新能源汽车的节能技术分析
汽车新能源与节能技术应用研究精选全文

可编辑修改精选全文完整版汽车新能源与节能技术应用研究随着能源环保意识的不断提高,新能源汽车已成为汽车产业的发展方向。
为提高新能源汽车的能效,采用节能技术对新能源汽车进行优化设计,成为了大家关注的焦点。
本文从新能源汽车及节能技术的应用研究方面进行阐述。
一、新能源汽车的发展新能源汽车是指利用非传统能源的汽车,包括纯电动汽车、混合动力汽车、氢燃料电池汽车等。
随着能源环保意识的不断提高,新能源汽车已成为汽车产业的发展趋势,被视为未来汽车行业发展的重点。
1、电动汽车电动汽车是指利用电力驱动电机转动车轮的汽车,其主要优点是能够完全消除尾气排放和噪音污染。
电动汽车的电能可以通过电池储存,也可通过太阳能、风能、水能等可再生能源来获得。
与传统汽车相比,电动汽车的能效更高,性能更稳定,维护成本更低。
目前,电动汽车的技术已经十分成熟,市场上有多款成熟的电动汽车品牌,如特斯拉、比亚迪等。
2、混合动力汽车混合动力汽车是指将传统燃油发动机与电动机相结合的汽车,其主要优点是既可以使用传统燃油发动机提供动力,也可以使用电动机进行驱动,从而达到节能环保的目的。
混合动力汽车的燃油效率比传统汽车高,减少了尾气排放和噪音污染。
目前,丰田、本田等大型汽车公司已经推出了多款成熟的混合动力汽车。
3、氢燃料电池汽车氢燃料电池汽车是指利用氢气和氧气在氢燃料电池中发生化学反应产生电能,从而驱动车辆的汽车。
氢燃料电池汽车不需要传统汽车的发动机和传动系统,减少了传统汽车排放的废气和噪声,是一种绿色环保的汽车。
目前,丰田、本田等大型汽车公司已经推出了多款氢燃料电池汽车。
目前,汽车能源消耗量占全球总能耗量的20%左右,汽车的节能环保技术研发已成为汽车产业发展的重要方向。
汽车节能技术研发的目标是提高汽车的能效,减少车辆的燃油消耗和尾气排放,降低汽车的运营成本。
1、轻量化技术轻量化技术是指在保证汽车安全前提下,最大限度地减轻汽车重量的技术。
轻量化技术可以通过材料选择、结构优化和工艺改进等手段来实现。
新能源车的能耗与节能分析

新能源车的能耗与节能分析新能源车作为当今社会推动可持续发展的重要产物,一直备受关注。
其能耗和节能性能直接影响着其在市场上的竞争力和实际使用效果。
本文将对新能源车的能耗与节能进行深入分析,探讨其优势和潜在问题。
一、能源利用效率新能源车采用电池、燃料电池等替代传统燃油动力,具有更高的能源利用效率。
传统燃油车在发动机工作时能量转换效率低,热量损失严重,而电动车使用电能直接驱动电机,转换效率更高。
此外,新能源车还能通过回收制动能量和光伏发电等方式提高能源利用效率。
二、能耗分析新能源车的能耗主要包括充电电量和燃料消耗两部分。
电动车的能耗与电池容量、驾驶习惯、路况等因素有关。
一般而言,续航里程越长的电动车在相同使用条件下能耗越低。
燃料电池车主要消耗氢气,能耗受氢气纯度、氢气泄漏等因素影响。
三、节能技术为提高新能源车的节能性能,各汽车制造商纷纷推出了一系列节能技术。
例如,采用先进的轻量化材料、优化电机控制系统、改善动力系统传动效率等。
此外,智能充电、能量回收制动、车辆动力管理系统等技术也能有效降低车辆能耗。
四、节能优势相比传统燃油车,新能源车具有明显的节能优势。
首先是能源利用效率高,能耗低;其次是减少了化石能源消耗,对环境更加友好;再者是节约了能源开支,符合社会可持续发展的发展方向。
因此,新能源车在未来可持续交通发展中具有重要地位。
五、潜在问题虽然新能源车具有诸多优势,但也存在一些潜在问题。
比如,电动车的续航里程短、充电设施不足、电池回收问题等仍然困扰着消费者;燃料电池车的氢气存储、运输、氢气泄漏等问题也尚待解决。
因此,新能源车在面临市场竞争时需要不断改进技术,提升用户体验。
