自动调整臂调节原理

合集下载

自动调整臂工作原理

自动调整臂工作原理

自动调整臂工作原理
自动调整臂是一种机械装置,用于实现多种工作任务的自动调整。

其工作原理主要包括以下几个步骤:
1. 感知环境:自动调整臂会使用传感器或视觉系统来感知周围的环境和目标物体。

这些传感器可以包括距离传感器、力度传感器、图像传感器等。

2. 收集信息:一旦感知到环境和目标物体,自动调整臂会收集相应的数据和信息。

这些数据可以包括目标物体的位置、形状、质量等。

3. 决策和规划:基于收集到的数据和信息,自动调整臂会进行决策和规划,确定最优的动作方案。

这可能涉及到路径规划、力控制、碰撞检测等算法和技术。

4. 执行动作:一旦确定了最优的动作方案,自动调整臂就会执行相应的动作,调整自身的位置、姿态、速度等来完成工作任务。

这可能涉及到关节控制、伺服控制、运动规划等技术。

5. 反馈控制:自动调整臂会不断地进行反馈控制,根据感知到的环境变化和实际执行的结果,对自身的动作进行调整和修正,以确保达到预期的工作效果。

总的来说,自动调整臂利用感知、信息处理、决策规划和执行控制等技术,通过不断调整自身的位置、姿态和动作,实现多
种工作任务的自动化调整。

这种自动化调整的原理和方法可以应用于各种领域,如工业生产、医疗护理、物流仓储等。

自动调整臂

自动调整臂

自动调整臂1. 背景介绍自动调整臂是一种用于工业应用的机器人装置,它能够自动调整自身的姿态和位置,以适应各种工作环境和任务需求。

这种装置通常由多个关节组成,每个关节都能够运动并调整自身的角度和位置。

自动调整臂在许多领域都有广泛的应用,包括自动化生产线、仓储系统、医疗器械等等。

2. 工作原理自动调整臂的工作原理主要包括以下几个方面:2.1 传感器检测自动调整臂通常配备有多个传感器,用于感知周围的环境和目标物体的位置。

常见的传感器包括视觉传感器、力传感器、位置传感器等。

这些传感器能够实时采集环境信息,并传递给控制系统进行处理。

2.2 控制系统控制系统是自动调整臂的核心部分,它负责接收传感器采集到的数据,并根据预先设定的任务要求进行分析和决策。

控制系统能够计算出自动调整臂需要调整的姿态和位置,并输出相应的指令。

2.3 电机驱动自动调整臂中的每个关节都由电机驱动,用于实现关节的运动和调整。

电机驱动通常由控制系统发送的指令来控制,它能够通过调整关节的角度和位置,使得整个自动调整臂能够达到预定的目标姿态和位置。

2.4 反馈控制为了更加精确地控制自动调整臂的运动,通常会采用反馈控制的方法。

反馈控制通过不断检测调整臂的实际位置和姿态,并与目标位置和姿态进行比较,从而调整控制指令,使得自动调整臂能够更加准确地达到目标。

3. 应用场景自动调整臂在许多领域都有广泛的应用,以下是一些常见的应用场景:3.1 自动化生产线在自动化生产线中,自动调整臂可以用于搬运、拼装、焊接等工作。

它能够根据生产线上的物体位置和姿态进行自动调整,从而完成各种复杂的任务。

3.2 仓储系统在仓储系统中,自动调整臂可以用于货物的搬运和堆垛。

它可以根据货物的位置和重量进行自动调整,以适应不同大小和重量的货物。

3.3 医疗器械在医疗器械领域,自动调整臂可以用于手术机器人和检测设备等。

它可以根据手术区域和检测要求自动调整自身的姿态和位置,从而完成精确的手术和检测任务。

自动调整臂工作原理

自动调整臂工作原理

9.反向回转过超量间隙角B 调整臂继续反转动回到起始位置。 此时,齿条“19”已与固定的控制环 的槽口上端相接触,受其限制不能 继续向上移动。当调整臂反向回转 时,齿条驱动齿轮“6”转动,此 时单向离合器和锥齿离合器均处于 啮合状态,使得蜗杆“9”随齿轮 一起转动,蜗杆驱动蜗轮“21”,蜗 轮驱动凸轮轴,而凸轮轴的转动使 得超量间隙减小。
7.反向回转入间隙角A 随着作用于制动鼓上压力 的释放,作用于凸轮的力矩 消失,蜗轮“21”向右施加 给蜗杆“9” 力的消失,弹 簧“14”复原,推动蜗杆向 左移动,使得蜗杆与锥形离 合器“4”重新啮合。
8.反向回转过间隙角A 调整臂反向回转过角 “A”。齿条“19”向上运 动,与控制环“24”的槽口 的接触从下端变为上端。
自动调整臂工作原理
创造卓越的国际品牌
调整臂总成剖视图
产品爆炸图
结பைடு நூலகம்图
当制动器存在超量间隙“B” 制动时,调整臂的回转行程可划分 为三个部分:正常间隙角“A”、 超量间隙角“B”及弹性角 “C”。隆中自动调整臂能够自 动识别这三个过程,只对超量部 份间隙进行调整。
1.制动起始位置 当控制臂“25”被固定在安 装支架上时,齿条“19”与控 制环“24”的槽口上端相接触。 槽口的宽度决定了刹车片与制 动鼓之间的设定间隙。
5.转过弹性角“C” 调整臂继续转动时,齿条被控 制环限制仍然不能向下运动而驱 动齿轮转动。这时锥形离合器 “4”与蜗杆“9”处于分离状 态,整个单向离合器总成一起转 动(空转—未带动蜗杆)。
6.反向回转过弹性角C 制动开始释放时,调整臂反向 回转过角“C”。在回位弹簧 “17和18”的作用下,使得齿条 向下紧贴控制环的槽口下端。此 时,锥形离合器“4”与蜗杆 “9”仍处于分离状态,齿条可 以驱使单向离合器总成自由转动。

