实验一、水分活度的测定
实验1——水分活度的测定
AW小组值 均值
分辨率:±0.01aw
精确度:±0.02aw
性能简介:操作简便、快速,5分钟显示结
果。随时检测产品质量及现场生产控制。能 连续测试样品的水分活度,精确度高,对一 些水活特别低的样品亦可测量。
水份活度测定
测定:将试样尽量弄碎,放入水分活度 传感器中,盖好传感器。用封带密封, 选择键选择“测量”功能,按“确认” 键,进入测定状态。 o 实验结果 : 结果要求测定3次计算平均值
实验一:水分活度的测定
水分活度指物质中活性水部分或者自 由水。它主要影响物质物理、化学、微生 物特性,其中包括流淌性、凝聚、内聚力 和静态等物理现象;食物保质期、颜色、 味道、维生素、成分、香味的稳定性;霉
菌的生成和微生物的生长特性都直接受物
质的水分活度值所影响。
水分活度的控制对产品的保质期是非
常重要的。比如说一块水分活度值为0.81
的蛋糕,其保质期为21℃时24天,如果其
水分活度提高到0.85,其保质期将降ቤተ መጻሕፍቲ ባይዱ为
21℃时12天。
水分含量与水分活度的关系:
食品的水分活度并不等同于其水分含量
,例如金黄色葡萄球菌生在要求的最低水分
活度为0.86,但相当于这个水分活度的水分
含量则随不同食品而异,如肉干为23%,乳
粉为16%,肉汁为63%。所以,按水分含量 多少难以判断食品的保存性,只有测定和控 制水分活度才对食品保藏性具有重要意义。
水分含量% 水活 度 16 35 65-56 14 5 4 25 ---0.75 0.93 0.90 0.61 0.53 0.33 0.74 0.50
水分活度的测定方法: 1. 平衡质量(水分)测定法——坐标插 入法(康维微量扩散法)。 2. 水分活度仪法。
食品中水分活度值的测定
一、实验目的
1、了解水分活度对食品品质及食品保藏稳定性的影 响。
2、掌握扩散法测量水分活度值的方法。
二、实验原理
样品在康威氏(Conway)微量扩散器的密封和 恒温条件下,分别在Aw较高和较低的标准饱和溶 液中扩散平衡后,根据样品质量的增加(在Aw较 高的标准溶液中平衡)和减少(在Aw较低的标准 溶液中平衡)的量,求出样品的Aw。
Aw值测定图解
六、注意事项
1、取样时应该迅速,各份样品称量应在同一条件下 进行。
2、康威氏皿密封性应良好。 3、试样的大小、形状对测定结果影响不大,取试样
的固体部分或液体部分都可以,样品平衡后其测 定结果没有差异。
七、思考题
1、测量前,样品是如何进行预处理的? 2、如何绘图测得样品的Aw值?
谢谢大家!
三、实验仪器设备
康威氏(Conway)微量扩散皿、小铝皿或玻璃 皿、分析天平(感量0.0001g)
四、试剂配制
标准水分活度试剂,如下表所示:
五、实验操作
1、在预先恒重且精确称重的铝皿或玻璃皿中,准确 称取1.00g均匀切碎的样品,迅速放入康威氏扩散 皿内室中。
2、在外室预先放入标准饱和溶液5ml,或标准的上 述各式盐5.0g,加入少许蒸馏水湿润。
12
谢谢观赏
3、在扩散皿磨口边缘均匀涂一层凡士林,加盖密封, 在 25℃±0.5℃ 的 恒 温 箱 中 放 置 2±0.5h( 平 行 作 2-4 份不同Aw值的标准饱和溶液及平迅速称量,分别 计算各样品的质量增减数。
5、以各种标准饱和溶液在25℃时的Aw值为横坐标, 样品的质量增减数为纵坐标作图(如下图),将 各点连结成一条直线,这条线与横坐标的交点即 为所测样品的水分活度值Aw。
水分活度测定实验报告
⽔分活度测定实验报告⽔分活度测定实验报告摘要:⽔分活度关系到⾷品的保质期,测定⾷品的⽔分活度具有重要的意义。
⽔分活度的测定⽅法有多种,本⽂采⽤GYW-1⽔分活度测定仪对蛋糕的⽔分活度进⾏测定,得出了⼀些数据,结果仅供参考1前⾔1.1检测⽔分活度对⾷品的意义⽔分活度值对⾷品的营养、⾊泽、风味、质构以及⾷品的保藏性都有重要的影响。
⽔分活度仪⼀般来说,⾷品的⽔分活度越低,其保藏期就越长,但也有例外,例如,如果脂肪中的⽔分活度过低,则会加快脂肪的酸败。
因此,⾷品中⽔分活度的测定具有重⼤意义。