综上所述,新能源车的能耗与节能是影响其市场竞争力的重要因素。
通过能源利用效率的提高、节能技术的革新,新能源车在未来将会发挥更加重要的作用,推动可持续发展的进程。
希望在不久的将来,新能源车能够成为主流交通工具,实现绿色出行的愿景。
新能源车的能耗与节能分析

新能源车的能耗与节能分析一、引言随着环境污染和石油资源日益紧缺的问题日益突出,新能源车作为一种清洁、可再生的交通工具,备受关注。
然而,在新能源车发展的过程中,能耗与节能问题成为一个重要的考量因素。
本文将针对新能源车的能耗问题进行深入分析,并提出相应的节能措施。
二、新能源车的能耗分析1. 能耗定义能耗是指在车辆行驶过程中,单位里程所消耗的能量。
常用能耗单位为千瓦时/百公里(kWh/100km)。
2. 影响能耗的因素(1)电池能量密度:电动汽车的能耗与电池的能量密度有关,能量密度越高,能耗就越低。
(2)车重:车重对能耗也有重要影响,较重的车辆需要更多的能量来推动。
(3)空气阻力:空气阻力是车辆行驶过程中主要的能耗来源之一,车辆在高速行驶时,空气阻力对于能耗的贡献较大。
(4)行驶速度:行驶速度越高,能耗越高,因为提高速度需要更多的能量来克服空气阻力和惯性。
(5)驾驶习惯:急刹车、急加速以及频繁变道都会导致能耗的增加。
3. 常见新能源车的能耗水平以电动汽车为例,一般可以分为纯电动汽车(BEV)和插电式混合动力车(PHEV)。
(1)纯电动汽车:根据不同型号和品牌,纯电动汽车的能耗水平存在差异,一般在12-25kWh/100km之间。
(2)插电式混合动力车:由于插电式混合动力车可以在驱动电机被用完之前使用发动机进行充电,其能耗相对较低,一般在6-10kWh/100km之间。
三、新能源车的节能措施1. 提高电池能量密度研发更高能量密度的电池可以有效降低新能源车的能耗水平。
提高电池能量密度,即在单位体积或质量下储存更多的电能,可以减少频繁充电的次数,提高续航里程,并降低能耗。
2. 减轻车辆重量通过采用轻量化材料,如碳纤维复合材料等,可以降低车辆的自重,减少能量的消耗。
3. 优化车辆空气动力学设计改善车身外形和减小风阻系数,可以降低车辆在高速行驶过程中的空气阻力,减少能耗。
4. 提倡合理驾驶习惯通过培养驾驶员良好的习惯,如平稳驾驶、避免急刹车和急加速,可以降低能耗。
新能源汽车动力系统的优化与节能技术

新能源汽车动力系统的优化与节能技术随着环保意识的增强和能源紧缺问题的日益突出,新能源汽车逐渐成为全球汽车行业的重要发展方向。
新能源汽车动力系统的优化与节能技术是提高新能源汽车性能和推动其市场普及的关键。
本文将重点探讨新能源汽车动力系统优化与节能技术的现状和未来趋势。
一、动力系统优化新能源汽车动力系统的优化是实现高效能量转换和提升整车性能的关键步骤。
主要包括电动机技术的改进、电池系统的优化以及能量管理系统的完善。
1. 电动机技术改进电动机作为新能源汽车的核心动力装置,其效率和性能对整车性能产生直接影响。
通过提高电动机的效率、降低损耗和提升动力响应速度,可以实现动力系统的优化。
例如,采用高效磁钢材料和减少铜损耗的电机设计,可提高动力转换效率。
2. 电池系统优化电池系统是新能源汽车动力来源的重要组成部分。
为了提高电池能量密度和延长电池寿命,需要对电池材料、结构和管理系统进行优化。
研发更为先进的电池材料,如锂电池和固态电池,可以提高能量密度和充放电效率。
同时,建立智能化电池管理系统,合理控制电池的充放电过程,可以提升电池的寿命和稳定性。
3. 能量管理系统完善新能源汽车的能量管理系统是整个动力系统的大脑,通过智能化控制和协调各个子系统的运行,实现能量的高效利用。
通过优化能量管理算法和控制策略,可以最大程度地提高能量转化效率和减少能量损耗。