制动间隙自动调整臂的使用与维修

制动间隙自动调整臂的使用与维修

制动间隙自动调整臂的使用与维修制动间隙自动调整臂可以简称为“自动调整臂”,通俗易懂的可以解释为,自动调整臂可以根据当时发生的情况,自动调整刹车间隙的功能,保证刹车间隙在一个安全的范围。

本文将通过它的特点、结构、工作原理,分析阐述一下它的正确使用方法以及发生故障时的维修。

标签:自动调整臂;使用;维修根据国家规定,车辆必须使用含有刹车间隙自动调整臂功能的装置,随着车辆在行驶过程中,制动蹄片会产生摩擦,制动间隙也会越来越大,这样会导致延迟制动时间和制动的间距,造成刹车时间变长、刹车制动不及时,存在行车中的安全隐患。

1 制动间隙自动调整臂的特点(1)自动调整臂会根据车辆行驶时自动调整安全距离,可以减少人工手动的制动,在一定程度上保护了自动调整臂,减少车辆维修,减少维修车辆的开支。

(2)在车辆行驶中,自动调整臂可以保持四个车轮的平衡感、稳定感,使间距保持一致,避免了人工调整时不统一而产生车身跑偏的情况。

(3)自动调整臂的使用减少了人工调节对压缩空气的损耗,也减少了自动调整臂的使用摩擦、检查,达到延缓配件使用寿命的作用。

2 制动间隙自动调整臂的使用自动调整臂在车辆行驶过程中对超间距的行驶做出调整,可以分为三个级别。

图1中位置A为正常的间隙值。

图1中的位置B为超过间隙安全。

图1中位置C为弹性角。

自动调整臂会根据车辆行驶途中自动识别制动处在哪个位置,对于超出安全的部分进行自我调整。

(1)当自动调整臂被固定在控制环与齿条上下槽口相连接,刹车片与制动鼓之间的间隙由槽口的宽度决定。

当自动调整臂转向A的位置时,此时齿条向下活动,与控制环的槽口下端相接触,但此时的刹车片与制动鼓暂时未接触到。

自动调整臂继续向B的位置转动时,齿条与控制环的下端已接触到已无法向下活动,在控制环的反作用力下齿条驱动齿轮转向B角的的位置过量间隙时,此时刹车片与制动鼓就已接触上。

(2)当自动调整臂已超过B的位置后继续运转,调整臂壳体作用在凹轮轴和蜗轮上的两个反向力增大,使得蜗杆压缩推止弹簧移动,停止在C的位置导致蜗杆齿端与离合器的分离。

自动调整臂工作原理

自动调整臂工作原理

学习内容:1、 掌握汽车制动器自动调整臂装配图结构与零件装配关系2、 主要零件壳体结构与技术要求3、 结合所给参考资料写出所给汽车制动器自动调整臂工作原理与自 动调整的装配关系自动调整臂实际上就是一个开环的机械自动控制系统,其工作原理如图2-2所示。

上下移动(在壳体的带动下),在制动开始时,齿条与开口的上端接触,在制动过 程中,齿条移到开口的下端。

超量间隙的调整是在制动回位的过程中完成的。

回 位时,壳体如①方向转动,壳体带动齿条移到开口的上端,如存在超量间隙△, 壳体继续回位,齿条已不能移动,齿条驱动调整器转动调整器带动蜗杆。

z 方向 转动驱动蜗轮转动一永久的角度(当然凸轮轴亦转过同样的角度厶)而达到消除 超量间隙△,调节制动间隙到标准值△ XQo其工作原理如下图齿条可在开口内2-2自动调整臂的工作原理 控制盘固定在车轴上作为定位元件,其上的开口对应于标准的制动间隙值,⑷(b) w(1)制动间隙处于设计理想状态时。

制动时,制动分泵连接叉推动主臂1逆时针旋转,大蜗杆7推动大蜗轮9,大蜗轮9通过内花键3带动凸轮轴转动实现制动。

在臂体1逆时针转动时,因控制臂5为固定的,与其固定连接的大齿轮4 不动,小齿轮6将沿大齿轮4的节圆滚动,即小齿轮6也逆时针转动;经内爪键17的传动,上端锯齿轮11相应逆时针转动。

