高中数学人教版必修函数的概念教案(系列五)

合集下载

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)

人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。

通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。

第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。

通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。

第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。

通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。

第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。

通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。

第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。

通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。

普通高中数学必修5教案

普通高中数学必修5教案

普通高中数学必修5教案
教学内容:函数的概念和性质
教学目标:学生能够理解函数的概念,掌握函数的性质,能够应用函数解决问题。

教学重点:函数的定义、函数的性质、函数的图像。

教学难点:函数的性质的应用。

教学方法:讲解结合示例,引导学生思考。

教学过程:
一、引入(5分钟)
教师通过提问引入函数的概念,让学生思考函数在日常生活中的应用。

二、讲解函数的定义(10分钟)
教师讲解函数的定义及符号表示,帮助学生理解函数的概念。

三、讲解函数的性质(15分钟)
教师讲解函数的奇偶性、增减性、最值等性质,引导学生思考函数的特点。

四、演示函数的图像(10分钟)
教师通过示例展示函数的图像,让学生理解函数与图像之间的关系。

五、练习与讨论(10分钟)
教师布置练习题让学生巩固所学知识,并讨论解题过程。

六、作业布置(5分钟)
教师布置作业,要求学生完成相关练习。

七、课堂总结(5分钟)
教师总结本节课的重点内容,激励学生继续学习。

评价与展望:本节课通过讲解、示例、练习等方式,帮助学生理解函数的概念和性质,为后续学习奠定基础。

未来将继续引导学生深入理解函数的应用,提高数学解题能力。

必修数学五教案:复杂函数计算,只需掌握这几个技巧!

必修数学五教案:复杂函数计算,只需掌握这几个技巧!

必修数学五教案:复杂函数计算,只需掌握这几个技巧!!在高中数学中,复杂函数计算是十分重要且基础的部分。

掌握好复杂函数的计算方法,对于提升数学成绩以及未来数学学习的发展大有裨益。

本篇文章将介绍复杂函数的基本概念和计算方法,并探讨其中重要的技巧,帮助读者掌握复杂函数的全貌。

一、复杂函数的概念在数学中,复数指一个由实数和虚数构成的数。

而复数函数则是指实数域上的函数,其定义域和值域分别为复数。

具体来说,我们可以将复数函数看成一个由多个实函数构成的向量函数,其中每个实函数与实部或虚部有关。

二、复杂函数的计算方法1.复数的加减法复数的加减法表现为一个二元运算,即把两个复数相加或相减。

加法和减法的计算方法相同,只需根据符号确定操作即可。

具体来说,假设复数 a = a1+a2i,b = b1+b2i,则其加减法运算如下:a+b = (a1+b1)+(a2+b2)ia-b = (a1-b1)+(a2-b2)i2.复数的乘法复数的乘法可将两个复数乘在一起得到一个新的复数。

具体来说,假设复数 a = a1+a2i,b = b1+b2i,则其乘法运算如下:a×b = (a1b1-a2b2)+(a1b2+a2b1)i3.复数的除法复数的除法是指把两个复数相除得到一个新的复数。

实际上,复数的除法可以转化为复数的乘法,乘以一个分母的倒数即可。

具体来说,假设复数 a = a1+a2i,b = b1+b2i,则其除法运算如下:a÷b = [a×(b1-b2i)]÷(b1^2+b2^2)4.欧拉公式欧拉公式表现了三个基本数学常数 e、π、i 之间的关系。

在复杂函数的计算过程中,欧拉公式有着十分重要的作用。

具体来说,欧拉公式可以表示为:e^ix = cos(x) + i×sin(x)其中,i为虚数单位,x为实数。

三、必修数学五教案:复杂函数计算的技巧1.复数的模长运算复数的模长运算时将一个复数转化为原点到其对应的点的距离。

高中数学函数概论教案模板

高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。

二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。

四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。

以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。

高中数学人教版必修5全套教案

高中数学人教版必修5全套教案

课题: §1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程Ⅰ.课题导入如图1.1-1,固定∆ABC的边CB及∠B,使边AC绕着顶点C转动。

A思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角∠C的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? CB Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A=,则sin sin abAB=,C 同理可得sin sin cbCB=, ba 从而sin sin abAB=sin cC=A cB(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计
2≤2,则 y∈(-1,1].
1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6

4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15

数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;

高中数学必修五教案模板

高中数学必修五教案模板

高中数学必修五教案模板
教案主题:三角函数
教学目标:学生能够理解三角函数的定义及其性质,能够熟练应用三角函数解决实际问题。

教学重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像,三角函数的性质。

教学难点:三角函数的周期性及应用问题的解决。

教学准备:
1. 教材:高中数学必修五教材
2. 教具:黑板、彩色粉笔、教学PPT
3. 教学资源:练习题、实例题
教学过程:
一、导入(5分钟)
引导学生回顾之前学习的三角函数的基本概念,并提出本节课的学习目标。

二、讲解三角函数的定义(15分钟)
1. 正弦函数、余弦函数、正切函数的定义及其图像
2. 介绍三角函数的周期性及性质
三、练习与讨论(20分钟)
1. 让学生进行相关的练习,加深对三角函数的理解
2. 引导学生讨论三角函数在实际问题中的应用
四、总结与拓展(10分钟)
1. 总结本节课的重点内容
2. 引导学生思考如何将三角函数的知识应用到实际生活中
五、作业布置(5分钟)
布置相关练习题,要求学生能够熟练掌握三角函数的定义及其性质,能够独立解决相关问题。

教学反思:
本节课通过讲解三角函数的定义及其性质,帮助学生建立起对三角函数的基本认识,并引导他们应用所学知识解决实际问题。

但在教学中,可以加强对于实际问题的引导,让学生更好地理解三角函数的应用。

高中数学试讲函数概念教案

高中数学试讲函数概念教案

高中数学试讲函数概念教案
教学内容:函数概念
教学目标:
1. 了解函数的定义以及函数的性质;
2. 能够通过实例理解函数的概念;
3. 能够应用函数的知识解决实际问题。