例如,采用智能预测控制策略,根据驾驶条件和路线规划,合理分配动力输出和能量回收,进一步提高新能源汽车的续航里程。
二、节能技术应用除了动力系统的优化,新能源汽车的节能技术应用也是提高能源利用效率和降低污染排放的关键。
主要包括车身轻量化技术、动力总成能量回收利用以及智能能源管理系统的应用等。
1. 车身轻量化技术采用轻量化材料和优化设计,降低车身重量是提高新能源汽车能效的重要手段。
例如,使用高强度钢材、铝合金和碳纤维等轻量化材料,可以减轻车身质量,并优化车身结构,提高整车刚度和安全性。
新能源电动汽车节能减排效应与发展路径分析

新能源电动汽车节能减排效应与发展路径分析新能源电动汽车是指以电能为动力源的汽车,与传统内燃机汽车相比,新能源电动汽车具有节能减排、环保和低碳等优势,受到越来越多消费者的青睐。
本文将从新能源电动汽车的节能减排效应和发展路径两个方面进行分析。
1. 节能效果显著传统内燃机汽车燃油的燃烧产生大量尾气,其中包括一氧化碳、二氧化碳、一氧化氮和颗粒物等有害物质,对环境和人体健康造成很大的污染。
相比之下,新能源电动汽车采用电能作为动力源,无需燃油,减少了尾气排放,节能效果非常显著。
2. 减少温室气体排放新能源电动汽车的推广和应用有助于减少温室气体的排放,尤其是二氧化碳排放。
根据相关数据统计,新能源电动汽车每行驶100公里可以减少约20公斤的二氧化碳排放,为全球的碳减排贡献了重要的力量。
3. 促进空气质量改善尾气排放是导致城市空气污染的重要原因之一,采用新能源电动汽车可以减少尾气排放,改善城市空气质量,从而保障居民健康。
二、新能源电动汽车的发展路径分析1. 技术创新与研发新能源电动汽车的核心在于电池技术和电动机技术,要推动新能源电动汽车的发展,必须加大在电池技术和电动机技术上的研发投入。
目前,各大汽车制造商都在加大对新能源汽车技术的研发力度,不断推出性能更优越、续航里程更长的新能源电动汽车产品。
2. 建立健全的充电基础设施充电基础设施的建设是推动新能源电动汽车发展的关键。
政府可以加大对充电基础设施建设的投入,鼓励企业投资充电桩建设,同时完善充电标准和服务体系,提高充电设施的使用便利程度。
3. 加大对新能源汽车的政策支持政府可以出台更加优惠的补贴政策,推动新能源电动汽车的市场化发展。
还可以加大对新能源汽车的研发资金支持,鼓励企业加大在新能源汽车领域的投入。
4. 完善行业标准和监管建立健全的行业标准和监管体系,规范新能源汽车市场秩序,保障消费者利益,增强新能源汽车市场竞争力,促进新能源汽车产业的健康发展。
5. 加强宣传和推广政府和企业可以加大对新能源汽车的宣传和推广力度,提高消费者对新能源汽车的认知度和接受度,引导更多消费者选择新能源汽车,从而推动新能源汽车市场的快速发展。
新能源汽车技术对环境保护的贡献分析

新能源汽车技术对环境保护的贡献分析1. 引言新能源汽车作为替代传统燃油汽车的一种可行选择,以其对环境的友好性逐渐受到广泛关注。
本文将分析新能源汽车技术对环境保护的贡献,并从节能减排、空气质量改善、减少噪音污染等方面进行阐述。
2. 节能减排传统燃油汽车使用化石燃料,燃烧过程中产生大量废气排放,其中包括二氧化碳、一氧化碳、氮氧化物和颗粒物等污染物。
然而,新能源汽车采用电力或者氢气作为动力源,无燃烧过程,因此在运行过程中不会产生尾气排放。
以电动车为例,根据统计数据,电动车相比传统燃油汽车每年能够减少约2.3吨的二氧化碳排放。
这种节能减排的贡献不仅能够改善城市空气质量,还有助于应对全球气候变化问题。
3. 空气质量改善传统燃油汽车排放的废气中含有大量的有害物质,如一氧化碳、氮氧化物和颗粒物等,这些物质对人体健康和环境造成严重影响。
而新能源汽车几乎没有尾气排放,使得空气质量得到显著改善。