当制动间隙在理想状态内时,在上端锯齿轮11逆时针转动过程中,它将压缩顶簧13顺着下端锯齿轮12的锯齿斜而轴向移动,但不会跳齿。

因小蜗杆右端为一单向超越离合器,下端锯齿轮12与小蜗杆不会转动。

解除制动时,制动分泵连接叉推动主臂1顺时针旋转,大蜗杆7推动大蜗轮9,大蜗轮9通过内花键3带动凸轮轴转动解除制动,在臂体1顺时针转动时,小齿轮6将沿大齿轮4的节圆滚动,即小齿轮6也顺时针转动;经内爪键7的传动,上端锯齿轮11相应顺时针转动,同时在顶簧 13作用,顺着下端锯齿轮12的锯齿斜而做反向的轴向移动,其运动的角度和位移均与制动时相同,因血不做间隙调整。

自动调整臂原理图及安装调整方法

自动调整臂原理图及安装调整方法

零件清单:1.铆钉15 右端盖螺母2.左端盖螺母16 闷盖3.平面轴承17 回位弹簧(内)4.锥形离合器18 回位弹簧(外)5.扭转弹簧19 齿条6.齿轮20 O形圈7.钢碗21 蜗轮8.O形圈22 纸垫9.蜗杆23 盖板10.注油嘴24 控制环11.臂体25 连接板12.衬套26 连接板总成1.起始位置连接板25被固定在支架上,齿条19与控制环24的槽口上端相接触。

槽口的宽度决定了刹车片与制动鼓之间的设定间隙值。

2.转过间隙角调整臂转过角A。

此时,齿条19向下运动与控制环24的槽口下端接触,制动蹄张开。

当存在超量间隙时,刹车片与制动鼓尚末接触。

3.转过超量间隙角B调整臂继续转动。

此时,齿条19已和控制环24的槽口下端接触(控制环与固定的控制臂被铆为一体),不能继续向下运动。

齿条驱动齿轮6旋转,单向离合器在这个方面可以相对自由转动转过角B后,凸轮轴带动制动蹄进一步张开,致使刹车片与制动鼓相接触。

4.转入弹性角C当调整臂继续转动时,由于刹车片与制动鼓已经相接触,作用在凸轮轴和蜗轮上的力矩迅速增加,蜗轮21作用于蜗杆9上的力(向右)随之增大,使得蜗杆压缩弹簧14并向右移动,从而导致蜗杆9与锥形离合器4分离。

5.转弹性角C调整臂继续转动时,齿条被控制环限制仍然不能向下运动而驱动齿轮转动。

这时由于锥形离合器4与蜗杆9处于分离状态,整个单向离合器总成一起转动。

6.向回转过弹性角C制动开始释放,调整臂向回转过角C。

在回位弹簧17和18的作用下,使得齿条向下紧帖控制环24的槽口下端。

此时,锥形离合器4与蜗杆9仍处于分离状态,齿条可以驱使单向离合器总成自由转动。

7.向回转入间隙角A随着刹车片作用于制动鼓上压力的释放,作用于凸轮轴和蜗轮的力矩消失,蜗轮21向右施加给蜗杆9的力也消失,弹簧14复原,推动蜗杆向左移动,使得蜗杆与锥形离合器4从新啮合。

8.向回转过间隙角A调整臂向回转过A。

齿条19向上运动,与控制环24的槽口的接触从下端变为上端。

气刹自动调整臂原理

气刹自动调整臂原理

气刹自动调整臂原理
嘿,朋友们!今天咱们要来聊聊气刹自动调整臂的原理,这可真是个超级有趣的东西呢!
你想想看啊,气刹自动调整臂就像是汽车刹车系统里的一个小魔法师!比如说,当你的车在路上跑的时候,刹车系统就如同一位忠诚的卫士,时刻守护着你的安全。

而气刹自动调整臂就是这个卫士手中的秘密武器!
它的工作原理其实并不难理解。

简单来说呢,它会根据刹车的使用情况自动调整刹车片和刹车鼓之间的间隙。

哎呀,这就好比你走路的时候,根据路况自动调整步伐的大小和快慢一样自然!
来,咱们具体说说看。

当你踩下刹车踏板,气刹就会发挥作用,这时候自动调整臂就开始忙碌起来啦!它会监测到刹车的动作,然后迅速做出反应,调整到最合适的位置,确保刹车效果达到最佳状态。

就像一个聪明的小精灵,能迅速察觉到危险并采取行动!
“嘿,那要是它出问题了咋办呀?”有人可能会这么问。

哈哈,这就是关键所在啦!如果气刹自动调整臂不能正常工作,那刹车效果可就大打折扣
了,就好像战士失去了锋利的宝剑一样危险!所以平时一定要好好保养和检查它哦!
那在实际生活中,大家可都要重视这个小小的气刹自动调整臂呀。

别小看它,它可是在关键时刻能救你一命的!
我觉得气刹自动调整臂真的太重要啦!它是我们行车安全的重要保障,我们一定要了解它、重视它,这样才能让我们的出行更加安心、更加安全!。

