分解成目标层、准则层和方案层。
目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。
准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。
方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。
第二步,构造判断矩阵。
在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。
比较的结果通常用 1 9 标度法来表示。
比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。
反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。
第三步,计算权重向量并进行一致性检验。
通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。
这个特征向量就是我们所需要的权重向量。
但是,为了确保我们的判断是合理的,还需要进行一致性检验。
如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。
层次分析法及模糊综合评价
为残缺元素
Cw w
3, w (0.5714,0.2857,0.1429)T
Aw w
2 2 0 A 1/ 2 1 2
0 1/ 2 2
aij , i j, aij
aij 0,
i j, aij
mi 1, i j
mi~A第i 行 中的个数
6. 更复杂的层次结构 • 递阶层次结构:层内各元素独立,无相互影响和 支配;层间自上而下、逐层传递,无反馈和循环。 • 更复杂的层次结构:层内各元素间存在相互影响 或支配;层间存在反馈或循环。
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。
和法——取列向量的算术平均
1 2 例 A 1/ 2 1
6 列向量 0.6 0.615 0.545 0.364 平均 0.324 w
为 A 的 截集,其中, 叫置信水平。
模糊综合评价
什么是事物的模糊性? 指客观事物在中介过渡时所呈现的“亦此亦彼性”。
(1)清晰的事物——每个概念的内涵(内在涵义或本质属性) 和外延(符合本概念的全体)都必须是清楚的、不变的,每个 概念非真即假,有一条截然分明的界线,如男、女。
(2)模糊性事物——由于人未认识,或有所认识但信息不够丰富, 使其模糊性不可忽略。它是一种没有绝对明确的外延的事物。 如美与丑等。人们对颜色、气味、滋味、声音、容貌、冷暖、 深浅等的认识就是模糊的。
定理1 正矩阵A 的最大特征根是正单根,对应
正特征向量w,且
lim
k
Ak e eT Ake
w,
e (1,1,,1)T
正互反阵的最大特征根是正数, 特征向量是正向量。
层次分析法模型
二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。
数学建模(层次分析法(AHP法))
判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process
多目标决策模型:层次分析法(AHP)、代数模型、离散模型
程中常是定性的。 例如:经济好,身体好的人:会将景色好作为第一选择; 中老年人:会将居住、饮食好作为第一选择; 经济不好的人:会把费用低作为第一选择。 而层次分析方法则应给出确定权重的定量分析方法。 (S3)将方案后对准则层的权重,及准则后对目标层的权重进行综合。 (S4)最终得出方案层对目标层的权重,从而作出决策。 以上步骤和方法即是 AHP 的决策分析方法。 三、确定各层次互相比较的方法——成对比较矩阵和权向量 在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因 而 Santy 等人提出:一致矩阵法 ..... 即:1. 不把所有因素放在一起比较,而是两两相互比较 2. 对此时採用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,提高准确度。 因素比较方法 —— 成对比较矩阵法: 目的是,要比较某一层 n 个因素 C1 , C 2 , , C n 对上一层因素 O 的影响(例如:旅游决策解 中,比较景色等 5 个准则在选择旅游地这个目标中的重要性) 。 採用的方法是:每次取两个因素 C i 和 C j 比较其对目标因素 O 的影响,并用 aij 表示,全部 比较的结果用成对比较矩阵表示,即:
分析:
W1 W2 若重量向量 W 未知时, 则可由决策者对物体 M 1 , M 2 , , M n 之间两两相比关系, W n 主观作出比值的判断,或用Delphi(调查法)来确定这些比值,使 A 矩阵(不一定有一致性)