据统计,纯电动汽车相比传统燃油汽车每公里能够减少约98%的苯、92%的二氧化氮以及97%的醛等有害物质的排放。
这种改善空气质量的能力有助于降低城市空气污染和提升居民的生活质量。
4. 减少噪音污染传统燃油汽车在行驶过程中产生的发动机噪音、排气管噪音以及传动系统噪音等给城市生活带来噪音扰居问题。
相比之下,新能源汽车通常采用电动驱动,电动机运行时噪音低于传统发动机,降低了车辆噪音对居民生活的影响。
据研究表明,纯电动汽车的噪音水平约为传统燃油汽车的一半左右。
这种降低噪音污染的能力不仅提升了城市居民的生活品质,还有利于降低噪音对人体健康的影响。
5. 资源利用效率提高新能源汽车通常采用了先进的动力系统、电池技术以及轻量化设计等,使得能源利用效率得到提高。
与传统燃油汽车相比,新能源汽车的能源利用率更高,能够更有效地将能源转化为机械能,减少能源的浪费。
在电池领域,随着锂离子电池技术的不断改进,新能源汽车的续航里程也不断提高,进一步提高了电动汽车的使用效率。
关于新能源汽车的节能减排技术

关于新能源汽车的节能减排技术近年来,随着环境保护意识的提高和能源供需问题的突出,新能源汽车逐渐成为了人们关注的热点话题。
相比传统燃油汽车,新能源汽车具有更低的能耗和更少的尾气排放,成为了一种可靠的解决方案。
然而,如何进一步提高新能源汽车的节能减排能力,依然面临挑战。
本文将深入探讨新能源汽车的节能减排技术,为读者带来更多专业且实用的知识。
1.轻量化材料的应用新能源汽车的节能减排离不开轻量化材料的应用。
通过使用高强度、低密度的材料,可以减轻车身质量,从而降低能源消耗。
例如,以碳纤维复合材料替代传统钢铁材料,可以使车辆重量减少约30%,从而提高能源利用效率。
还可以使用铝合金、镁合金等轻质材料来减轻车身重量,进一步提高车辆的节能性能。
2.高效电池技术的突破电池作为新能源汽车的能量存储装置,其性能的提升对于节能减排至关重要。
近年来,随着锂离子电池技术的不断发展,新一代高能量密度电池逐渐成熟。
这种电池具有更高的能量储存能力和更长的续航里程,能够满足消费者对于出行的需求。
磷酸铁锂电池等新型电池技术也具备更高的安全性和循环寿命,极大地提高了新能源汽车的可靠性和使用寿命。
3.智能节能系统的应用新能源汽车的智能节能系统能够根据车辆实际使用情况,合理调节能量消耗,从而进一步提升节能减排效果。
例如,通过车辆能量回收系统,将制动时产生的能量转化为电能储存起来,用于驱动车辆和供电给其他设备使用。
智能节能系统还可以根据路况和驾驶习惯,智能调整动力输出,实现更加高效的能源利用。
4.微网和车联网技术的应用微网和车联网技术的应用可以进一步提高新能源汽车的节能减排能力。
微网技术将新能源汽车与电网无缝连接,实现能量互补和共享,最大程度地提高能源效率。
车联网技术能够实现车辆之间的信息交流和协同,减少车辆之间的冲突和能量浪费,实现更加智能化和高效的行驶。
新能源汽车的节能减排技术在不断创新和发展,为我们打造更加绿色、环保的出行方式提供了解决方案。
新能源汽车节能技术的应用

新能源汽车节能技术的应用新能源汽车节能技术的应用包括多个方面,下面将从动力系统、轻量化设计、新材料和智能化控制四个方面进行详细介绍。
一、动力系统动力系统是新能源汽车的关键技术之一,其节能的应用对整个汽车的能源利用效率起着至关重要的作用。
目前,新能源汽车采用的动力系统主要包括纯电动、混合动力和燃料电池三种形式。
这些动力系统的节能技术包括电机和电池的能量管理、动力系统的智能控制、能量回收等。
首先是电机和电池的能量管理。
电机和电池是新能源汽车动力系统的核心部件,其能量管理的好坏直接影响着汽车的能源利用效率。
采用高效率的电机,减小电机的能量损耗,提高电机的工作效率,是一种重要的节能技术。