教学重点:
1. 函数的定义;
2. 函数的性质。

教学难点:
1. 函数的符号表示;
2. 函数的实际应用。

教学手段:课件、实例、互动问答
教学步骤:
第一步:引入
1. 通过一个实际问题引入函数的概念,例如“一家商店的销售额与月份的关系是什么?”;
2. 提问学生对函数的理解,引出函数的定义。

第二步:函数的定义
1. 介绍函数的定义:“如果对于每一个输入值,都有且只有一个对应的输出值,那么这个关系就是一个函数”;
2. 通过实例解释函数的概念,引导学生理解函数的含义;
3. 强调函数的符号表示,如f(x)表示函数。

第三步:函数的性质
1. 介绍函数的性质包括单调性、奇偶性、周期性等;
2. 通过实例让学生了解函数的不同性质,并能够判断一个函数的性质。

第四步:函数的应用
1. 通过实际问题引导学生应用函数的知识,如“某人每个月的工资是一笔固定的底薪加上销售提成,请用函数来表示他的月收入”;
2. 让学生自己动手解决一些实际问题,锻炼他们应用函数的能力。

第五步:总结
1. 总结本节课的内容,强调函数的概念及其应用;
2. 鼓励学生多多练习,提升对函数的理解和运用能力。

教学反馈:
1. 针对学生的反馈进行弥补和巩固;
2. 鼓励学生多多练习,加深对函数的理解。

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

人教版A高中数学必修第一册5.2.1 三角函数的概念 教学设计(1)

5.2.1 三角函数的概念本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第五章《三角函数》,本节课是第3课时,这是节关于任意角的三角函数的概念课.三角函数是高中范围内继指数函数、对数函数和幂函数之后学习的函数,是函数的一个下位概念,与指对数函数、幂函数属于同一抽象( 概括)层次。

它是一种重要的基本初等函数,是解决实际问题的重要工具,也是学习数学中其他知识内容的基础。

在初中,学生已学过锐角三角函数,知道直角三角形中锐角三角函数等于相应边长的比值。

在此基础上,随着角的概念的推广,引入弧度制,相应地将锐角三角函数推广为任意角的三角函数,此时它与三角形已经没有什么关系了。

任意角的三角函数是研究一个实数集( 角的弧度数构成的集合)到另一个实数集( 角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系。

认识它需要借助单位圆、角的终边以及两者的交点这些几何图形的直观帮助,这里体现了数形结合的思想,由锐角三角函数到坐标表示的锐角三角函数,再到单位圆上的点的坐标表示的锐角三角函数,直至得到任意角的三角函数的定义,体现了合情推理的思想方法。

本节课将围绕任意角三角函数的概念展开,任意角三角函数的概念是本节课的重点,能够利用单位圆认识这个概念是解决教学重点的关键。

A.借助单位圆理解任意角三角函数的定义;B.根据定义认识函数值的符号,理解诱导公式一;C.能初步运用定义分析和解决与三角函数值有关的一些简单问题;D.体验三角函数概念的产生、发展过程,领悟直角坐标系的工具功能,丰富数形结1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义;2.教学难点:任意角的三角函数概念的建构过程。

多媒体一、复习回顾,温故知新 1. 1弧度角的定义【答案】等于半径长的圆弧所对的圆心角 2. 角度制与弧度制的换算:【答案】︒︒︒≈==30.571801180)(弧度,ππ3. 关于扇形的公式【答案】.21)3(;21)2(;12lR S R S R l ===αα)( 4.在初中我们是如何定义锐角三角函数的? 【答案】.tan ,cos ,sin abc a c b ===ααα二、探索新知探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。

高中数学人教版必修二倍角的正弦、余弦、正切公式教案(系列五)

高中数学人教版必修二倍角的正弦、余弦、正切公式教案(系列五)

3.1.3 二倍角的正弦、余弦、正切公式整体设计教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.安排1教学过程导入新课思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课.思路2.(问题导入)出示问题,让学生计算,若sinα=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(αα)=sinαcosαcosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )sin 2( ). ⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉.sin(αβ)=sinαcosβcosαsinβsin2α=2sinαcosα(S 2α)cos(αβ)=cosαcosβsinαsinβcos2α=cos 2αsin 2α(C 2α)tan(αβ)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2αcos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ4π和α≠kπ2π(k ∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ2π,k ∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2πα是4π2a 的二倍等,所有这些都可以应用二倍角公式.例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cosαsinα=cos4α,tan2α=2tanα(1tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k ∈Z ).若cos2α=2cosα,则2cos 2α2cosα1=0,即cosα=231-(cosα=231+舍去). 若tan2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k ∈Z ). 解答:①—⑧(略)应用示例思路1例1 已知sin2α=135,4π<α<2π,求si n4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π.又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--.于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120- cos4α=cos[2×(2α)]=12sinα=12×(135)2=129119 tan4α=a a 4cos 4sin =(169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值:sin15°cos15°.解:原式=2615cos 15sin 215sin )15cos 15(sin 222=++=+ 点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若22)4sin(2cos -=-πa a,则cosαsinα的值为……( ) A.27- B.21- C.21 D.27 答案:C3.(2007年高考重庆卷,6) 下列各式中,值为23的是( ) A.2sin15°cos15° B.cos 215°sin 215°C.2sin 215°1D.sin 215°cos 215°答案:B例2 证明θθθθ2cos 2sin 12cos 2sin 1++-+=tanθ. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章?待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=)1cos 21(cos sin 2)cos 211(cos sin 2)2cos 1(2sin )2cos 1(2sin 22-++-++=+-+θθθθθθθθθθ =θθθθθθ22cos cos sin cos 1cos sin +-+ =θθθθθθ22cos cos sin sin cos sin ++ )cos (sin cos )sin (cos sin θθθθθθ++=tanθ=右. 所以,原式成立.方法二:左= =)cos (sin cos 2)cos (sin sin 2θθθθθθ++=tanθ=右. 方法三:左=)sin (cos )cos sin 2cos (sin )sin (cos )cos sin 2cos (sin 2cos )2sin 1(2cos )2sin 1(22222222θθθθθθθθθθθθθθθθ-+•++--•++=++-+ =)sin )(cos sin (cos )cos (sin )sin )(cos sin (cos )cos (sin 22θθθθθθθθθθθθ-+++-+-+ =)sin cos cos )(sin cos (sin )cos sin cos )(sin cos (sin θθθθθθθθθθθθ-+++-+++ =θθθθθθcos 2)cos (sin sin 2)cos (sin •+•+=tanθ=右.点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10°sin30°sin50°sin70°的值.活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10°,30°,50°,70°正弦的积化为20°,40°,60°,80°余弦的积,其中60°是特殊角,很容易发现40°是20°的2倍,80°是40°的2倍,故可考虑逆用二倍角公式.解:原式=cos80°cos60°cos40°cos20° =20sin 2280cos 40cos 20cos 20sin 233•• =.16120sin 1620sin 20sin 16160sin == 点评:二倍角公式是中学数学中的重要知识点之一,又是解答许多数学问题的重要模型和工具,具有灵活多变,技巧性强的特点,要注意在训练中细心体会其变化规律.例2 在△ABC 中,cosA=54,tanB=2,求tan(2A2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如ABC=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(AB)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A2B)=tan[2(AB)]=.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.变式训练化简:.4sin 4cos 14sin 4cos 1aa a a +-++解:原式=aa a a a a 2cos 2sin 22sin 22cos 2sin 22cos 222++ =)2cos 2(sin 2sin 2)2sin 2(cos 2cos 2a a a a a a ++ =cot2α.知能训练(2007年高考四川卷,17) 已知cosα=71,cos(αβ)=1413,且0<β<α<2π, (1)求tan2α的值(2)求β.解:(1)由cosα=71,0<α<2π,得sinα=a 2cos 1-=.734)71(12=- ∴tanα=a a cos sin =17734⨯=43.于是tan2α=.4738tan 1342tan 1tan 222-=-⨯--aa a (2)由0<α<β<2π,得0<αβ<2π.又∵cos(αβ)=1413,∴sin(αβ)=.1433)1413(1)(cos 122=-=--βa 由β=α(αβ),得 cosβ=cos [α(αβ)]=cosαcos(αβ)sinαsin(αβ)=71×14131433734⨯=21. ∴β=3π.点评:本题主要考查三角恒等变形的主要基本公式、三角函数值的符号,已知三角函数值求角以及计算能力.作业课本习题3.1 A 组15、16、17.课题小结1.先由学生回顾本节课都学到了什么?有哪些收获?对前面学过的两角和公式有什么新的认识?对三角函数式子的变化有什么新的认识?怎样用二倍角公式进行简单三角函数式的化简、求值与恒等式证明.2.教师画龙点睛:本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.。