为已知的,并记此主观判断作出的矩阵为(主观)判断矩阵 A ,并且此 A (不一致)在不一致 的容许范围内,再依据: A 的特征根或和特征向量 W 连续地依赖于矩阵的元素 aij ,即当 aij 离 一致性的要求不太远时, A 的特征根 i 和特征值(向量)W 与一致矩阵 A 的特征根 和特征向 量 W 也相差不大的道理:由特征向量 W 求权向量 W 的方法即为特征向量法,并由此引出一致 性检查的方法。 问题:Remark 以上讨论的用求特征根来求权向量 W 的方法和思路,在理论上应解决以下问题: 1. 一致阵的性质 1 是说:一致阵的最大特征根为 n (即必要条件) ,但用特征根来求特征向量 时, 应回答充分条件: 即正互反矩阵是否存在正的最大特征根和正的特征向量?且如果正互 反矩阵 A 的最大特征根 max n 时, A 是否为一致阵? 2. 用主观判断矩阵 A 的特征根 和特征向量 W 连续逼近一致阵 A 的特征根 和特征向量 W 时,即: 由 lim k
大学生消费问题数学模型(层次分析报告)
word大学生消费问题的层次分析模型大学生的消费结构是指大学生所消费的各种消费资料之间的比例关系.全面细致地了解大学生的消费状况具有重要的现实意义.关注大学生的消费行为,引导大学生科学消费,可以使大学生在校时合理使用有限的经济收入,进展科学消费.因此帮助大学生树立起适度、合理的消费观念,对于促进经济的开展和社会进步有着重要的意义.1.1 目前大学生的消费来源当今大学生的经济来源主要包括: 家庭供应、家教兼职、特困补助和奖学金.大学生由于其自身社会角色的限制,没有独立的经济来源, 主要靠家庭供应.大学生消费收入差距悬殊,主要受家庭收入的影响.1.2 目前大学生的消费状况目前大学生的消费主要由生活消费、学习消费、娱乐消费三局部构成.生活消费,如吃饭、购置生活必需品;学习消费,如学习用品等; 娱乐消费,如购物、旅游等.随着生活水平的提高和网络信息化的开展,大学生消费呈现出多样化.在市场经济的今天,大学生的消费形式、内容、消费心理以与消费观念都发生了显著的变化.大学生传统必需型消费呈明显下降趋势,如饮食消费、衣着消费所占比例下降,其他形式的消费比例逐渐增加.学习消费主要集中在购置学习参考书、英语和计算机等级考试等和学习工具上.娱乐消费主要表现为休闲、旅游等方面,并呈上涨趋势.通讯消费主要表现在手机话费、上网等方面.大学生的人际交往消费、恋爱消费也成为日常支出的一个重要方面.1.3 研究目的了解当代大学生消费的根本情况,发现大学生日常消费中存在的一些问题,为大学生的消费提供正确合理的建议指导,帮助大学生确立正确的消费观.2 数据说明与符号约定2.1 数据说明以某某学院学生为调查的对象,通过问卷调查所得数据,调查问卷的原始数据见附录.问卷是通过对60名某某学院学生随机发放,并收回有效问卷52份而得.由调查的统计结果可知:在校大学生平均的月总支出为,学习支出为元,食物支出占元,衣着支出为元,通讯支出为元,娱乐支出为元.家庭月人均收入不同的在校大学生在月总支出和其他各项具体支出方面存在差异,在校大学生的月总支出主要用于食物支出、其他方面的支出相对较少,这反响了当代大学生的消费仍然是以物质消费为根底,这是由在校大学生的非独立经济地位决定的.2.2 符号约定y y 为学生的平均月消费(元)1x 1x 为学生每月由家庭提供的收入(元)2x 2x 为学生每月做家教等兼职所获取的收入(元) 3x 3x 为学生每月的特困补助的收入(元)0β0β为自发性消费321,,βββ边际消费倾向ε 表示其它随机因素的影响. A 因素对目标的判断矩阵λA 的最大特征值a A 的最大特征值所对应的特征向量*a a 的权重向量,即用a 的每个元素除以各元素之和所得的矩阵1B 费用对决策准如此的判断矩阵 2B 健康对决策准如此的判断矩阵 3B 心理对决策准如此的判断矩阵4B 开展对决策准如此的判断矩阵i λi B 的最大特征值 ()4,3,2,1 i =i b i B 的最大特征值所对应的特征向量 ()4,3,2,1 i =*i b i b 的权重向量,即用i b 的每个元素除以各元素之和所得的矩阵 ()4,3,2,1 i =A CI A 的一致性指标i CI i B 的一致性指标 ()4,3,2,1 i =Z CI 因素的一致性指标 A RI A 的平均随机一致性指标i RI i B 的平均随机一致性指标 ()4,3,2,1 i =A CR A 的一致性判断指标,规定小于0.1时,说明满足一致性准如此 Z CR 因素的一致性判断指标,规定小于0.1时,说明满足一致性准如此ω 准如此的权重向量,我们用以判断各种准如此的支出比例3 消费问题的数学模型我们利用调查所得的数据进展了统计分析和数学建模.具体模型步骤如下: 3.1 消费函数的计量模型多元线性回归模型 εββββ++++=3322110x x x y 应用MATLAB 得到回归方程为:12336.05590.80030.7129x 0.7393y x x =++-解得9225.02=R ,5127.1900=F .其中2R 为复相关系数,0F 为F 检验的临界值,0()P F F >为观察值F 大于临界值0F 的概率,且在显著性水平01.0=α下0)(0=>F F P ,越接近0表示回归方程在在显著性水平0.01α=下回归越显著,这明确回归结果非常合理. 3.2 层次分析模型将决策的目标、考虑的因素和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图.根据考察的实际情况,层次结构图1为:图1 层次结构图其中最高层为消费,即应怎样消费.