刹车间隙自动调整臂

刹车间隙自动调整臂
.
六, 更换磨擦衬片
1.解除制动.若是弹簧分泵,则使气路最少充 6bar气压. 2.逆时针方向转动调整臂的六角螺母使刹车间隙 增大,更换磨擦衬片. 3.用SW12扳手顺时针方向转动调整臂的六角调整 螺母,直至磨擦衬片与制动鼓接触,然后再逆时针 方向转动六角螺母3/4圈(转动力矩较大,会听到 咔咔声)注意不能用电动板手.
.
HALDEX刹车间隙自动调整臂 的维护
1.润滑 平常工作时定期(最大润滑的间隔不应超过 一万公里)用锂基润滑油润滑刹车间隙自动调整 臂(注入油嘴内). 2.检查反向调整力矩 每20000公里检查一次反向调整矩,将力矩板 手卡在调整臂端部的六角螺母上.沿逆时针方向转 动扳手,检查是否只有在力矩大于18Nm(1.8kgfm )时才转动,重复试验三次,若力矩小于18Nm时六 角螺母转动,则必须更换调整臂.
.
后桥HALDEX刹车间隙自动调 整臂的拆卸
1.使后桥的弹簧制动分泵保持至少6bar的压力. 移去制动分泵上连接叉的开口销,插销,使之与 刹车间隙自动调整臂分离. 2.拆去控制臂与定位支架板相连接的螺栓支柱. 3.拆去凸轮轴上的卡簧和调整垫片. 4.用SW12的扳手逆时针方向转动刹车间隙自调整 臂上的六角调整螺母(会听到咔咔声,转动力矩较 大)随后将其拆除.
.
后桥HALDEX刹车间隙自动调 整臂的安装
1.使制动系统气压保持在6bar以上,确保 制动分泵推杆处于初始位置. 2.将定位支加板安装于S凸轮轴架上(凸 轮轴架上已预留两个螺栓定位孔). 3.在S凸轮轴上涂上黄油.将调整臂安装 在S凸轮轴上,调整臂壳体上箭 头方向与制 动方向一致,顺时针转动调整臂端部的六角 螺母,使调整臂转入分泵推U型叉内,直至 调整臂上的孔与U形叉孔自然对正.在圆柱 销涂上黄油,将其轻松插入叉孔,锁上开口 锁.(注意:调整臂上的孔与U形叉孔一定 要自然对正.)

货车刹车臂自调的原理

货车刹车臂自调的原理

货车刹车臂自调的原理
货车刹车臂自调的原理是通过使用自动调整臂,当刹车系统磨损或受到外部因素影响时,自动调整臂会自动调整和重新校准刹车系统,以确保货车的刹车性能在最佳状态下工作。

自动调整臂通常包含一个调整杆、一个调整螺丝和一个扳手。

调整杆连接到刹车臂,调整螺丝用于控制调整杆的位置。

当刹车蹄片磨损或刹车系统需要调整时,调整杆会自动调整它们的位置,以保持刹车蹄片与刹车盘的正确接触。

当货车刹车系统使用时,调整杆会根据刹车蹄片和刹车盘的磨损程度自动调整位置。

当刹车松开时,调整杆会根据需要向外伸展,以确保刹车蹄片与刹车盘的接触完全。

当刹车踏板踩下时,调整杆会自动收缩,以保持合适的刹车蹄片与刹车盘的接触力。

这种自动调整臂的设计使货车刹车系统能够自动适应刹车系统磨损和杂质积聚,以确保刹车的可靠性和性能。

这减少了对刹车系统的常规检查和维护的需求,并提供了更长的刹车系统寿命。

自调臂,千万别随意调!看了原理你就懂了

自调臂,千万别随意调!看了原理你就懂了

自调臂,千万别随意调!看了原理你就懂了随着我国高速公路网的不断完善,长途物流运输越来越多地使用主挂车连接的运输方式,而且趋向于集成化、大吨位,这就对主挂车制动系统的匹配、协调及可靠性提出了更高要求。

本文通过梳理我国目前主挂车制动系统在使用中出现的问题,提出相应的解决方案。

主挂车制动系统存在的问题及原因目前我国主挂车运输车辆的驱动形式一般为采用6×2和6×4 2种形式。

由于6×2配置在成本上具有优势,因此近年来的新购车辆以6×2驱动形式居多。

以陕汽德龙M3000系列为例,主车6×2驱动可以准拖挂车总质量38 300 kg,6×4驱动可以准拖挂车总质量38 600 kg,所配的半挂车通常采用3轴仓栅式,是我国西部、北部地区货运市场的主流车型。

这些车辆的主车制动系统一般都配有ABS和制动间隙自动调整臂,而挂车制动系统基本都是手动调整臂,甚至部分配有ABS的挂车也使用手动调整臂。

从市场调查情况来看,在实际使用过程中普遍存在如下现象:用户擅自将主车第1轴制动管路堵死;部分用户将6×2驱动的第2轴制动管路也堵死或解除自调臂的控制臂,并将第3轴自调臂更换为手调臂;部分用户擅自在主车ABS系统中接入一个开关,重载时关闭车辆的ABS功能。

笔者认为,导致以上问题的主要原因包括以下几点。

主车第2轴控制臂解除第一,在挂车用手调臂、主车用自调臂的情况下,主车制动反应灵敏,特别在下长坡制动时挂车对主车容易产生冲击。

为避免这种情况,驾驶员希望挂车制动要先于主车,因此不希望主车制动快速有效响应。

第二,新车买回后用户自己加装气压式轮鼓喷水装置,用于制动时给轮鼓降温。

为了避免频繁制动时出现整车气压供应不足,用户会将主车1轴、部分6×2车型的2轴制动管路堵死,以降低制动用气量。

此外,当主车ABS功能被关闭时,第1、第2轴的转向轮还不会出现制动抱死现象。

第三,由于1、2轴不参与制动,主车的制动力全部由第3轴承担,容易导致制动发热,加快摩擦片磨损,但由于易损件不在三包范围内,车主为降低使用成本、延长摩擦片使用寿命,将第3轴自调臂更换成手调臂。