高中数学人教A版(2019)必修第一册 5 三角函数的概念 教案

高中数学人教A版(2019)必修第一册 5  三角函数的概念 教案

5.2.1三角函数的概念一、教学目标:1、借助单位园理解任意角的三角函数的定义2、会利用相似关系,由角a 终边上任意一点的坐标得出任意角的正弦,余弦,正切的三角函数的定义。

3、能根据定义理解正弦,余弦,和正切函数在各个象限及坐标轴上的符号,会求一些特殊角的三角函数值4、理解并掌握公式一,并会用公式一进行三角函数式的化简或恒等式的证明。

二、教学重难点教学重点:三角函数的定义教学难点:对三角函数概念的抽象过程及定义的理解.三、情景导入江南水乡,水车在清澈的河流里悠悠转动,缓缓的把水倒进水渠,流向绿油油的田地,流向美丽的大自然,把水车放在坐标系中,点p 为水车上一点,它转动的角度为a,水车的半径为r ,点p 的坐标如何表示?四、预习检查五、教学过程① 在初中我们是如何定义锐角三角函数的?② 在直角坐标系中如何用坐标表示锐角三角函数?1.三角函数的定义前面,我们已经把角的范围扩展到了任意角,并用弧度制来度量角,将角和实数建立一一对应关系.接下来,我们将建立一个数学模型,刻画单位圆上点P 位置变化情况.(以点A 为起点做逆时针方向旋转)191 sin -1050tan 3π︒、()2sin ,cos ,tan Pαααα、已知角 则分别是多少?以单位圆的圆心为原点,以射线OA为x轴的非负半轴,建立直角坐标系.则A(1,0),P(x,y)射线OA从x轴非负半轴开始,绕点O按逆时针方向旋转角α,终止位置为OP.(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα(3)把点P的纵坐标和横坐标的比值y叫做α的正切函数,记作tanα,即xy=tanα(x≠0).x我们把正弦函数、余弦函数和正切函数统称为三角函数.例1、2.同角三角函数的符号一全正、二正弦、三正切、四余弦例2、3.特殊角的三角函数4.诱导公式一终边相同的角的对应三角函数相同.其中k ∈Z做题时,把角同化为(0~2π)即(0°~360°)终边相同的角,简化计算. 例4:求下列三角函数的值。