而对于电池来说,采用高能量密度、高循环寿命的电池,提高电池的充放电效率,也是一种重要的节能技术。
其次是动力系统的智能控制。
通过智能控制技术,可以使动力系统实现最优化的运行状态,提高整车的能源利用效率。
在起步和加速阶段,通过智能控制技术可以使电机达到最佳工作状态,提高动力系统的效率。
在制动过程中,通过能量回收技术可以将制动过程中的动能转化为电能存储到电池中,提高整车的能源利用效率。
二、轻量化设计轻量化设计是新能源汽车节能技术的另一个重要方面。
汽车的轻量化设计可以减小汽车的整备质量,降低能源消耗,提高车辆的燃油经济性。
轻量化设计主要包括选用轻质材料、优化结构设计、减小零部件数量等。
首先是选用轻质材料。
选用轻质高强度的材料,是实现汽车轻量化的重要手段之一。
目前,新能源汽车轻量化设计中常用的材料包括铝合金、镁合金、碳纤维复合材料等,这些材料相对于传统材料具有更高的强度和更低的密度,能够有效减少汽车的整备质量。
其次是优化结构设计。
通过采用优化的结构设计,可以实现汽车零部件的精简和集成,减少汽车的质量和空气阻力,提高整车的能源利用效率。
采用多边形镁合金车轮、镁合金悬架等轻量化零部件,可以有效降低汽车的整备质量,提高汽车的燃油经济性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 81 -工 业 技 术0 前言能源是人类文明发展的基石,现代文明的发展是经过能源的发展升级而逐渐演变至今,随着石油资源的大量开采以石油资源为主的传统能源逐步消耗殆尽,加之环境污染问题,现代汽车产业急需引入新能源用以取代原有的能源结构,实现汽车产业的跨越式发展。
在加快新能源汽车开发的同时需要积极做好节能与环保技术的研究与应用,促使汽车产业实现对于能源的精细化应用。
1 新能源汽车技术发展现状随着以原油为代表的传统能源日渐枯竭,开发新型车用能源成了全世界各个国家所需考虑的重要问题。
新能源汽车技术就是在这一基础上发展起来的,应用于汽车的新能源技术包括:混合动力汽车、纯电动汽车、氢动力汽车、生物乙醇汽车以及燃气动力等其他类型的车辆。
混合动力车辆主要以日企为主要生产商并将这一类型的车辆成功投放到了日本、中国、北美以及欧洲等市场,混合动力汽车的市场占比较小且价格比同等传统汽车昂贵。
纯电动汽车是全球各国车企重点研发的一种新能源车型,且在纯电动汽车的各重点领域中都有所突破,现今以特斯拉公司所生产的纯电动汽车为例,其一次充电能够行驶约600 km 以上,使用专用充电站快速充电的时间可以压缩至极短的时间,已初步具备了商业应用的价值。
燃气动力汽车和氢能源汽车的相关技术也取得了关键性的突破。
下面就将新能源汽车中的纯电动汽车、混合动力汽车和燃料电池汽车技术进行相关介绍。
1.1 纯电动汽车技术纯电动汽车技术主要是指汽车动力源不是传统汽车的燃油发动机,而是动力电池。
工作原理是动力电池电能通过带电压转换器的逆变器根据车辆负荷调节电压后将直流电转化为交流电提供给电动机产生驱动力驱动车辆行驶。
电动机根据汽车行驶状况可向外输出动力,也可作为发电机为动力电池充电。
纯电动汽车滑行与刹车时根据动力电池电量与其当前状况可以进行能量回收为动力电池充电而增加续航里程,续航里程主要取决于动力电池种类与容量,纯电动汽车还可以通过电网为其充电,保证汽车的续航里程。
由于纯电动汽车实现了汽车的零排放,电池技术也有所突破,所以世界各大汽车厂商都致力于研发纯电动汽车,使该技术日益完善。
1.2 混合动力汽车技术混合动力汽车技术主要是指汽车的动力源由动力电池和传统燃油发动机2个部分组成,两者相辅相成将各自的动力根据车辆的负荷与运行状况叠加在一起向外输出,两者又可独立工作完成对于车辆的驱动。