自动调整臂知识讲座

自动调整臂知识讲座

东风车桥有限公司规划研发部产品研发中心
刹车间隙自动调整臂知识讲座
二、自动调整臂的结构
我公司自开 发的自动调整 臂结构如右图 所示:
东风车桥有限公司规划研发部产品研发中心
刹车间隙自动调整臂知识讲座
二、自动调整臂的结构
内 部 结 构 如 右 图 所 示
东风车桥有限公司规划研发部产品研发中心
刹车间隙自动调整臂知识讲座
刹车间隙自动调整臂知识讲座
三、自动调整臂的工作原理
自动调整臂的工作原理图
自动调整臂工作过程如图所 示: 开始刹车时,调整臂带动S凸 轮轴转过间隙角度(C)和超量 间隙角度(Ce),并精确记录产 生的磨损。此时S凸轮角行程处 于间隙区,间隙区的特点是制动 力矩变化不大。
东风车桥有限公司规划研发部产品研发中心
东风车桥有限公司规划研发部产品研发中心
刹车间隙自动调整臂知识讲座
四、自动调整臂的装配过程及重点注意事项
自动调整臂总成的装配
将塞片压入壳体回位弹簧孔中。 用铆钉铆好前后螺塞。 在壳体上拧上润滑嘴并注入适量润滑脂。 将装配完成的自动调整臂做好合格标记。
东风车桥有限公司规划研发部产品研发中心
The end!
二、自动调整臂的结构
自动调整臂中重要零合件如下:
壳体 蜗轮、蜗杆 单向离合器总成(由齿轮、方钢弹簧 和内齿套组成) 齿条、控制环、螺旋压缩弹簧
东风车桥有限公司规划研发部产品研发中心
刹车间隙自动调整臂知识讲座
三、自动调整臂的工作原理
自动调整臂的设计思想 自动调整臂的功能应该是精确记录由于 摩擦衬片磨损引起的间隙增加量,并且精 确地将刹车间隙调整至正常的工作范围。
刹车间隙自动调整臂知识讲座
四、自动调整臂的装配过程及重点注意事项

自动调整臂工作原理

自动调整臂工作原理

学习内容:1、掌握汽车制动器自动调整臂装配图结构与零件装配关系2、主要零件壳体结构与技术要求3、结合所给参考资料写出所给汽车制动器自动调整臂工作原理与自动调整的装配关系自动调整臂实际上就是一个开环的机械自动控制系统,其工作原理如图2-2所示。

控制盘固定在车轴上作为定位元件,其上的开口对应于标准的制动间隙值,齿条可在开口内上下移动(在壳体的带动下),在制动开始时,齿条与开口的上端接触,在制动过程中,齿条移到开口的下端。

超量间隙的调整是在制动回位的过程中完成的。

回位时,壳体如ω方向转动,壳体带动齿条移到开口的上端,如存在超量间隙△,壳体继续回位,齿条已不能移动,齿条驱动调整器转动调整器带动蜗杆。

z方向转动驱动蜗轮转动一永久的角度(当然凸轮轴亦转过同样的角度△)而达到消除超量间隙△,调节制动间隙到标准值△Xo。

其工作原理如下图。

(1)制动间隙处于设计理想状态时。

制动时,制动分泵连接叉推动主臂1逆时针旋转,大蜗杆7推动大蜗轮9,大蜗轮9通过内花键3带动凸轮轴转动实现制动。

在臂体1逆时针转动时,因控制臂5为固定的,与其固定连接的大齿轮4不动,小齿轮6将沿大齿轮4的节圆滚动,即小齿轮6也逆时针转动;经内爪键17的传动,上端锯齿轮11相应逆时针转动。

当制动间隙在理想状态内时,在上端锯齿轮11逆时针转动过程中,它将压缩顶簧13顺着下端锯齿轮12的锯齿斜而轴向移动,但不会跳齿。

因小蜗杆右端为一单向超越离合器,下端锯齿轮12与小蜗杆不会转动。

解除制动时,制动分泵连接叉推动主臂1顺时针旋转,大蜗杆7推动大蜗轮9,大蜗轮9通过内花键3带动凸轮轴转动解除制动,在臂体1顺时针转动时,小齿轮6将沿大齿轮4的节圆滚动,即小齿轮6也顺时针转动;经内爪键7的传动,上端锯齿轮11相应顺时针转动,同时在顶簧13作用,顺着下端锯齿轮12的锯齿斜而做反向的轴向移动,其运动的角度和位移均与制动时相同,因血不做间隙调整。