《函数的概念》教案

《函数的概念》教案

课题:函数的概念(一)教材:普通高中课程标准实验教材教科数学必修(1)人教版【三维目标】1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.【教学难点】函数概念及符号y=f(x)的理解.【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.【教学手段】多媒体课件辅助教学【教学过程设计】一、创设情景引入课题北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.二、观察分析探索新知1.实例分析(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:h =130t -5t 2. (﹡)提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系. 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1 “八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2025 5101530图126 25tSO 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t的变化范围是数集}=Nttt≤A,恩格≤,19912001∈{*尔系数y的变化范围是数集}8.=yyB. 并且,对于数集A中的任意≤53{≤9.37一个时间t,根据表1,在数集B中都有唯一确定的恩格尔系数y和它对应.2.问题探讨以上三个实例有什么不同点和共同点?活动:让学生分小组讨论交流,请小组代表汇报讨论结果.归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A,B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.记作.Af→:B3.归纳概括引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?活动:让学生分组讨论交流,讨论归纳出:(1)函数的概念:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称xx=y∈f(A),ABf→:为从集合A到集合B的一个函数,记作.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合}xxf∈叫做函数的值域.(){A显然,值域是集合B的子集.(2)函数的本质:两个非空数集间的一种确定的对应关系.(3)函数的构成要素:定义域、对应关系、值域.强调:①值域由定义域和对应关系唯一确定;②f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x的乘积.在不同的函数中f的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.三、新知演练及时反馈1. 提出问题:一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?并用函数的概念来描述这些函数.设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.2. 思考辨析:(1)1y(x∈R)是函数吗?=(2))0x=xy是函数吗?(≥±(3)x3=1-是函数吗?y-+x方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?由学生总结得到:(1)理解函数的定义应注意:①符号“f:A→B”表示从A到B的一个函数;②函数是非空数集A到非空数集B上的一种对应;③集合A中数的任意性,集合B中数的唯一性.(2)判断函数的标准可以简化成:两个非空数集A,B,一个对应关系.提出问题:在三个实例中,按照一定的对应关系,能看作从B到A的函数吗?你能举出函数的实例吗?设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.3.练习反馈下列图像中不能作为函数y=f(x)图像的是( B )四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.3.明确了构成函数的三要素:定义域、对应关系、值域.五、布置作业1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.2.课本P 24 习题1.2 1、3、4六、板书设计教案说明函数是高中数学的重要内容之一.它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础. 因此,函数概念是中学数学最重要的基本概念之一,本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.学生在初中已学习过函数的概念,概念从运动的观点刻画了两变量之间的相互依赖关系,在已有认识的基础上,让学生学会用集合与对应的语言来刻画函数的概念,并体会函数是描述客观世界中变量间依赖关系的重要模型,是本节课的教学重点. 本节课的教学难点是:函数概念及符号y=f(x)的理解. 函数的概念比较抽象,但函数现象大量存在于学生周围,因此本节课教学设计的整体指导思想是:让学生通过观察分析,去发现,并归纳概括出函数的概念,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过本节课的学习,进一步培养学生观察问题,提出问题的探究能力;培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,学会数学表达和交流,发展数学应用意识;同时使学生感受到学习函数的必要性,激发学生学习的积极性.本节课对重难点的处理方法是:(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,让学生更清晰直观的感知:对于每一个时间t,都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.(2)为了使学生正确理解函数的概念,首先让学生用集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。

高中数学必修五备课教案

高中数学必修五备课教案

高中数学必修五备课教案
教学内容:
1. 函数的概念
2. 函数的定义域和值域
3. 函数的图象
4. 函数的性质:奇偶性、周期性、单调性
教学目标:
1. 理解函数的概念及其基本性质。

2. 掌握函数的定义域和值域的求法。

3. 能够画出函数的图象。

4. 熟练判断函数的奇偶性、周期性和单调性。

教学重点和难点:
1. 函数的概念及性质的理解和掌握。

2. 函数的图象的绘制和性质的判断。

教学准备:
1. 教师准备:教案、教辅资料、教学工具。

2. 学生准备:课前预习相关知识。

教学过程:
一、导入(5分钟)
教师引入函数概念,让学生回顾前几年关于函数的基本知识。

二、讲解(20分钟)
1. 函数的定义:介绍函数的定义及相关概念。

2. 函数的定义域和值域:讲解函数的定义域和值域的概念及求法。

3. 函数的图象:介绍如何画出函数的图象。

三、练习与讨论(15分钟)
1. 学生根据所学知识进行练习,画出给定函数的图象。

2. 学生讨论函数的奇偶性、周期性和单调性。

四、总结(5分钟)
教师总结本节课的重点内容,强化学生的理解和记忆。

五、作业布置(5分钟)
布置相关作业,让学生巩固所学内容。

教学反思:
通过本节课的教学,学生对函数的概念及性质有了更深入的了解和掌握。

希望学生能够对函数有更加深入的理解,为将来的学习打下良好的基础。

《函数的概念》说课教案5篇

《函数的概念》说课教案5篇

《函数的概念》说课教案5篇《函数的概念》说课教案1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用”区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一引入课题1. 复习初中所学函数的概念,强调函数的模型化思想;2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国2003年4月份非典疫情统计:日期 22 23 24 25 26 27 28 29 30新增确诊病例数 106 105 89 103 113 126 98 152 1013. 引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4. 根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二新课教学(一)函数的有关概念1.函数的概念:设AB是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f 乘x.2. 构成函数的三要素:定义域对应关系和值域3.区间的概念(1)区间的分类:开区间闭区间半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数二次函数反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1 函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1 构成函数三个要素是定义域对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计