最低层分为学习、饮食、衣着、通讯、娱乐五个方面,即我们的消费应在学习、饮食、衣着、通讯、娱乐五个方面按照怎样的比例消费.中间层分为费用、健康、心理、开展四个因素.费用是指价格的上下对决策的影响;健康是指对身体的有利或有害程度对决策的影响;心理是指个人消费的不同动机,包括正常动机和不良动机对决策的影响;开展是指个体为了满足今后成长、进步等要求而不断增长自身修养和素质的一种预期投资对决策的影响.构造判断矩阵:每一个具有向下隶属关系的元素作为判断矩阵的第一个元素〔位于左上角〕,隶属于它的各个元素依次排列在其后的第一行和第一列.表1 重要性标度含义表⎪⎪⎪⎪⎪⎭⎫⎝⎛=171571171311715513511A 计算A 的特征根0E A λ-= A 有最大特征根0735.4=λ,对应的特征向量为 首先求解齐次线性方程 ()0E A X λ-=解得特征向量为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7118.00791.06761.01731.0a , 归一化,得⎪⎪⎪⎪⎪⎭⎫⎝⎛=*4340.00482.04122.01055.0a 对所得的数据进展一致性检验,步骤如下: 〔1〕.计算一致性指标44.073540.02454141A CI λ--===--〔2〕查表确定相应的平均随机一致性指标RI表2 平均随机一致性指标RI 表〔3〕计算一致性比例RI ,并进展判断.0.0245/0.890.0270.1.A C ICR R I===< 当RI <0.1时,认为判断矩阵的一致性是可以承受的,RI >0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进展重新修正. 故:A 有比拟合理的一致性.第二步,备选对象对决策准如此的判断矩阵是 费用对决策准如此的判断矩阵可作以下假设:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=134151313115191714515131595123732111B 1B 有最大特征根和对应特征向量2828.51=λ, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1337.00603.02708.08225.04781.01b 归一化,得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*0822.00371.01665.05057.02939.01b健康对决策准如此的判断矩阵可作以下假设:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=152515511319131213171259715311215112B2B 有最大特征根和对应特征向量2182.52=λ, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2948.00626.01737.09282.01324.02b 归一化,得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*1852.00393.01091.05831.00832.02b心理对决策准如此的判断矩阵可作以下假设⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1221312113113123122311211311321313B 3B 有最大特征根和对应特征向量0032.53=λ, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4764.02101.06432.02156.05184.03b 归一化,得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*2308.01018.03117.01045.02512.03b开展对决策准如此的判断矩阵可作以下假设:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12121512112141711212151242131575314B 4B 有最大特征根和对应特征向量0246.54=λ, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1833.00993.01833.03548.08927.04b 归一化,得⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*1070.00580.01070.02071.05210.04b所以,令⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==****1070.02308.01852.00822.00580.01018.00393.00371.01070.03117.01091.01665.02071.01045.05831.05057.05210.02512.00832.02939.0),,,(4321b b b b