⽔分活度是⾷品和药品⾏业重要的参数。
它指产品中⽔的能量状态,是产品中能够被微⽣物所利⽤的⽔分的程度,是酶和微⽣物⽣长的基础数据。
⽔在产品中,⽐如⾷物,被限制在不同的成分中,如蛋⽩质、盐、糖。
这些俄化学绑定的⽔是不影响微⽣物的。
绑定的⽔分越多,能够蒸发的⽔汽就越少,所以产品⾥含⽔量多,并不等于它表⾯的⽔汽分压就⼀定⾼,平衡相对湿度就⼀定⼤,微⽣物就⼀定更活跃。
⽔分活度对产品稳定性影响很⼤(抵抗微⽣物,⾹味保持),对粉末结块、化学品稳定,物理特性如纸张尺⼨等都有重要影响。
从⽔分活度定义很容易看出,在预测⾷品的安全性和预测有关微⽣物⽣长、⽣化反应率以及物理性质稳定性等⽅⾯,⽔分活度是极其重要的。
通过测定和控制⾷品的⽔分活度,可以做到以下⼏点:(1)预测哪种微⽣物是潜在的败坏和污染源;(2)确保⾷品的化学稳定性;(3)使⾮酶氧化反应和脂肪⾮酶氧化降到最⼩;(4)延长酶的活性和⾷品中维⽣素;(5)优化⾷品的物理性质,如质构和货架期1.2GYW-1⽔分活度检测仪简介该仪器由深圳冠亚集团研发⽣产,其原理是把被测样品置于密封的空间内,在保持恒温的条件下,使样品与周围空⽓的蒸汽压达到平衡,这时就可以以⽓体空间的⽔蒸汽压作为样品蒸汽压的数值。
同时,在⼀定温度下纯⽔的饱和蒸汽压是⼀定的,所以可以应⽤上述⽔分活度定义的公式,计算出被测奶油蛋糕的⽔分活度。
水分活度的测定方法
水分活度的测定方法答:水分活度的测定方法有蒸汽压力法、电湿度计法、附敏感器的湿动仪法、水分活度测定仪法、扩散法、溶剂萃取法,常用的为后三种.1、AW测定仪法1)原理:一定温度下,AW测定仪中的传感器,对蒸汽压力的变化,指针偏转,恒定时,读取AW读数.2)测定:仪器校正,在饱和BaCl2溶液中浸入两张滤纸,浸湿后,放入样品盒内,传感感器表头放在盒上,置于20℃恒温箱中,恒温3h.拧动,使指针指向0.900,重复.样品测定,取样,经20℃恒温后,置于样品盒内,均匀放平(2cm厚)不高出垫圈底部,将传感器表头置于样品盒上,拧紧,放2h,待指针不变时,读出Aw值3)说明:经常用饱和BaCl2溶液校正仪器,表头勿沾上样品,Aw 的温度校正2、扩散法1)原理:样品在康威氏微量扩散器的密封和恒温条件下,分别在Aw较高和较低的标准饱和溶液中扩散平衡后,根据样品的增减量求Aw2)测定方法:准确称取样品1.000g,装入铝皿或玻璃皿中,迅速放入康威氏扩散皿内室中,室外放入标准饱和溶液5ml,边缘涂凡士林,加盖密封,在25℃±0.5℃放置2±0.5h(平行作2-4份不同Aw值的标准饱和溶液及样品),取出,迅速称重,计算各样品每克质量的增减数.以Aw标准为横坐标±mg样品量为纵坐标在方格坐标纸上作图,交点处为样品Aw示例:某食品样品在硝酸钾(0.924)中增重7mg,在溴化钾(0.807)中减重15mg,可求得其Aw=0.8783、溶剂萃取法(1)原理:用苯萃取样品中的水分,其萃取出水量与样品中水分活度成正比,用卡尔费休法测定食品和纯水中萃取的水量,其比之即为Aw(2)测定:卡尔费休试剂制备(代替吡啶)CH3OHCH3COONaKII2SO2甲液100ml8.5g5.5g3-10g乙液500ml42.25g27.8g37.65g甲乙二液混合于棕色瓶中,并套薄膜,置于冰浴中,静置一昼夜→干燥器中准确称取试样1.0000g与磨口三角瓶中加入苯100ml,盖塞,振摇1h.,静置10min,加入100ml无水乙醇混合,取50ml用卡尔费休试剂滴至微橙红,记录Vnml数;同样用1.0000ml重蒸馏水,代替样品作试样,记录V0(3)计算:Aw=Vn/V0。
实验1 食品中水分活度(AW)的测定
实验一食品中水分活度(AW)的测定水分活度测定法有多种方法可采用,但归纳起来主要可分为相对湿度测定法、恒定相对湿度平衡室法和仪器法等。
在中间水分至高水活度区域(Aw0.5以上),使用恒定相对湿度平衡室法精度较高,是目前在实际工作中作为食品水活度测定法中最常用的方法。
在低水分至中间水活度区域(Aw 0.1~0.7),则使用蒸汽压直接测定法较为合适。