高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计

【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。

人教A版(2019)高中数学必修第一册第五章5.2.1三角函数的概念(第二课时)教案

人教A版(2019)高中数学必修第一册第五章5.2.1三角函数的概念(第二课时)教案

《5.2.1 三角函数的概念(第二课时)》教学设计1.掌握三角函数值的符号;2.掌握诱导公式一,初步体会三角函数的周期性.教学重点:函数值的符号、诱导公式一.教学难点:对诱导公式的发现与认识.PPT课件.资源引用:【知识点解析】三角函数值在各象限的符号、【知识点解析】对三角函数值符号的理解(一)创设情境引导语:前面学习了三角函数的定义,根据已有的学习函数的经验,你认为接下来应研究三角函数的哪些问题?预设的师生活动:先由学生发言.一般而言,学生会直接把问题指向“图象与性质”.教师可以在肯定学生想法的基础上,指出三角函数的特殊性:预设答案:因为单位圆上点的坐标或坐标比值就是三角函数,而单位圆具有对称性,这种对称性反映到三角函数的取值规律上,就会呈现出比幂函数、指数函数和对数函数等更丰富的性质.例如,我们可以从定义出发,结合单位圆的性质直接得到一些三角函数的性质.设计意图:明确研究的问题和思考方向.一般地,学生不习惯于借助单位圆的性质研究三角函数的性质,所以需要教师的讲解和引导.(二)新知探究1.三角函数值的符号问题1:由三角函数的定义以及任意角α的终边与单位圆交点所在的象限,你能发现正弦函数、余弦函数和正切函数的值的符号有什么规律吗?如何用集合语言表示这种规律?预设的师生活动:由学生独立完成.预设答案:用集合语言表示的结果是:当α∈{β|2k π<β<2k π+π,k ∈Z }时,sin α>0;当α∈{β|2k π+π<β<2k π+2π,k ∈Z }时,sin α<0;当α∈{β|β=k π,k ∈Z }时,sin α=0.其他两个函数也有类似结果.设计意图:在直角坐标系中标出三角函数值的符号规律不难,可由学生独立完成.用集合语言表示,可以复习象限角、终边相同的角的集合表示等.例1 求证:角θ为第三象限角的充要条件是⎩⎪⎨⎪⎧sin θ<0,①tan θ>0.② 预设的师生活动:先引导学生明确问题的条件和结论,再由学生独立完成证明.预设答案:先证充分性.因为①式sin θ<0成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为②式tan θ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.再证必要性.因为角θ为第三象限角,由定义①②式都成立.设计意图:通过联系相关知识,培养学生的推理论证能力.2.诱导公式一问题2:联系三角函数的定义、象限角以及终边相同的角的表示,你有发现什么? 师生活动:学生在问题引导下自主探究,发现诱导公式一.追问:(1)观察诱导公式一,对三角函数的取值规律你有什么进一步的发现?它反映了圆的什么特性?(2)你认为诱导公式一有什么作用?预设答案:(1)诱导公式一体现了三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.(2)利用公式一可以把求任意角的三角函数值,转化为求0~2π角的三角函数值.同时,由公式一可以发现,只要讨论清楚三角函数在区间[0,2π]上的性质,那么三角函数在整个定义域上的性质就清楚了.设计意图:引导学生通过建立相关知识的联系发现诱导公式一及其体现的三角函数周期性取值的规律,这是“单位圆上的点绕圆周旋转整数周仍然回到原来位置”的特征的反映.在此过程中,可以培养学生用联系的观点看待问题,发展直观想象等素养.例2 确定下列三角函数值的符号,然后用计算器验证:(1)cos 250°; (2)sin ⎪⎭⎫ ⎝⎛-4π; (3)tan (-672°); (4)tan 3π.解:(1)因为250°是第三象限角,所以cos 250°<0;(2)因为4π-是第四象限角,所以sin ⎪⎭⎫ ⎝⎛-4π<0;(3)因为tan (-672°)=tan (48°-2×360°)=tan 48°,而48°是第一象限角, 所以tan (-672°)>0;(4)因为tan 3π=tan (π+2π)=tan π,而π的终边在x 轴上,所以tan π=0.例3 求下列三角函数值:(1)sin 1 480°10′(精确到0.001);(2)cos4π9; (3)tan ⎪⎭⎫ ⎝⎛-6π11. 解:(1)sin 1480°10′=sin (40°10′+4×360°)=sin 40°10′≈0.645;(2)9πππcos cos(2π)cos 444=+==(3)11πππtan()tan(2π)tan 6663-=-==. 师生活动:以上都是教科书中的例题,难度不大,可以由学生独立完成,并作课堂展示.教师可以鼓励学生采用不同的变形方法得出答案.在用计算器验证时,提醒学生注意角度制的设置.(三)课堂练习教科书第182页练习第1,2,3,4,5题.(四)布置作业教科书习题5.2第1,3,4,5,7,8,9,10题.(五)目标检测设计1.求下列三角函数的值:(1)cos (-23π6); (2)tan 25π6.设计意图:考查诱导公式一,特殊角的三角函数值.2.角α的终边与单位圆的交点是Q,点Q的纵坐标是12,说出几个满足条件的角α.设计意图:考查正弦函数的定义,诱导公式一.3.对于①sin θ>0,②sin θ<0,③cos θ>0,④cos θ<0,⑤tan θ>0与⑥tan θ<0,选择恰当的关系式序号填空:(1)角θ为第二象限角的充要条件是________;(2)角θ为第三象限角的充要条件是________.设计意图:考查三角函数值的符号规律.。

高中数学函数教案doc

高中数学函数教案doc

高中数学函数教案doc
课题:函数
教学目标:
1. 掌握函数的定义和性质;
2. 熟练运用函数解决实际问题;
3. 能够绘制函数的图像;
4. 提高学生的数学推理能力。