B于是对象对目标的排序:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==*0757.01243.00861.06027.01034.04340.00482.04122.01055.01070.02308.01852.00822.00580.01018.00393.00371.01070.03117.01091.01665.02071.01045.05831.05057.05210.02512.00832.02939.0a B w 模型分析:排列的一致性检验:0707.0452828.5155)(11=-=--=λx CI 12.1)(1=x RI 05455.0452182.5155)(22=-=--=λx CI 12.1)(2=x RI 0008.0450032.5155)(33=-=--=λx CI 12.1)(3=x RI 00615.0450246.5155)(44=-=--=λx CI 12.1)(4=x RI 令:)00615.00008.005455.00707.0(),,,()(4321==CI CI CI CI x CI03265.04340.00482.04122.01005.0)00615.00008.005455.00707.0()()(=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=•=*a x CI x CI Z ()119888.14340.00482.04122.01055.012.1,12.1,12.1,12.1)()(=⎪⎪⎪⎪⎪⎭⎫⎝⎛=•=*a x RI x RI Z 1.002915.0119888.103265.0)()()(<===x RI x CI x CR Z Z所以,有合理的一致性.所以,()Tw 0757.01243.00861.06027.01034.0=即:消费按照学习:饮食:衣着:通讯:娱乐应为()0757.01243.00861.06027.01034.03.3 自身消费模型结合自身的情况,我的月总支出,学习支出,饮食支出:衣着支出:通讯支出:娱乐4 模型的优缺点本文给出了大学生消费问题的模型,即层次分析模型.此模型由于是关系到个人的决策问题所以多少带有个人的主观意识,如文章中的成比照拟矩阵很大成分上就是作者本人的意见,但是它通过了一致性检验以与符合当今社会的常规,所以此模型还是可行的.6 参考文献[1] X来福. 数学模型与数学建模.[3] 袁震东等.数学建模简明教程[M] .某某:华东师X大学,2001[4] 姜启源等.数学模型(第三版) [M].:高等教育,2003[5] 杨启帆等.数学建模[M] .:某某大学, 1999[6] 梁国业等.数学建模[M].:冶金工业,2004[7] 王兵团.数学建模根底[M].:清华大学,2004.[8] 甘应爱.高校毕业生就业手册[M].:某某大学大学,2005[9]武小莉.加强大学生正确消费观的培养.某某高等学校第15卷第12期 20037 附录7.1 调查问卷大学生消费调查问卷1.您的家庭人均月收入为〔〕A.400以下 B.400—800 C.800-1200 D.1200-1600 E.1600以上2.您的月消费额大概为多少〔〕A.300以下B.300-500C.500-700D.700-1000E. 1000以上3.您每月由家庭提供的收入是〔〕A.200以下B.200-400C.400-600D.600-800E. 800以上4.您每月做家教等兼职所获取的收入是〔〕A.100以下B.100-200C.200-300D.300-400E. 400以上5.您每月平均的特困生补助的收入是〔〕A.50以下B.50-100C.100-150D.150-200E. 200以上6.您每学期学习方面的花费〔包括文具、书籍、复印、培训班〕〔〕7.您每月饮食方面支出〔包括零食饮料〕大概为多少〔〕8. 您花在服饰方面平均每个月的消费是〔〕A.50以下B.50-100C.100-200D.200-3009. 您每月用于娱乐方面〔看电影,购置游戏光盘,CD等〕的支出〔〕以上10. 您拥有手机吗?如果有,每个月话费支出为多少?如果没有,请回答下一题.A.50以下 B.50-100 C.100-150 D.150-200 E.200以上11. 您每月用于通讯方面的支出为多少〔仅限于使用卡的情况〕〔〕12. 您花费的资金主要来自〔〕13.您觉得您现在每月消费情况如何〔〕注:本问卷共发放60份,收回有效问卷52份.