一般来说传统燃油发动机驱动多作为车辆的主驱动技术,电力驱动主要用于车辆起步、中低速行驶、泊车等中小负荷状态下车辆的驱动,当汽车急加速、重载或高速行驶时电力驱动又作为辅助动力与发动机动力叠加到一起共同驱动以保证车辆强劲的动力性能。
电力驱动多作为辅助驱动,其要求具有较强的适应性且根据不同的工况特性来平衡功率,还需要能够完成对能量的再生与存储。
混合动力系统按结构可分为串联式、并联式与混联式,目前并联和混联式混合动力汽车较为常见,而混联式综合性能最佳,按充电方式又可分为非插电式混合动力与插电式混合动力,非插电式混合动力汽车纯电驱动续航里程相对较短,而插电式混合动力汽车可以通过电网为动力电池充电,纯电驱动模式续航里程更长,经济性能、使用性能与排放性能优于非插电式混合动力汽车。
混合动力汽车综合性能与传统汽车相比虽然略胜一筹,但没有实现汽车零排放,由于技术较为成熟,世界各大汽车厂商已对其批量生产,但只作为新能源汽车的过度产品。
1.3 燃料电池汽车技术燃料电池汽车主要通过燃料经过化学反应形成可供利用的电能去驱动汽车行驶。
与常规电池电动车辆有所不同,通过加入燃料与燃料氧化剂形成氧化反应并产生电能来为动力电池充电,由动力电池为车辆提供电力进行驱动,燃料电池与氧化剂所形成的氧化反应器能源转换率高达90 %左右,具有极高的能源转换效率。
燃料电池汽车其主要使用的燃料为氢气,利用氢燃料的化学反应形成电能来驱动汽车行驶,不同于传统燃油车,燃料电池汽车没有了燃油的燃烧过程,因此不会产生一氧化碳、二氧化碳、碳氢化合物、氧化氮等会对环境和人体造成污染的有害气体。
丰田汽车公司的氢燃料电池轿车Mirai 是丰田首款量产的氢燃料电池汽车,Mirai 在行驶过程中不加油、不充电、不排放尾气,唯一排放的废物是纯净水,它的工作原理是通过电解水制氢,再把氢气加入车内燃料电池堆栈发生化学反应产生电能为动力电新能源汽车的节能技术分析孙宝明(沈阳职业技术学院汽车分院,辽宁 沈阳 110015)摘 要:汽车产业是一个国家发展的支柱性产业。
我国汽车产业发展迅猛已经成了汽车保有量增速最快的国家,大量增加的汽车保有量尽管为民众的出行带来了较大的便利,但是也存在着较为严重的环保和能源问题。
为解决困扰汽车发展的能源问题,国家通过技术研发与能源替代不断将新能源技术应用于汽车中,为汽车发展注入新动力.在加大新能源应用的同时也需要积极做好节能技术在汽车中的应用,用以提高能源的利用率,实现对于能源的节约、清洁、高效利用,促进汽车产业的可持续发展。
关键词: 汽车;新能源;节能环保中图分类号:S210 文献标志码:A- 82 -工 业 技 术池充电来驱动电机为车辆提供动力,虽然燃料电池名字里面有“燃料”字样,同时氢气也能够与氧气在一起剧烈燃烧,但在燃料电池中却不是利用燃烧来获取能量,而是利用氢气跟氧气化学反应过程中的电荷转移来形成电能的。
相比纯电动车而言,目前充电最快的特斯拉Model S 的超级充电站也需要1.25 h 才能充满电量,而氢气加注的速度则更快,仅需3 min 即可充满两个储氢罐,并且超过600 km 的续航里程,甚至比普通燃油车综合使用性能更加优越。
纯电动汽车、混合动力汽车与燃料电池汽车动力性能、舒适性能与经济性能远超过传统汽车,特别在节能减排方面表现得尤为突出。
目前国内新能源汽车以纯电动与混合动力汽车为主。
因为氢燃料电池汽车具有充氢时间短、排放无有害成分、续航里程长等优势,基本解决了能源与环保的问题,所以是新能源汽车的发展趋势。
2 太阳能技术在汽车领域中的应用太阳能技术能够有效的利用太阳作为能源与传统燃油能源相比其更高效也更节能,太能技术利用光伏面板完成太阳能与电能的转换,并将转化完的电能存储在电池内,现今的太阳能转换利用率能够达到约23 %左右,太阳能汽车由于能够接收太阳能因此对于能源的消耗较少,仅2 m 2~3 m 2的太阳能面板所提供的转化电能就能够满足太阳能汽车的行驶所需,太阳能汽车对于能源的利用率较高,与传统能源车相比降低了约2/3左右的热能损耗,大幅减少了能源需求与损耗,也更加环保。