(2)当制动间隙超过设计值时。

自动调整臂

自动调整臂

自动调整臂1. 引言自动调整臂是一种用于机器人或机械装置的关节,用于调整臂的姿态或位置。

它可以实现自动调整以适应不同的工作需求,提高生产效率和工作精确度。

本文将介绍自动调整臂的工作原理、应用场景和优势。

2. 工作原理自动调整臂的工作原理包括传感器、控制器和执行机构三个主要组件。

传感器用于感知周围环境和目标物体的位置和姿态信息,控制器根据传感器反馈的信息进行计算和决策,然后通过执行机构控制臂的运动以达到所需的姿态或位置。

传感器可以是多种类型,如光电传感器、压力传感器、力传感器等。

控制器通常使用微处理器或PLC(可编程逻辑控制器),通过算法和控制策略实现对臂的精确控制。

执行机构可以是液压、气动、电动或伺服电机等。

根据具体应用需求,选择合适的执行机构以实现精准的调整。

3. 应用场景自动调整臂在许多领域都有广泛的应用。

下面介绍几个常见的应用场景:3.1 工业生产线在工业生产线上,自动调整臂可以用于装配、焊接、搬运等任务。

通过传感器感知工件的位置和姿态,控制器可以根据预设的程序和算法实现精确的装配或搬运操作,提高生产效率和产品质量。

3.2 医疗领域在医疗领域,自动调整臂可以被用于手术机器人或康复装置中。

它可以精确地控制手术器械或康复设备的位置和力度,帮助医生或康复师进行手术或康复操作,提高手术的精确度和康复效果。

3.3 仓储物流在仓储物流中,自动调整臂可以用于货物的分拣、装载和卸载。

通过传感器感知货物的位置和尺寸,控制器可以根据预设的算法和程序实现货物的精确分拣和装卸,提高物流效率和减少人工操作的误差。

4. 优势自动调整臂具有以下优势:•灵活性:自动调整臂可以根据实际需求进行灵活调整,适应不同的工作场景和任务。

•精准度:通过传感器和控制器的组合,自动调整臂可以实现精确的位置和姿态调整,提高工作精确度。

•自动化:自动调整臂可以实现自动化的工作流程,减少人工操作,提高生产效率。

•安全性:通过传感器和控制器的监测和控制,自动调整臂可以避免意外事故和损坏,提高工作安全性。

载重汽车制动系统自动调整臂结构原理

载重汽车制动系统自动调整臂结构原理

自动调整臂的构造及原理
• 自动调整臂的工作原理
9.向回转过超量间隙角B
调整臂继续转动回到起始位 置。此时,齿条19已与固定的 控制环24的槽口上端相接触, 受其限制不能继续向上移动。 当调整臂回转时,齿条驱动齿 轮6转动,这时单向离合器和 锥形均处于啮合状态,使得蜗 杆9随齿轮一起转动,蜗杆驱 动蜗轮21,蜗轮驱动凸轮轴, 而凸轮轴的转动使得超量间隙 减小。
自动调整臂的构造及原理
• 自动调整臂的工作原理
7.向回转入间隙角A
随着刹车片作用于制动鼓上 压力的释放,作用于凸轮轴和 蜗轮的力矩消失,蜗轮21向右 施加给蜗杆9的力也消失,弹 簧14复原,推动蜗杆与锥形离 合器4重新啮合。
自动调整臂的构造及原理
• 自动调整臂的工作原理
8.向回转过间隙角A
调整臂向回转过角A。齿条 19向上运动,与控制环24的槽 口的接触从下端变为上端。
自动调整臂的安装 一、前桥HALEDX刹车间隙自动调整臂的拆卸
1、拆下制动分泵(又称制动气室)上连接叉的开口销、 圆柱插销,使分泵与刹车间隙自动调整臂(以下简称 “调整臂”)分离。
2、拆去控制臂与定位支架相连的支柱螺栓、螺母、垫片。
3、拆去凸轮轴上的轴向定位螺栓及大垫片。
2
4、用SW12的扳手逆时针方向转动
4.用两只螺栓、垫片将调整臂固定在S凸轮轴上。沿凸轮轴轴向检查 调整臂在凸轮轴上轴向是否存在一定间隙,要求间隙值为0.5mm~ 2.0mm之间,实际值如大于或小于上述间隙值范围,应立即将调整 臂拆下,调整凸轮轴轴向定位尺寸以便符合上述要求。
5.转过弹性角C
调整臂继续转动时,齿条被 控制环限制仍然不能向下运动 而驱动齿轮转动。这时由于锥 形离合器4与蜗杆9处于分离状 态,整个单向离合器总成一起 转动。

《调整臂调节原理》课件

《调整臂调节原理》课件

可以控制和调节设备的参数,提高设备的精度和效率,保证设备的运行稳定性和 可靠性。
2
缺点
调整臂调节需要专业知识和经验,成本较高。

致谢
感谢大家对本教程的阅读,如有问题欢迎随时联系我们。
调整臂的使用方法
1 注意事项
在使用过程中需要注意安全和正确的姿势。
2 调节步骤
首先需了解设备使用说明,然后根据需要调 整各个参数。
调整臂调节的应用案例
汽车制造
调整臂可以用于汽车底盘的校准和调节,提高汽车的性能和安全性。
精密机械
用于注塑机等精密机械设备的调节和校准,提高设备的精度和效率。
总结
1
优点
《调整臂调节原理》PPT 课件
本教程介绍了调整臂调节原理,包括基本原理、分类、使用方法、应用案例 和优缺点。
概述
1 什么是调整臂调节?
调整臂调节是通过系统调整臂来改变机器或设备的参数。
2 调整臂调节的作用是什么?
调整臂调节可以提高设备的精度和效率,并确保设备在运行时的稳定性和可靠性。
调整臂的分类
气动调整臂
使用压缩空气来驱动的调整臂。
液压调整臂
使用液压系统来驱动的调整臂。
电动调整臂
使用电动机驱动的调整臂。
调整臂调节的原理
1
调节方法
2
可以在装配时进行静态调节,也可以在
运行时进行动态调节。
3
基本原理
通过调整臂来改变机器或设备的参数, 从而达到控制、调节和校准的目的。
控制精度
可以控制设备的精度,保证设备的运行 稳定性和可靠性。

