《运筹学》线性规划的对偶问题
《运筹学》线性规划的对偶问题
3、资源影子价格的性质
z y b1w1 b2w2 bi wi bmwm z z b1w1 b2w2 (bi bi )wi bmwm z bi wi
w
o i
z o bi
最大利润的增量 第i种资源的增量
第i种资源的边际利润
■影子价格越大,说明这种资源越是相对紧缺 ■影子价格越小,说明这种资源相对不紧缺 ■如果最优生产计划下某种资源有剩余,这种资源的影子 价格一定等于0
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c2 x 2 c2 x 2
s.t.
a11x1 a12x 2 a1n x n x n1
a 21x1 a 22x 2 a 2n x n
x n2
b1
b2
a m1x1 a m2 x 2 a mn x n
差额成本=机会成本 ——利润
5、互补松弛关系的经济解释
wix ni
0xwni
0 x ni i 0 wi
0 0
x jwmj
0xwjm j
0 0
w m x
j j
0 0
在利润最大化的生产计划中 (1)边际利润大于0的资源没有剩余 (2)有剩余的资源边际利润等于0 (3)安排生产的产品机会成本等于利润 (4)机会成本大于利润的产品不安排生产
4、产品的机会成本
增加单位资源可以增加的利润
max z c1x1 c2x2 c jx j cn xn
s.t.
a11x1 a12x 2 a1jx j a1nx n b1 w1
a 21x1 a 22x 2 a 2jx j a 2nx n b2 w2
a m1 x1 a m2 x 2 a mj x j a mn x n bm wm
运筹学04-线性规划的对偶问题
生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。
运筹学对偶问题的直观描述
运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。
直观描述对偶问题可以从几个方面来理解。
首先,可以从成本和效益的角度来理解。
原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。
这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。
其次,可以从约束条件的角度来理解。
原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。
这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。
另外,可以从几何图形的角度来理解。
原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。
总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。
通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。
运筹学--第二章 线性规划的对偶问题
习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。
分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。
(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。
2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。
2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。
运筹学课件第二章线性规划的对偶理论及其应用
– 原问题为基础可行解,对偶问题为非可行解,但满足
互补松弛条件;则当对偶问题为可行解时,取得最优 解
13
2.2.5 原问题检验数与对偶问题的解
• 在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值
• 容易证明,对偶问题最优解的剩余变量解值等于原问题 对应变量的检验数的绝对值
1
1/2 5/2
1
1
0
1/2 3/2
0
0
0
1/2 3/2
OBJ=
39
9/2
3
6
6
0
3/2
3/2
cj - zj
1/2
0
0
0
0
3/2 -M-3/2
0
x4
4
0
0
1
1
1
1
3
5
x1
6
1
0
2
2
0
1
1
3
x2
4
0
1
1
(1)
0
1
2
OBJ=
42
5
3
7
7
0
2
1
cj - zj
0
0
1
1
0
2 -M+1
0
x4
ቤተ መጻሕፍቲ ባይዱ
8
0
1
0
0
1
0
1
5
x1
数值,
g(Y0)=Y0b= CBB1 b
而原问题最优解的目标函数值为
f(X0)=CX0= CBB1 b 故由最优解判别定理可知Y0 为对偶问题的最优解。证毕。
运筹学线性规划的对偶问题
例5 已知线性规划问题 minω = 2x1 + 3x2 + 5x3 + 2x4 + 3x5 x1 + x2 + 2x3 + x4 + 3x5 ≥ 4 2x1 - x2 + 3x3 + x4 + x5 ≥ 3 xj ≥ 0,j = 1,2,3,4,5
已知其对偶问题的最优解为y1* = 4/5, y2* = 3/5;z = 5。试用对偶理论找 出原问题的最优解.