发放以我们周围的同学为主,根本上做到了随机发放.7.2 数据的统计表3 有关数据统计表〔单位:元〕人均收入月总支出家庭提供家教补助学习食物衣着通讯娱乐300 250 250 80 100 20 200 20 5 5 300 250 200 100 70 50 200 30 10 10 300 300 300 100 70 60 250 30 20 20 300 300 200 100 70 40 200 20 20 20 350 300 250 100 70 50 200 20 20 10 400 300 250 100 100 100 250 50 30 50 400 300 300 0 0 50 200 20 20 10 400 350 300 100 70 70 200 30 25 25 400 400 400 100 100 50 250 50 30 20 400 400 400 0 70 50 250 50 30 20450 450 400 50 70 60 250 50 50 40 500 350 400 180 50 50 200 50 30 20 500 500 500 0 0 50 300 50 50 50 550 500 300 100 100 80 300 50 40 30 600 370 400 150 70 55 230 40 20 30 600 400 600 0 70 55 250 50 25 30 650 450 450 0 0 50 250 50 50 50 700 450 500 300 100 70 260 55 35 30 700 450 450 100 70 70 300 30 20 30 700 500 500 0 0 50 300 50 50 50 700 500 500 0 0 50 300 50 50 50 750 500 500 0 0 80 300 50 40 30 750 500 500 0 0 80 300 60 40 20 800 450 500 120 120 80 250 70 20 30 800 450 500 100 0 50 250 50 50 50 800 500 600 200 100 50 300 60 40 50 800 700 600 150 50 100 500 80 80 50 900 500 500 200 80 75 270 60 35 60 900 500 500 0 0 40 300 80 40 40 1000 500 600 0 0 60 300 50 60 30 1000 550 600 100 0 85 300 50 45 70 1000 600 700 0 80 50 350 60 40 100 1000 650 700 150 0 60 350 70 20 150 1100 650 600 150 50 60 350 70 20 150 1100 700 800 120 0 90 370 115 25 85 1100 750 800 0 0 80 380 150 40 100 1200 700 700 150 0 55 350 140 50 105 1200 700 800 200 100 70 380 120 30 100 1300 800 900 80 0 45 400 180 55 120 1400 600 800 0 50 40 350 80 55 75 1500 600 600 0 0 80 300 20 30 20 1500 600 600 0 0 60 400 60 40 40 1600 600 600 0 0 80 400 50 50 20 1600 750 800 100 70 70 400 120 40 120 1700 550 600 0 0 70 350 50 30 50 1800 700 700 0 0 80 400 100 60 60 2000 500 700 0 0 50 250 60 60 30 2000 600 400 0 0 100 350 50 50 50 2100 600 60 0 0 80 350 50 70 50 2100 700 700 0 0 100 400 100 50 50 2200 500 500 0 0 50 300 50 50 502500 700 700 0 0 100 300 100 100 1006.3 回归分析编程clearx=[25080 100; 250100100; 400180 50;400 150 70; 600070; 500300 100;500 120120; 600200 100; 600150 50;500200 80; 600100 0; 7000 80;700150 0; 600150 50; 600200 100;8001200; 80000; 700150 0;800300100; 800100100; 600100100;700100 0; 900050; 900800;800050; 900200 0; 10001000;10000 80; 12000100; 11001500;12002000; 900150 70; 110010070;12001800; 9001000; 1200070;1500 00; 8001800; 110000;10002000; 40010050; 12002000;11001500; 13002000; 900 1800;150000; 160000; 15003000;15001000; 15001800; 15002000;18001000;];x1=[x,ones(52,1)];y=[250 300 350 370 400 450 450500 700 500 550 600 650 650700 700 750 700 700 750 500650 700 800 600 850 900 700900 950 1000 750 900 1200 8001100 1300 700 900 1100 600 1100 950 1500 1000 1200 1100 1500 1200 1400 1500 1600];[b,bint,r,rint,stats]=regress(y,x1,0.01)bstats。