自动调整臂

自动调整臂
自动调整臂安装
四、 自动调整臂安装及注意事项
自动调整臂安装 3、将控制臂按制动时自调 臂转动方向转到极限位置后, 用螺栓将控制臂与连接板固定。

4、顺时针转动蜗杆六角头, 带制动凸轮轴转动,使制动蹄 与制动鼓接触,再回转(逆时 针)3/4圈。

四、 自动调整臂安装及注意事项
自动调整臂安装
四、 自动调整臂安装及注意事项
谢谢!
二、 自动调整臂的结构
在手动调整臂基础上,增加了离合齿轮、驱动齿轮、 齿条、单向离合器、控 制滑环等。
离合齿轮 齿条 控制臂 齿条
间隙

二、 自动调整臂的结构
控制臂
自调臂总成
二、 自动调整臂的结构
一代调整臂结构
9 蜗杆 10 油杯 11 壳体 1 铆钉 12 加强圈 2 螺盖 13 止推垫片 3 轴承 14 止推弹簧 4 锥形离合器 15 调整端螺盖 5 离合器弹簧 16 闷盖 6 齿轮 17 复位弹簧(内) 7 轴套 18 复位弹簧(外) 8 O型圈(Ⅰ) 19 齿条
气制动自动调整臂简介
2012年03月23日
一、 自动调整臂的优点
自动保持摩擦片和制动鼓之间间隙恒定,因而刹车安 全可靠。

压缩空气的损耗小,延长了空气压缩机、制动分泵和 压缩空气系统中其它部件的寿命。



制动迅速可靠,使所有车轮的制动效果一致、稳定。
安装方便。 安装过程结束,不再需要人工调节刹车调整臂,减少 了维修次数,保养车辆的时间间隔得以延长,从而提高 了经济效益。
调整臂向回转过角“A”,齿条“19” 向上运动,与控制环“24”的槽口的接 触从下端变为上端。
三、 自动调整臂的工作原理
9 向回转过超量间隙角“B” 调整臂继续转动回到起始位置。此时, 齿条“19”已与固定的控制环“24”的 槽口上端相接触,受其限制不能继 续向上移动。当调整臂回转时,齿 条驱动齿轮“6”转动,此时单向 离合器和锥齿离合器均处于啮合状 态,使得蜗杆“9”随齿轮一起转 动,蜗杆驱动蜗轮“21”,蜗轮驱动 凸轮轴,而凸轮轴的转动使得超量 间隙减小,自动调整臂工作结束。

东风商用车制动间隙自动调整臂结构原理

东风商用车制动间隙自动调整臂结构原理

制动间隙自动调整臂结构、工作原理:制动间隙自动调整臂(以下简称自调臂)适用于鼓式制动器。

因为频繁的刹车,制动蹄片与制动鼓的间隙由于摩擦片的磨损而增大,使整车的制动性能大大降低。

手动调整臂通过人工调整制动器的间隙来保证行车的安全;在正常工作情况下的自调臂,则不再需要人工调节间隙,它利用制动和回位过程的推力和拉力使摩擦片与制动鼓之间的间隙保持到预留值,进一步提高车辆安全性。

同时,节约大量维护和保养时间,提高运营经济效益。

1、自调臂的工作原理:自动调整臂比手动调整臂增加了制动间隙的测量和制动间隙的补偿功能。

自调臂利用刹车制动和回位过程的推力与拉力,使螺纹叉c带动齿条a在自调臂转动过程中上下运动,以驱动控制元件使蜗杆b、蜗轮e相对于自调臂转动,来带动制动器凸轮轴转动,使制动间隙变小。

自调臂是通过转角来测量制动间隙,并根据其大小来实现间隙的自动调整,最终稳定在制动间隙的设定值(设定值为0.6~1.0mm)。

行车制动时,自调臂的工作可分解为三部分(见图21):正常间隙角度C (clearance),。

Ce(excessive clearance)和弹性变形角度E(elasticity)过度间隙角度图21:对应于设定的正常蹄、鼓之间的制动间隙,自调臂在该角度范围内C正常间隙角度不调整制动器的间隙。

:对应于因摩擦片的磨损和其它原因产生的大于正常设定值的间隙,Ce过度间隙角度直到制动间隙为正常设定自调臂根据该角度的大小在制动过程中进行制动间隙的自动调整,值、无超量间隙为止。

弹性变形角度E:对应于因摩擦片与制动鼓及传动元件弹性变形引起的角度变化,自调臂在该角度范围内不进行制动间隙的调整。

所以,在正常间隙角度C范围内,自调臂不参与间隙调整,只有当C+Ce>C时,自调臂才进行间隙调整,直至C+Ce=C。

并且任何一次制动过程中的弹性变形E都不参与自动调整。

2、自调臂的结构型式:目前,应用于东风公司中重型商用车的自动调整臂从结构上可以分为两种:一种为带控制臂结构(Bendix结构)的产品,另一种为不带控制臂结构(Haldex结构)的产品。