试用对偶理论证明上述线性规划问题无最优解。
证: 首先看到该问题存在可行解,例如X = (0,0,0) 而上述问题的对偶问题为
minω = 2y1 + y2 -y1 - 2y2 ≥ 1 y1 + y2 ≥ 1 y1 - y2 ≥ 0 y1 ,y2 ≥ 0
由第一约束条件可知对偶问题无可行解,因而无最优解。由此 原问题也无最优解。
0 0
无约束
m个
约束条件
=
约束条件右端项 目标函数变量的系数
对偶问题(或原问题) 目标函数 min
n个
约束条件
=
m个
0 0
变量
无约束
目标函数变量的系数
约束条件右端项
原问题中的价值向量与对偶问题中的资源向量对换(上下对换) 原问题: X在C和A的右边;
xj yi
y1 y2 ┇ ym
对偶关系 maxZ
x1 x2 ┅ xn
a11 a12 ┅ a1n a21 a22 ┅ a2n ┇┇ ┇ am1 am2 ┅ amn ≥≥┅≥ c1 c2 ┅ cm
原关 minω 系
≤
运筹学:第1章 线性规划 第3节 对偶问题与灵敏度分析
s.t.
4x1 3x1
5x2 200 10x2 300
x1, x2 0
9x1 4x2 360
s.t.
34xx11
5x2 10 x
200 2 300
3x1 10x2 300
x1, x2 0
则D为
min z 360y1 200y2 300y3 300y4
9 y1 4 y2 3y3 3y4 7 s.t.4 y1 5y2 10 y3 10 y4 12
amn xn bm ym xn 0
机会成本 a1 j y1 a2 j y2 aij yi amj ym
表示减少一件产品所节省的可以增加的利润
(3)对偶松弛变量的经济解释——产品的差额成本
机会成本
利润
min w b1 y1 b2 y2 bm ym
a11 y1
st
a12
y1
a1n y1
max z CX
(P)
AX b
s
.t
.
X
0
(D)
min w Yb
s.t.
YA C Y 0
• (2)然后按照(D)、(P)式写出其对偶
例:写出下面线性规划的对偶规划模型:
max z 2x1 3x2
min w 3 y1 5y2 1y3
x1 2x2 3 y1 0
s.t.
2xx11
例如,在前面的练习中已知
max z 2.5x1 x2 的终表为
3x1 5x2 15 s.t.5x1 2x2 10
x1, x2 0
0 x3 9 2.5 x1 2
0 19 1 - 3
5
5
1
2
0
1
5
运筹学笔记4、5-特殊线性规划(整数规划、对偶问题)
每个线性规划问题都有一个与之对应的对偶问题。
简单考虑如下的生产分配问题我们有下面的对偶问题:该问题的任意一个可行解对应的目标函数值都不小于原问题的目标函数值,但是两个问题的最优目标函数值(有限)相同。
一般而言:1、每个对偶变量对应原问题的一个约束条件2、原问题是等式约束则对偶变量无不等式约束(非负约束)3、原问题是不等式约束则对偶变量有不等式约束4、原问题变量和对偶问题约束条件同样具有如上规律任何原问题和对偶问题之间都存在下述相互关系:弱对偶性:原对偶问题任何可行解的目标值都是另一问题最优目标值的界(推论:原对偶问题目标值相等的一对可行解是各自的最优解)强对偶性:原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等互为对偶的线性规划问题解之间关系有如下四种:原问题与对偶问题之间存在互补松弛性:一般形式的线性规划互补松弛定理:经济学中有所谓影子价格的概念:如果增加某些约束条件的数值,原问题的最优目标值应该增加,增加单位约束使得原问题最优值的增加量为该约束条件的影子价格。
影子价格可以由对偶线性规划问题清楚地描述:对偶单纯形法:当线性规划问题中地某个约束条件或价值变量中含有参数时,原问题称之为参数线性规划,它有如下的处理方法:1)固定λ的数值解线性规划问题2)确定保持当前最优基不变的λ的区间3)确定λ在上述区间附近的最优基,回2)如以下问题:在实际问题中,许多变量以及它们的约束条件往往是离散的,或者说限定在整数域上,这便引入了整数线性规划的概念。
具体而言,整数线性规划包含纯整数线性规划(所有变量是整数变量)、混合整数线性规划(同时包含整数和非整数变量)、0-1型整数线性规划(变量等于0或1)去除整数规划的整数约束后的问题称为其松弛问题。
一般情况,原问题的解并不一定是其松弛问题的最优解附近的整数解,例如:通常的解决办法是在松弛问题的基础上出发,不断地引入整数的约束条件,从而求出整数规划的解。
运筹学对偶理论
min w 5 y1 9 y2 4 y3
y1 3y2 2 y3 2
s.t.2
y1 3 y1
y
2 2y
2y 2
3 1 4 y3
3
y1
y1
y2 0,
y2
y3
0,
5
y
无约束
3
LP1: max z=3x1+2x2
xx11++22xx2 2≤+5x3
=5
st.