层次分析法简单介绍
1
• 每次选取两个因素比较其对目 标A的影响权重;
判断矩阵元素的表示:
b11 b12
B
b21
b22
bn1 bn2
b1n
b2n
2
bnn
• 在 用 的影b影ij来响响表目程示标度yA之i与的比y因j值的素。比yi值、目yj中标,A
• n个被比较的因素构成一个两 两比较(成对比较)的判断 矩阵B
• 在20世纪70年代中期由美国运筹学家托马斯·塞 蒂(T.L.Saaty)正式提出。它是一种定性和定量 相结合的、系统化、层次化的分析方法。
• 应用已遍及经济计划和管理、能源政策和分配、 行为科学、军事指挥、运输、农业、教育、人 才、医疗和环境等领域。
层次分析法的基本思想
寻求层次分析法的生活背景:
综合的思维方式进行决策 。
2.实用型 • 层次分析法把定性和定量方法结合起来,能处理许多用传统
量化技术技术手段无法处理的实际问题。
3.简洁性 • 层次分析法的基本原理和步骤简洁明了,计算也非常简便,
并且所得结果简单明确,容易被决策者了解和掌握。
层次分析法的局限性
1.方案局限性 • 只能从原有的方案中优选一个出来,没有办法得出更好的新
致性检验。(即最下层对最 上层总排序的权向量)
层次结构的模型的建立
将复杂问题分解为被人们称之为元素的组成部分。
这些元素又按其属性分成若干组,形成不同层次。 同一层次的元素作为准则对下一层次的某些元素 起支配作用,同时它又受上一层次元素的支配。
层次分析法的模型
层次分析法的模型
第一类
最高层,又称顶层、目标层
mn
层次排序
层次单排序
• 当判断矩阵满足一致性时,或者判断矩阵不一致 程度可接受时也可以允许特征向量作为权重向量;
数学建模层次分析法
(Analytic Hierarchy Process) 建模
数学建模
模型背景 基本步骤 应用实例
一、模型背景
❖ 美国运筹学家匹兹堡大学教授Saaty在20世纪70 年代初提出的一种层次权重决策分析方法。
❖层次分析法(Analytic Hierarchy Process简称AHP) 是一种定性和定量分析相结合的决策分析方法。
对总目标Z的排序为
A1
A2
Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
其层次单排序为
B1
B2
Bn b1 j ,b2 j ,,bnj ( j 1,2,, m)
层次 A A1
层次 B a1
B1
b11
B2
b21
.
.
.
.
.
.
Bn
bn1
A2 … Am B 层次总
a2
… am 排序权值
RI 0i RIi 0.58 i 1
CR CI / RI 0.087 / 0.58 0.015 0.1
C5
0.118 0.166 0.166 0.668
层次P的 总排序
0.3 0.246 0.456
层次分析法的优点
系统性——将对象视作系统,按照分解、比较、判断、综合 的思维方式进行决策。成为成为继机理分析、统 计分析之后发展起来的系统分析的重要工具;
w(2) (0.263, 0.475, 0.055, 0.090, 0.110)T
同样求第3层(方案)对第2层每一元素(准则)的权向量
方案层对C1(景色)的 成对比较阵
方案层对C2(费用)的 成对比较阵
…Cn
数学建模常见评价模型简介
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
层次分析法评价模型
层次分析法评价模型评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵元素之间两两对比,对比采用美国运筹学家A.L.Saaty 教授提出的1~9比率标度法(表1)对不同指标进行两两比较,构造判断矩阵。
数学建模的层次分析法
1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析模型
班级:数学与应用数学(2)班学号:1307022019 姓名:杨猛志
班级学号姓名
摘要:
关键词:
1 问题的提出
高考志愿填报问题
请你帮一位应届高中毕业生选报高考志愿。
选报时通常要考虑到学校的声誉、教学、科研、文体及环境条件,同时又要结合本人的兴趣、考试成绩和毕业后的出路等因素。
在每一因素内还含有若干子因素,如教学因素中要考虑到教师水平、学生水平、深造条件等。
考生可填A、B、C、D三个志愿。
试用层次分析法做出决策。
2 合理假设与变量说明
2.1模型假设:在填志愿时要考虑的因素很多,一个好的模型不因该把所有因素全考虑进去,只要考虑那些主要的因素,因此此题给了很多因素,但我们只考虑其中7个主要因素即学校声誉、教学水平、学校环境、本人兴趣、考试成绩、毕业出路、学校科研。
而且在实际考虑填高考志愿时主要是前三个志愿比较主要,因此虽然此题给了四个志愿,但我们只选其中三个主要的志愿不妨为A、B、C。
2.2 变量说明:
(1)学校声誉B1
(2)教学水平B2
(3)学校环境B3
(4)本人兴趣B4
(5)考试成绩B5
(6)毕业出路B6
(7)学校科研B7