太阳能汽车主要利用电动机驱动,控制更加简单、高效。
2.1 太阳能汽车所主要应用的技术分析太阳能汽车主要由电池技术、电机驱动技术、车体技术、能量管理技术等几大部分所组成,与传统燃油车相比极大地简化了车辆的结构与构成,整体车辆显得更加简洁、合理。
太阳能电池是太阳能汽车的电能存储与转化的重要部分,其转换率直接影响着车辆的行驶特性。
现今应用于太阳能汽车中的电池主要为硅电池与薄膜电池两大类。
太阳能汽车的车体部分在风阻方面更加优化,车辆整体线条更加柔顺,形状相对扁平以便车辆在行驶过程中消耗的能源更少。
汽车的底盘部分主要包括承载式、半承载式以及无载荷组合式三大结构,总体来说,上述3种结构都能够满足车辆的承载和载荷需求,在太阳能汽车设计中需要注意上述三种底盘结构所存在的区别,做好对于太阳能汽车底盘结构的优化。
2.2 太阳能汽车驱动技术太阳能汽车现今虽然技术有所突破,但是在能源转换效率以及车载电池方面仍然存在一定的不足。
太阳能汽车的动力构成主要是以混合驱动技术为主的,以太阳能作为辅助能源,燃油系统作为主要的动力源,在太阳能汽车行驶的过程中完成各驱动能源的切换、优化。
在太阳能汽车行驶过程中对于低速、匀速部分主要以太阳能能源系统为驱动能源,而当太阳能汽车遭遇爬坡、加速等高能耗部分时则需要以燃油系统为主,太阳能汽车的电池部分则进入蓄电、充电模式。
对于太阳能汽车的蓄电电池能够在太阳能汽车行驶过程中及天气晴好状态下对太阳能汽车的蓄电池进行充电用以满足车辆行驶对于电能的需求。
此外,在特殊情况下还可以使用电网对车辆动力电池进行充电用以满足太阳能汽车夜间行驶的动力需求。
当太阳能汽车全部采用电力驱动时,对于电能的使用和消耗应当构建起完善的能源管理系统,以便在太阳能电池在最大功率点下进行高效、节能工作。
3 应用于汽车中的节能技术3.1 创驰蓝天技术创驰蓝天技术其主要原理在于对汽车车辆尾气进行二次利用,利用尾气所具有的热能和压力来提高汽车对于能源的利用效率,实现节油、增效的目的。
此外,蓝驱技术在汽车中的应用还通过对汽车的外形、传动等部分进行优化,降低汽车行驶过程中的燃油消耗。
蓝驱技术应用于汽车中时,借助于建模与风洞模拟,将汽车外形的风阻降至最优化水平,完成对于汽车底盘高度、胎压、滚动阻力以及风阻系统等的优化、调节,用以最大限度地提升车辆在行驶时的效率,实现汽车的节能。
3.2 汽车压燃技术汽车压燃技术通过改变车辆的点火方式,提高了车辆发动机对于燃料的压缩比,以使车辆发动机对燃料的压缩比更高,提高燃油的使用效率,实现节能减排。
此外,压燃技术在汽车中的应用还能够有效地缩短发动机的燃烧周期、降低燃烧温度以及降低辐射热传递。
4 结语汽车作为重要的陆上交通工具在近现代文明发展中扮演着重要的角色。
现代社会的发展对于汽车提出了更高的要求,以太阳能、电能为代表的新能源驱动技术在逐步地应用于汽车发展中,为汽车的发展提供了新的发展方向。
该文在分析新能源汽车技术发展特点与现状的基础上对新能源汽车技术的应用特性及节能技术进行了分析介绍。
参考文献[1]史永基,高雅利,王宇炎,等.新能源汽车节能减排技术研究进展(I)——发动机系统[J].传感器世界,2011 , 17 (7) :6-13.[2]史永基,高雅利,王宇炎,等.新能源汽车节能减排技术研究进展(2)——能量管理系统(上)[J].传感器世界,2011 , 17 (8) :6-12.[3]侯彦羽.低排放导向下新能源汽车节能控制技术及优化[J].南昌大学学报(理科版),2017 (4) :383-385.。