2x1+ x2 ≤4 +x4 = 4
0
0
1
3
x1
1
0
0
2
x2
0
1
0
0
0
0
0
0
x4
x5
b
0
05
1
04
0
19
0
00
-1/2
0
3
1/2
02
-2
11
-3/2
0
6
5/2 -3/2 3/2
3/2 -1/2 3/2
-2
11
-1/2 -1/2 13/2
单纯形算法的矩阵表示
LP: max z = CX st. AX ≤ b
X≥0
max z = CX + 0XS st. AX +I XS = b ( I式 )
3.2.4 强对偶性定理(对偶定理)
如果原问题存在最优解X*,则其对偶问题一定具 有最优解Y*,且 CX * b'Y *
• 如果原问题存在最优解,假设其对应的基是B,即
X
* B
B 1b,
X
* N
0
运筹学之对偶问题
Max s .t
W Yb - YA C Y 0
定理2 弱对偶定理 ˆ 和Y ˆ 分别为原问题 P 及其对偶问题 D 的任意可行解, 若X 则有 ˆ Y ˆb CX 成立。
推论1:若原问题 P 和对偶问题 D 都有可行解,则必都有 最优解。 推论2:若原问题 P 有可行解,但无有限最 优解,则对偶 问题 D 无可行解。
s .t
s .t
为其对偶问题,其中yi (i=1,2,…,m) 称为对偶变量。 上述对偶问题称为对称型对偶问题。 原问题简记为(P),对偶问题简记为(D)
原始问题 Max Z=CX s.t. AX≤b X ≥0
Max C
对偶问题 Min W=Yb s.t. YAT≥C Y ≥0
Min
bT
AT m ≥ CT
第四章 线性规划的对偶理论
4.1 4.2 4.3 4.4 4.5
对偶问题 对偶问题的基本性质 对偶问题的解 影子价格 对偶单纯形法
4.1 对偶问题
(1) 对偶问题的提出
对偶理论是线性规划中最重要的理论之一,是深入了 解线性规划问题结构的重要理论基础。同时,由于问题提 出本身所具有的经济意义,使得它成为对线性规划问题系 统进行经济分析和敏感性分析的重要工具。那么,对偶问 题是怎样提出的,为什么会产生这样一种问题呢?
通过使用所有资源对外加工所获得的收益
W = 30y1 + 60 y2 + 24y3
根据原则2 ,对方能够接受的价格显然是越低越好,因此 此问题可归结为以下数学模型:
目标函数 Min W = 30y1 + 60 y2 + 24y3 y1 + 3y2 约束条件 s.t y1 , y 2 , y3 0 原线性规划问题称为原问题,此问题为对偶问题, y1 , y2 , y3为对偶变量,也称为影子价格
运筹学第四章习题答案
即:4y1+6y2=﹣8 ① 又由于原问题的最优解X1*>0,X2*<0是松约束,故对偶问题的 约束必为紧约束,即对偶问题的前两个约束必为等式:
y1+y2=﹣2 y1+ky2=﹣2 ∴由①②解得y1*=﹣2 Y*=(﹣2,0)
② ③ y2*=0,即对偶问题的最优解为
将y1*,y2*的值代入③式得k=﹣1
(2)max z=4x1-2x2+3x3-x4
X1+x2+2x3+x4≤7
2x1-x2+2x3-x4=﹣2
s、t
X1-2x2+x4≥﹣3
X1、x3≥0 x2、x4无符号约束
解:其对偶问题为:
Min w=7y1-2y2-3y3
y1+2y2+y3≥4
y1-y2-2y3=﹣2
s、t
2y1+2y2≥3
y1-y2+y3=﹣1
y1≥0 y2无符号约束 y3≤0
4、已知线性规划问题:
Max z=x1+2x2+3x3+4x4
x1+2x2+2x3+3x4≤20
s、t
2x1+x2+3x3+2x4≤20
xj≥0 j=1、2、3、4
其对偶问题最优解为y1=1.2 y2=0.2,由对偶理论直接求出原问题的 最优解。
解:将Y*=(1.2,0.2)代入对偶问题的约束条件:
1、写出下列线性规划问题的对偶问题。
(1)min z=x1+x2+2x3
X1+2x2+3x3≥2
2x1+x2-x3≤4
s.t
3x1+2x2பைடு நூலகம்4x3≤6
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。
答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。
答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。