(8)学校A
(9)学校B
(10)学校C
3 模型建立
⑴建立层次结构:
4 模型求解
clear;clc;
a=[1 2 3 4 5 5 7;
0.5 1 2 3 4 4 6;
1/3 0.5 1 2 3 3 5;
1/4 1/3 0.5 1 2 2 4
0.2 0.25 1/3 0.5 1 1 3;
0.2 0.25 1/3 0.5 1 1 3;
1/7 1/6 1/5 1/4 1/3 1/3 1]; [v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=1.32;
if CI/RI<0.1
for i=1:4
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w = 0.3523 0.2375 0.1556 0.0997 0.0623 0.0623 0.0304 CI = 0.0295
lambda_Max = 7.1770
CR = 0.0224
准则层各因素对目标层的成对比较矩阵
clear;clc;
a=[1 2 3;0.5 1 3;1/3 1/3 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.5278 0.3325 0.1396
CI =
-0.6577
lambda_Max =
3.0536
CR =
-1.1340
不同学校声誉B1成对比较矩阵
clear;clc;
a=[1 2 3;0.5 1 2;1/3 0.5 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.5396 0.2970 0.1634
CI =
-0.6651
lambda_Max =
3.0092
CR =
-1.1468
不同学校教学水平B2成对比较矩阵
clear;clc;
a=[1 3 3;1/3 1 2;1/3 0.5 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.5936 0.2493 0.1571
CI =
-0.6577
lambda_Max =
3.0536
CR =
-1.1340
不同学校环境B3成对比较矩阵
clear;clc;
a=[1 4 4;0.25 1 3;1/4 1/3 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.6519 0.2351 0.1130
CI =
-0.6441
lambda_Max =
3.1356
CR =
-1.1105
不同人兴趣B4成对比较矩阵
clear;clc;
a=[1 1 0.5;1 1 1;2 1 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.2599 0.3275 0.4126
CI =
-0.6577
lambda_Max =
3.0536
CR =
-1.1340
不同人考试成绩B5成对比较矩阵
clear;clc;
a=[1 1 3;1 1 1;1/3 1 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.4600 0.3189 0.2211
CI =
-0.6441
lambda_Max =
3.1356
CR =
-1.1105
不同人毕业出路B6成对比较矩阵
clear;clc;
a=[1 3 0.5;1/3 1 1/4;2 4 1];
[v,d]=eig(a);
CI=(max(max(d))-7)/(7-1);
RI=0.58;
if CI/RI<0.1
for i=1:3
w(i)=v(i,1)/sum(v(:,1));
end
else
disp('调整矩阵');
end
w
CI
lambda_Max=max(max(d))
CR=CI/RI
w =
0.3196 0.1220 0.5584
CI =
-0.6636
lambda_Max =
3.0183
CR =
-1.1442
不同学校科研B7成对比较矩阵
从而我们得到方案层对目标层的组合权向量和进行组合一致检验:
w=[0.5278 0.5396 0.5936 0.6519 0.2599 0.4600 0.3196;
0.3325 0.2970 0.2493 0.2351 0.3275 0.3189 0.1220;
0.1396 0.1634 0.1571 0.1130 0.4126 0.2211 0.5584]*[0.3523 0.2375 0.1556 0.0997 0.0623 0.0623 0.0304]'
CR=[-1.1340 -1.1468 -1.1340 -1.1105 -1.1340 -1.1105 -1.1442]*[0.3523 0.2375 0.1556 0.0997 0.0623 0.0623 0.0304]'+0.0224
w =
0.5260
0.2939
0.1802
CR =
-1.1113
从上面的结果可以看出CR是小于0.1的,所以组合一致检验能够通过。
前面得到的组合权向量可以作为最终决策的依据。
结果表明学校A在填报志愿时占的比重最大,其次是学校B,最后是学校C。