教学重点:
1. 函数的概念和性质;
2. 函数的图像绘制;
3. 函数的应用问题解决。

教学难点:
1. 函数的复合运算;
2. 函数的反函数;
3. 函数的应用问题解决。

教学准备:
1. 教学课件;
2. 教学教材《高中数学》;
3. 白板、彩色粉笔;
4. 练习题。

教学过程:
一、导入
教师通过举例说明函数在生活中的应用,引出函数的概念。

二、讲解
1. 函数的定义和性质;
2. 函数的基本运算;
3. 函数的复合运算;
4. 函数的反函数;
5. 函数的图像绘制。

三、练习
教师通过例题和练习题让学生巩固所学知识,提高解题能力。

四、应用
教师给学生提供实际问题,并引导学生运用所学知识解决问题。

五、总结
教师对本节课所学内容进行总结,并提出问题,让学生思考和讨论。

六、作业
布置相关练习题作业,巩固所学知识。

教学反思:
本节课主要介绍了函数的定义、性质和运算,通过理论讲解和练习题的讲解,学生能够掌握函数的基本概念和运用方法。

在今后的教学中,需要注意引导学生多做练习,提高解题能力和数学推理能力。

人教A版高中数学必修第一册第五章三角函数的概念教案

人教A版高中数学必修第一册第五章三角函数的概念教案

《5.2.1 三角函数的概念(第一课时)》教学设计教学目标1.了解三角函数的背景,体会三角函数与现实世界的密切联系;2.经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.教学重难点教学重点:正弦函数、余弦函数、正切函数的定义.教学难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解;对符号sinα,cosα和tanα的认识.课前准备PPT课件教学过程(一)创设情境引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.如图1,⊙O上的点P以A为起点做逆时针方向的旋转.在把角的范围推广到任意角后,我们可以借助角α的大小变化刻画点P的位置变化.又根据弧度制的定义,角α的大小与⊙O的半径无关,因此,不失一般性,我们可以先研究单位圆上点的运动.现在的任务是:如图1,单位圆⊙O上的点P以A为起点做逆时针方向旋转,建立一个函数模型,刻画点P的位置变化情况.图1问题1:根据已有的研究函数的经验,你认为我们可以按怎样的路径研究上述问题? 预设的师生活动:学生在独立思考的基础上进行交流、讨论.预设答案:明确研究背景—对应关系的特点分析—下定义—研究性质.设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向.(二)新知探究引导语:下面我们利用直角坐标系来研究上述问题.如图2,以单位圆的圆心O 为原点,以射线OA 为x 轴的非负半轴,建立直角坐标系,点A 的坐标为(1,0),点P 的坐标为(x ,y ).射线OA 从x 轴的非负半轴开始,绕点O 按逆时针方向旋转角α,终止位置为OP .问题2:当α=6π时,点P 的坐标是什么?当α=2π或3π2时,点P 的坐标又是什么?它们是唯一确定的吗?一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 预设的师生活动:在学生求出α=6π时点P 的坐标后追问以下问题. 追问:(1)求点P 的坐标要用到什么知识?(2)求点P 的坐标的步骤是什么?点P 的坐标唯一确定吗?(3)如何利用上述经验求α=3π2时点P 的坐标? (4)利用信息技术,任意画一个角α,观察它的终边OP 与单位圆交点P 的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗?预设答案:(1)直角三角形的性质;(2)画出6π的终边OP ,过点P 作x 轴的垂线交x 轴于M ,在Rt △OMP 中,利用直角图2三角形的性质可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛2123,; (3)可以发现,∠MOP =3π,而点P 在第二象限,可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛-2321,; (4)对于R 中的任意一个角α,它的终边OP 与单位圆交点为P (x ,y ),无论是横坐标x 还是纵坐标y ,都是唯一确定的.这里有两个对应关系:f :实数α(弧度)对应于点P 的纵坐标y ,g :实数α(弧度)对应于点P 的横坐标x .根据上述分析,f :R →[-1,1]和g :R →[-1,1]都是从集合R 到集合[-1,1]的函数. 设计意图:以函数的对应关系为定向,从特殊到一般,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆交点的横、纵坐标都是圆心角α(弧度)的函数,为给出三角函数的定义做好准备.问题3:请同学们先阅读教科书第178~179页,再回答如下问题:(1)正弦函数、余弦函数和正切函数的对应关系各是什么?(2)符号sin α,cos α和tan α分别表示什么?在你以往的学习中有类似的引入特定符号表示一种量的经历吗?(3)为什么说当α≠2π+k π时,tan α的值是唯一确定的? (4)为什么说正弦函数、余弦函数的定义域是R ?而正切函数的定义域是{x ∈R |x ≠2π+k π,k ∈Z }?预设的师生活动:学生独立阅读课文,再举手回答上述问题.预设答案:(1)正弦函数的对应关系:sin α →点P 的纵坐标y ;余弦函数的对应关系:cos α →点P 的横坐标x ;正弦函数的对应关系:tan α →xy (2)分别表示y ,x ,;引入符号log a b 表示a x =b 中的x .(3)当α≠2π+k π时,如果α确定,那么α的终边确定,终边与单位圆的交点P 确定,P 点的横、纵坐标x 、y 就会唯一确定,因此x y 的值也是唯一确定的,所以tan α的值也是唯一确定的.(4)当α=2π+k π时,α的终边在y 轴上,这时点P 的横坐标x 等于0,所以xy =tan α无意义.除此之外,对于任意角α,P 点的横、纵坐标的值x ,y 都是存在且唯一确定的.设计意图:在问题引导下,通过阅读教科书、辨析关键词等,使学生明确三角函数的“三要素”;引导学生类比已有知识(引入符号log a b 表示a x =b 中的x ),理解三角函数符号的意义.问题5:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数.设x ∈⎪⎭⎫ ⎝⎛2π0,,把按锐角三角函数定义求得的锐角x 的正弦记为y 1,并把按本节三角函数定义求得的x 的正弦记为z 1.y 1与z 1相等吗?对于余弦、正切也有相同的结论吗?预设的师生活动:教师引导,学生作图并得出结论.预设答案:作出Rt △ABC ,其中∠A =x ,∠C =90°,再将它放入直角坐标系中,使点A 与原点重合,AC 在x 轴的正半轴上,可得出y 1=z 1的结论.对于余弦、正切也有相同的结论.设计意图:建立锐角三角函数与任意角三角函数的联系,使学生体会两个定义的和谐性. 例1 利用三角函数的定义求3π5的正弦、余弦和正切值. 预设的师生活动:先由学生发言,再总结出从定义出发求三角函数值的基本步骤,并得出答案.预设答案:在直角坐标系中,作∠AOB =3π5(图3).易知∠AOB 的终边与单位圆的交点坐标为⎪⎪⎭⎫ ⎝⎛-2321,. 所以,sin 233π5-=,cos 213π5=,tan 33π5-=. 设计意图:通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.练习:在例1之后进行课堂练习:(1)利用三角函数定义,求π,2π3的三个三角函数值. (2)说出几个使cos α=1的α的值.预设的师生活动:由学生逐题给出答案,并要求学生说出解答步骤,最后可以总结为“画终边,找交点坐标,算比值(对正切函数)”.预设答案:(1)sin π=0,cos π=-1,tan π=0;sin2π3=-1,cos 2π3=0,tan 2π3不存在.(2)α=0,2π,-2π等.设计意图:检验学生对定义的理解情况.例2 如图4,设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r .求证:sin α=r y ,cos α=r x ,tan α=x y . 师生活动:给出问题后,教师可以引导学生思考如下问题,再让学生给出证明:(1)你能根据三角函数的定义作图表示出sin α,cos α吗?(2)在你所作出的图形中,r y ,r x ,xy 各表示什么,你能找到它们与做任意角α的三角函数的关系吗?图3预设答案:如图5,设角α的终边与单位圆交于点P 0(x 0,y 0).分别过点P ,P 0作x 轴的垂线PM ,P 0M 0,垂足分别为M ,M 0,则|P 0M 0|=|y 0|,|PM |=|y |,|OM 0|=|x 0|,|OM |=|x |,△OMP ∽△OM 0P 0.于是r PM M P ||1||00 ,即|y 0|=ry ||.因为y 0与y 同号,所以y 0=r y , 即sin α=r y .同理可得cos α=r x ;tan α=x y . 设计意图:通过问题引导,使学生找到△OMP ,△OM 0P 0,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了任意角三角函数的另外一种定义,而且这种定义与已有的定义是等价的.你能用严格的数学语言叙述一下这种定义吗?预设的师生活动:可以由几个学生分别给出定义的表述,在交流的基础上得出准确的定义.预设答案:设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r ,则r y 、r x 、xy 分别叫做角α的正弦、余弦、正切. 设计意图:加深学生对三角函数定义的理解.练习:在例2之后进行课堂练习:(3)已知点P 在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为1rad/s .求2 s 时点P 所在的位置.图5图4预设的师生活动:由学生独立完成后,让学生代表展示作业.预设答案:以坐标原点为圆心O ,OP 所在直线为x 轴正方向建立平面直角坐标系.2 s 时点P 所在位置记为Q .因为点P 是在半径为2的圆上按顺时针方向作匀速圆周运动,角速度为1rad/s ,所以圆心角∠POQ =-2 rad .所以2 s 时,点P 在该坐标系中的位置为(2cos 2,-2sin 2).设计意图:三角函数是刻画匀速圆周运动的数学模型,通过练习使学生从另一个角度理解三角函数的定义.(三)布置作业(四)目标检测设计(1)利用三角函数定义,求6π7的三个三角函数值. (2)已知角θ的终边过点P (-12,5),求角θ的三角函数值.预设答案:(1)sin6π7=-21,cos 6π7=-23,tan 6π7=33; (2)sin θ=513,cos θ=-1213,tan θ=-512.设计意图:考查学生对三角函数定义的理解情况.1、最困难的事就是认识自己。