答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。
()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。
()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。
答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。
工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。
《运筹学》胡运权清华版-2-01对偶问题
应用场景限制
对偶问题在某些应用场景中可能存在限制, 需要探索更广泛的应用领域和场景。
对偶问题的未来发展方向
交叉学科融合
对偶问题将与数学、物理、工程等多个学科交叉融合,形成新的 研究领域和方向。
算法优化与并行计算
针对大规模对偶问题的求解,将发展更高效的算法和并行计算技 术,提高求解效率。
应用领域拓展
02
对偶问题在优化、机器学习、大数据等领域的应用将进一步深
化,推动相关领域的发展。
算法创新
03
针对对偶问题的求解算法将不断创新,提高求解效率,满足大
规模复杂问题的求解需求。
对偶问题的研究难点与挑战
理论证明
对偶理论中的一些基本定理和性质仍需进一 步证明和完善,以增强其数学严谨性。
求解难度
求解动态规划对偶问题的方法包括状态转移方程、最优子结构、备忘录法等。这些方法可以帮助我们找 到最优解,并避免重复计算。
在求解动态规划对偶问题时,需要注意对偶问题的最优解并不一定对应原问题的最优解,因此需要对解 进行验证和调整。
博弈论对偶问题的求解方法
01
博弈论是研究多个决策者之间 决策问题的学科,而博弈论对 偶问题则是将原问题转化为求 最大值的问题。
题
非线性规划对偶问题是将原非线 性规划问题的目标函数和约束条 件转换为对偶形式后得到的新问 题。
对偶问题的重要性
理论意义
对偶问题在运筹学理论中具有重要的 地位,它揭示了原问题与对偶问题之 间的内在联系,有助于深入理解运筹 学的基本原理。
应用价值
在实际应用中,对偶问题可以用于求 解原问题的近似解或启发式解,提高 求解效率,尤其在处理大规模优化问 题时具有显著的优势。
《运筹学》第二章 对偶问题
3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1
运筹学-对偶问题
对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。
《运筹学》第二章 对偶问题和灵敏度分析jssk1
2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
w
o i
z o b i
最大利润的增量
min w 4 y1 12 y 2 18 y 3
Ⅰ
Ⅱ
D
车间1
1
0
4
车间2
0
2
12
车间3
3
2
18
利润(元) 300 500
原
max z 300 x1 500 x 2
问
s.t. 1x1 0 x 2 4
题
0 x1 2 x 2 12
3x1 2 x 2 18
x1, x 2 0
一对对偶问题
w1
w2
wm
w m1
w m2
w mn 0
对偶问题是资源定价问题,对偶问题的最优解w1、w2、...、 wm称为m种资源的影子价格(Shadow Price)
3、资源影子价格的性质
z y b1w1 b2 w2 bi wi bm wm z z b1w1 b2 w2 (bi bi )wi bm wm z bi wi
max z 300x1 500x2 s.t. 2x1 0x2 4 0x1 2x2 12
min w 4 y1 12 y 2 18 y 3 1 y1 0 y 2 3 y 3 300 0 y1 2 y 2 2 y 3 500
3x1 2x2 18
x1, x2 0
原问题是求极小值,非规范形式的对应关系是: ①约束条件是“≤”符号 对偶变量y≤0 ②约束条件是“=”符号 对偶变量y无约束 ③变量x≤0 对偶约束是“≥”符号 ④变量x无约束 对偶约束是“=”符号
线性规划的对偶问题
一、对偶问题的提出
二、原问题与对偶问题的数学模型
继续
三、对偶的经济解释
返回
一、对偶问题的提出
某工厂要生产两种新产品:门和窗。 问该工厂如何 安排这两种新产品的生产计划,可使总利润最大?