“铁哥们”制动间隙自动调整臂结构、工作原理、特点、安装及调整方法

“铁哥们”制动间隙自动调整臂结构、工作原理、特点、安装及调整方法

“铁哥们”制动间隙自动调整臂结构、工作原理、特点、安装及调整方法1.结构组成:制动间隙自动调整臂为阶跃式间隙自动调整装置。

该调整臂主要由壳体、蜗杆、蜗轮、棘轮、棘爪、压缩弹簧及与之相连的滑块、连杆等构件为调整补偿构件。

2.工作原理:2.1无需自动补偿时制动时,气室充气,气室推杆推动调整臂转动,并带动与调整臂中蜗轮相啮合的S-凸轮轴转动,从而打开制动蹄片压住制动鼓产生摩擦力矩,直至制动。

在这期间调整臂转动后消除了制动蹄片与制动鼓间的间隙以及制动蹄片、S-凸轮轴、制动鼓所引起的弹性变形,刹车中由于连接套与气室的推杆相连接从而随着调整臂的转动,使与连接套相连的连杆带动滑块向上窜动,其窜动量设定值等于正常制动时调整臂转动所引起的最大窜动值。

由于棘轮、棘爪的外表面带一定螺旋角的锯齿形斜齿,当棘轮向上运动时由于此时受力面为非工作面,棘爪在棘轮上滑动,当制动间隙没有超过设定值时棘轮上窜动的行程小于棘轮外表面相邻两齿的轴向齿距此时棘轮、棘爪不发生跳齿,制动器放松后,调整臂复位,棘轮和棘爪又返回原位,不进行间隙补偿。

2.2自动补偿时当制动间隙由于摩损而引起增大、增大量超过设定值后棘轮的行程大于相邻两齿的轴向齿距时,在压缩弹簧的作用下棘爪跳过一齿重新啮合。

当制动器放松后调整臂复位时,棘轮返回。

此时棘轮、棘爪齿形工作面为直面,棘轮轴向返回,在棘爪的作用下棘轮会转动一定角度,棘轮和蜗杆是由花键相连接,因此棘轮会带动蜗杆旋转相同角度;蜗杆又带蜗轮转动,同样,蜗杆带动S-凸轮轴也转过同样的角度,既实现了间隙补偿。

3.产品特点:3.1该装置具有检测机构和调整补偿机构,结构紧凑、动作灵活、性能安全可靠,它的安装方法基本与手动调整臂一样,安装十分方便。

3.2由于调整结构被封闭于壳体之内而受到很好的保护,从而避免了受潮、脏物及磕碰等。

3.3不再需要人工调节制动间隙,使车辆制动鼓和蹄片之间的间隙始终保持在一个正常值范围内,大大提高了车辆的制动性能,减小了制动隐患,提高了车辆行驶的安全性,也降低了维护成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.在超量间隙角度B区内 反向转动调整臂,控制环 24槽口推动齿条19向下位 移到底端。此时,由于蜗 杆9与离合器4处于啮合状 况 , 齿 条 19 带 动 蜗 杆 9 旋 转,蜗杆9驱动蜗轮21和S 凸轮轴同时转动一个角度, 完成了一次间隙调整
10.反复1到9的制动与释 放动作,直到将制动鼓与 刹车片之间的间隙调整到 正常间隙A。
3.在超量间隙角B内旋 转调整臂,控制环24槽 口推动齿条19向上位移, 齿条19转动单向离合器 上的齿轮6。此时,齿 轮6相对离合器弹簧5和 离合器4转动,同时,S 凸轮推动刹车蹄片向外 张开,直致刹车片与制
动鼓接触。 `
4.由于刹车片与制 发生轴向位移,离 合器4与蜗杆19慢慢 分离。
7.由于制动力 的释放,S凸轮、 蜗杆9、蜗轮21 上的扭力下降, 止 推 弹簧 14 的 推动蜗杆9重新 与离合器啮合。
8.继续反向转 动调整臂进入到 正常间隙角A内。 由于蜗杆19与离 合器4啮合,回 位弹簧17、18的 弹力不足以转动 单向离合器,于 是,齿条19的齿 端与控制环24槽 口的接触点慢慢 由下缘移到上缘。
5.继续转动调整
臂,此时进入弹性
角度C。控制环24
槽口推动齿条19继
续向上位移,由于
离合器4与蜗杆19
已分离,齿条19就
驱动整个单向离合
器转动。
`
有超量间隙时的刹车释放 工作原理 6.在弹性角度C内反向转 动调整臂,由于离合器4 与蜗杆9已分离,齿条19 在回位弹簧17、18的作用 下向下位移,同时反向驱 动整个单向离合器转动。 此时,齿条19的齿端与控 制环24槽口下缘接触。
汽车制动间隙
自动调整臂工作
原理简介
起始位置
1.齿条19的齿端与
控制环24槽口上缘
接触,槽口下缘与
齿条19下端之间的
角度决定了制动鼓
与刹车片之间的正
常间隙。
`
2.在正常间隙角A内 旋转调整臂,齿条19 齿端与控制环24槽口 的接触由上缘移到下 缘,有超量间隙时的 刹车蹄片张开,正常 间隙消除。但刹车片 还没能与制动鼓接触
相关文档
最新文档