人教版高中数学必修第一册函数的概念教案

人教版高中数学必修第一册函数的概念教案

函数的概念一、课题:函数的概念二、教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三、教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法那么是核心,定义域是灵魂.四、教学过程:〔一〕主要知识:1.对应、映射、像和原像、一一映射的定义;2.函数的传统定义和近代定义;3.函数的三要素及表示法.〔二〕主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键;3.理解函数和映射的关系,函数式和方程式的关系.〔三〕例题分析:例1.〔1〕A R =,{|0}B y y =>,:||f x y x →=;〔2〕*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;〔3〕{|0}A x x =>,{|}B y y R =∈,:f x y →=上述三个对应〔2〕是A 到B 的映射.例2.集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,那么集合N = 〔 D 〕()A {}(,)|2,0,0x y x y x y +=>>()B {}(,)|1,0,0x y xy x y =>>()C {}(,)|2,0,0x y xy x y =<<()D {}(,)|2,0,0x y xy x y =>>解法要点:因为2x y +=,所以2222x y x y +⋅==.例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,那么映射f 的个数是 〔 D 〕()A 8个 ()B 12个 ()C 16个 ()D 18个解法要点:∵()x f x +为奇数,∴当x 为奇数1-、1时,它们在N 中的象只能为偶数2-、0或2,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或1,共有2种对应方法.故映射f 的个数是9218⨯=.例4.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,〔1〕将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式;〔2〕求S 的最大值.解:〔1〕2111()408(5)5(8)222ABCD CEF ABE ADF S f x S S S S x x x ∆∆∆==---=--⨯⨯--⨯⨯-22113113169()22228x x x =-+=--+. ∵CE CB CD ≤≤,∴05x <≤,∴函数()S f x =的解析式:2113169()()(05)228S f x x x ==--+<≤; 〔2〕∵()f x 在(]0,5x ∈上单调递增,∴max (5)20S f ==,即S 的最大值为20.例5.函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, 〔1〕求(0)f 的值;〔2〕对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值X 围. 解:〔1〕由等式()()(21)f x y f y x y x +-=++,令1x =,0y =得(1)(0)2f f -=, 又∵(1)0f =,∴(0)2f =-.〔2〕由()()(21)f x y f y x y x +-=++,令0y =得()(0)(1)f x f x x -=+,由〔1〕知(0)2f =-,∴2()2f x x x +=+. ∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增,∴13()2(0,)4f x +∈. 要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a a x <,显然不成立.当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩,解得14a ≤<∴a 的取值X围是4.〔四〕巩固练习:1.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是11(,)32-或12(,)43-.2.以下函数中,与函数y x =相同的函数是 〔 C 〕()A 2x y x =()B 2y =()C lg10x y =()D 2log 2x y =3.设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,那么(5)f =8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 函数的概念1.函数的概念设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意数x ,在集合B 中都有唯一的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x A .其中x 叫做自变量,x 的取值范围A 叫做函数y =f (x )的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x A }叫做函数y =f (x )的值域,则值域是集合B 的子集.注意:(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.这三性只要有一个不满足便不能构成函数.2.常见函数的定义域和值域函数 函数关系式 定义域 值域 正比例函数 y =kx (k ≠0) ____ R 反比例函数y =kx (k ≠0) {x |____}{y |y ≠0}一次函数y =kx +b(k ≠0)R____二次函数 y =ax 2+bx +c(a ≠0) Ra >0 {y | y ≥ }a <0⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤4ac -b 24a有时给出的函数没有明确说明其定义域,这时,它的定义域就是使函数表达式有意义的自变量的取值范围.例如函数y =x 的定义域为[0,+),函数y =1x +1的定义域为(-,-1)(-1,+).(1)函数y =f (x )的定义域为P ,值域为Q ,对于m P ,与m 对应的函数值为n ,则有( ). A .n P B .m =n C .n P Q D .n 唯一(2)函数y=5-2x的定义域是().A.R B.Q C.N D.(3)函数y=2x2-x的值域是__________.3.区间与无穷大(1)区间的概念.设a,b是两个实数,且a<b.