车间
单位产品的生产时间 (小时)
门
窗
1
1
0
2
0
2
3
3
2
单位利润(元) 300
500
每周可获得的 生产时间(小
资源限量(吨)
min y b1w1 b 2 w 2 b m w m
s.t.
a 11w1 a 21w 2 a m1w m w m1
资源价格(元/吨) c1
a12w1 a 22w 2 a m2 w m
w m2
c2
a1n w1 a 2n w 2 a mn w m
w mn cn
x n2
b1 b2
a m1x1 a m2 x 2 a mn x n
消耗的资源(吨) x1
x2
xn
x n1
x nm bm
x n2
x nm 0
单位产品消耗的资源(吨/件)
剩余的资源(吨) 资源限量(吨)
2、对偶问题
原始和对偶问题都取得最优解时,最大利润 max z=min y
总利润(元)
付出的代价最小, 且对方能接受。
出让代价应不低于
用同等数量的资源
收
自己生产的利润。
购
厂家能接受的条件:
1 y 1 出 用0让 同y代 等2 价数应量3不的y 3低资于源300 0 y 1 自 己2 生y 2产的2利y润3 。 500 收购方的意愿:
单位产品门出租 收入不低于300元
单位产品窗出租 收入不低于500元
max z 5x1 3x2 2x3 4x4
5x1 x2 x3 8x4 8
s.t 2x1 4x2 3x3 2x4 10
x1,x2 0
x 3 ,x 4无约束
对偶问题为
min w 8y1 10 y2
5 y1 2 y2 0
s.t.
y1 4 y2 3 y1 3 y2 2
8 y1 2 y 2 4
y1 0, y2无约束
三、对偶的经济解释
1、原始问题是利润最大化的生产计划问题
总利润(元)
单位产品的利润(元/件)
产品产量(件)
max z c1x1 c 2 x 2 c 2 x 2
s.t.
a 11x 1 a 12 x 2 a 1n x n x n1
a 21x1 a 22x 2 a 2n x n
厂 家
对 偶 问 题
收
min w 4 y 1 12 y 2 18 y 3
购
厂 1 y 1 0 y 2 3 y 3 300
家 0 y 1 2 y 2 2 y 3 500
原问题
对偶问题
max
s.t.
z CX AX b X 0
min s.t.
w Yb YA C
Y0
一 3个约束 般 2个变量
W ≤0
关键口诀:对偶问题约束符号由原问题变量符号确 定,对偶问题变量符号由原问题约束符号确定。
非规范型模型的“非”无非有4个方面: ①约束条件是“≥”符号 对偶变量y≤0 ②约束条件是“=”符号 对偶变量y无约束 ③变量x≤0 对偶约束是“≤”符号 ④变量x无约束 对偶约束是“=”符号
2个约束 3个变量
规
律
C (c1, c2 )
Y (y1,y 2 ,y3 )
A (aij )
X
x1 x2
b1
b b2
b
3
特点:
1. max min 2.限定向量b 价值向量C
其它形式 的对偶
?
(资源向量)
3.一个约束 一个变量。
4. max z的LP约束“ ” min z 的
时)
4 12 18
设 门产量––––– x1
窗产量––––– x2
如何安排生产, 使获利最多?
max z 300 x1 500 x2s.t. ຫໍສະໝຸດ x142 x2 12
3x1 2 x2 18
x1, x2 0
厂 家
设: 车间1 —— y1 元/时 车间2 –––– y 2 元/时 车间3 –––– y 3 元/时
二、原问题与对偶问题的对应关系
原问题
目 标 函 数 M ax
约
m个
束
条
件
=
决
n个
策
0
变
0
量
无约束
资源系数 b 价值系数 C 约束条件系数矩阵 A
对偶问题
目 标 函 数 M in
m个
决
0
策
0
变
无约束
量
n个
约
束
条
=
件
价 值 系 数 bT 资 源 系 数 CT 约 束 条 件 系 数 矩 阵 AT
例:
LP是“ ”的约束。
5.变量都是非负限制。
其他形式问题的对偶
min z=CTX s.t. AX≥b
X ≥0
min z=CTX s.t. AX=b
X ≥0
min z=CTX
s.t. AX≤b
X ≥0
max y=bTW s.t. ATW≤C
W ≥0
max y=bTW s.t. ATW≤C
W :unr
max y=bTW s.t. ATW≤C