定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间这里的实数a与b都叫做相应区间的端点.并不是所有的数集都能用区间来表示.例如,数集M={1,2,3,4}就不能用区间表示.由此可见,区间仍是集合,是一类特殊数集的另一种符号语言.只有所含元素是“连续不间断”的实数的集合,才适合用区间表示.(2)无穷大.“”读作“无穷大”,“-”读作“负无穷大”,“+”读作“正无穷大”,满足x≥a,x>a,x≤a,x<a的实数x的集合可用区间表示,如下表.定义R{x|x≥a}{x|x>a} {x|x≤a}{x|x<a}符号(-,+)(1)集合{x|x≥1}用区间表示为().A.(-,1) B.(-,1] C.(1,+) D.[1,+)(2)区间[5,8)表示的集合是().A.{x|x≤5,或x>8} B.{x|5<x≤8} C.{x|5≤x<8} D.{x|5≤x≤8} 4.函数相等一个函数的构成要素为:定义域、对应关系和值域,其中值域是由________和________决定的.如果两个函数的定义域相同,并且________完全一致,我们就称这两个函数相等.函数符号f(x)的意义剖析:(1)符号y=f(x)表示变量y是变量x的函数,它仅仅是函数符号,并不表示y等于f与x的乘积.(2)符号f(x)与f(m)既有区别又有联系,当m是变量时,函数f(x)与函数f(m)相等;当m是常数时,f(m)表示当自变量x=m时对应的函数值,是一个常量.(3)符号f可以看作是对“x”施加的某种法则或运算.例如f(x)=x2-x+5,当x=2时,看作对“2”施加了这样的运算法则:先平方,再减去2,再加上5;当x为某一代数式(或某一个函数)时,则左右两边的所有x都用同一个代数式(或某一个函数)来代替.如:f(2x+1)=(2x+1)2-(2x+1)+5,f[g(x)]=[g(x)]2-g(x)+5.题型一函数关系的判断例1 下列式子能否确定y是x的函数?(1)x2+y2=2;(2)x-1+y-1=1;(3)y=x-2+1-x.反思:(1)判断一个对应关系f:A→B是否是函数,要从以下三个方面去判断:①A,B 必须是非空数集;②A中的任何一个元素在B中必须有元素与其对应;③A中任一元素在B 中必有唯一元素与其对应.(2)函数的定义中“任意一个数x”与“唯一确定的数f(x)”说明函数中两个变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.题型二求函数值例2 已知f(x)=11+x(x R,且x≠-1),g(x)=x2+2(x R).(1)求f(2),g(2)的值;(2)求f[g(3)]的值.题型三求函数的定义域例3 求函数y=-2x+1-1-x的定义域.反思:(1)如果f(x)是整式,那么函数的定义域是实数集R.(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即求各部分自变量取值集合的交集).(5)对于由实际背景确定的函数,其定义域还要受实际问题的制约.题型四 判断函数相等例4 判断下列各组函数是否是相等函数: (1)f (x )=x +2,g (x )=x 2-4x -2;(2)f (x )=(x -1)2,g (x )=x -1; (3)f (x )=x 2+x +1,g (t )=t 2+t +1.反思:判断两个函数f (x )和g (x )是否相等的方法是:先求函数f (x )和g (x )的定义域,如果定义域不同,那么它们不相等,如果定义域相同,再化简函数的表达式,如果化简后的函数表达式相同,那么它们相等,否则它们不相等.题型五 易混易错题易错点 求函数定义域时先化简函数关系式 例5 求函数y =x -2x +1x -2x +3的定义域.答案:例1 解:(1)由x 2+y 2=2,得y =±2-x 2.当x =1时,对应的y 值有两个,故y 不是x 的函数.(2)由x -1+y -1=1,得y =(1-x -1)2+1.所以当x 在{x |x ≥1}中任取一个值时,都有唯一的y 值与之对应,故y 是x 的函数.(3)因为不等式组⎩⎨⎧x -2≥0,1-x ≥0的解集是∅,即x 取值的集合是,故y 不是x 的函数.例2 解:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. 例3 解:要使函数有意义,自变量x 的取值需满足⎩⎨⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域是{x|x≤1,且x≠-1}.例4 解:(1)f(x)的定义域为R,g(x)的定义域为{x|x≠2}.由于定义域不同,故f(x)与g(x)不是相等函数.(2)f(x)的定义域为R,g(x)的定义域为R,即定义域相同.由于f(x)与g(x)的表达式不相同,故f(x)与g(x)不是相等函数.(3)两个函数的自变量所用字母不同,但其定义域和对应关系一致,故是相等函数.例5要使函数有意义,必须使(x-2)(x+3)≠0,即x-2≠0且x+3≠0,解得x≠2且x≠-3,故所求函数的定义域为{x|x≠2,且x≠-3}.1函数y=1x x-+的定义域为().A.{x|x≤1} B.{x|x≥0}C.{x|x≥1,或x≤0} D.{x|0≤x≤1}2下列式子中,y不是x的函数的是().A.x=y2+1 B.y=2x2+1 C.x-2y=6 D.x=y 3已知函数f(x)=2x-1,则f[f(2)]=__________.4判断下列各组的两个函数是否相等,并说明理由.(1)y=x-1,x R与y=x-1,x N;(2)y=2x与y=x x⋅;(3)y=1+1x与y=1+1u.5已知函数f(x)=x2+1,x R.(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值.(2)由(1)你发现了什么结论?并加以证明.答案:1.D要使函数有意义需10,0,xx-≥⎧⎨≥⎩解得0≤x≤1.2.A选项B,C,D都满足一个x对应唯一的y,故y是x的函数.对于选项A,存在一个x对应两个y的情况,如x=5时,y=±2.故y不是x的函数.3.5∵f(2)=2×2-1=3,∴f[f(2)]=f(3)=3×2-1=5.4.解:(1)前者的定义域是R,后者的定义域是N,由于它们的定义域不同,故不相等.(2)前者的定义域是R,后者的定义域是{x|x≥0},它们的定义域不同,故不相等.(3)两个函数的定义域相同(均为非零实数),对应关系相同(都是自变量取倒数后加1),故相等.5.解:(1)f(1)-f(-1)=(12+1)-[(-1)2+1]=2-2=0;f(2)-f(-2)=(+1)-[(-2)2+1]=5-5=0;f(3)-f(-3)=(32+1)-[(-3)2+1]=10-10=0.(2)由(1)可发现结论:对任意x∈R,有f(x)=f(-x).证明如下:由题意,得f(-x)=(-x)2+1=x2+1=f(x).故对任意x R,总有f(x)=f(-x).。

相关文档
最新文档