仪器法和这些方法比较而言主要是测定操作简单,因此实际应用较多。
食品中含有较多的乙醇、香料、醋酸等挥发性物质,容易造成测定的误差。
目前已开发出通过配有热导检测器的气相色谱将试样顶隙中的空气、水蒸气进行分离定量分析,同时测定水活度和乙醇平衡蒸汽浓度的方法。
一实验目的1.掌握水分活度的概念。
2.掌握水分活度测定仪(无锡华科仪表有限公司HD-4型)的使用方法。
二实验原理水分活度为食品中水的蒸气压和该温度下纯水的饱和蒸气压的比值,即AW=P/Po。
水分活度计测定的原理是把被测食品置于密闭空间内,在恒温条件下,食品与周围空气的蒸气压达到平衡,此时,气体空间的水蒸气分压即可作为食品水蒸气压力的数值。
同时,测定同样条件下纯水的蒸气压,利用上述公式,计算出食品的水分活度。
三实验材料食盐1袋白砂糖1袋面粉1袋猪肉1盒水分活的测定仪1台菜刀(板)4套小镊子4把四实验过程1.仪器的校正:称15gNaCl加入60℃以上于10ml纯净水中充分溶解,置于常温下放置12h 以上。
按“选择”键选择校正功能,按“确认”键进入下一级菜单,按“选择”键选择NaCl 饱和溶液,将装有配置好的饱和溶液倒入玻璃皿后放入测定点1中,盖好传杆器,在其他测定中依次放入相同浓度的饱和溶液,按下“确认”键,提示“是否确认要停止校正”,选择“否”,按下“确认”键,此时开始校正。
2.测定:将试样尽量弄碎,测定时玻璃盖不得盖上,放入水分活度传感器中,盖好传感器。
用选择键选择“测量”功能,按“确认”键,进入测定状态。
实验1食品中水分活度(AW)的测定
实验一食品中水分活度(AW)的测定水分活度测定法有多种方法可采用,但归纳起来主要可分为相对湿度测定法、恒定相对湿度平衡室法和仪器法等。
在中间水分至高水活度区域(Aw0.5以上),使用恒定相对湿度平衡室法精度较高,是目前在实际工作中作为食品水活度测定法中最常用的方法。
在低水分至中间水活度区域(Aw 0.1~0.7),则使用蒸汽压直接测定法较为合适。
仪器法和这些方法比较而言主要是测定操作简单,因此实际应用较多。
食品中含有较多的乙醇、香料、醋酸等挥发性物质,容易造成测定的误差。
目前已开发出通过配有热导检测器的气相色谱将试样顶隙中的空气、水蒸气进行分离定量分析,同时测定水活度和乙醇平衡蒸汽浓度的方法。
一实验目的1.掌握水分活度的概念。
2.掌握水分活度测定仪(无锡华科仪表有限公司H D-4型)的使用方法。
二实验原理水分活度为食品中水的蒸气压和该温度下纯水的饱和蒸气压的比值,即AW=P/Po。
水分活度计测定的原理是把被测食品置于密闭空间内,在恒温条件下,食品与周围空气的蒸气压达到平衡,此时,气体空间的水蒸气分压即可作为食品水蒸气压力的数值。
同时,测定同样条件下纯水的蒸气压,利用上述公式,计算出食品的水分活度。
三实验材料食盐1袋白砂糖1袋面粉1袋猪肉1盒水分活的测定仪1台菜刀(板)4套小镊子4把四实验过程1.仪器的校正:称15gNa Cl加入60℃以上于10m l纯净水中充分溶解,置于常温下放置12h 以上。
按“选择”键选择校正功能,按“确认”键进入下一级菜单,按“选择”键选择Na C l饱和溶液,将装有配置好的饱和溶液倒入玻璃皿后放入测定点1中,盖好传杆器,在其他测定中依次放入相同浓度的饱和溶液,按下“确认”键,提示“是否确认要停止校正”,选择“否”,按下“确认”键,此时开始校正。
实验一 水分活度的测定扩散法.ppt
试剂
水活度
102.5 44.8
硝酸钠 NaNO3
氯化钠 NaCl
0.737 0.752
230.8 122.7 154.1 182.8 133.6 166.7
溴化钾 KBr
氯化钾 KCl
氯化钡 BaCl2·2H2O
硝酸钾 KNO3
硫酸钾 K2SO4
重铬酸钾 K2Cr2O7
0.807 0.842 0.901 0.924 0.969 0.980
5结果计算
X m1 m2 100 % m1 m3
式中: X一试样中水分的含量,%; m1一称量瓶(或蒸发皿加海砂、玻棒)和试样的质量,g; m2一称量瓶(或蒸发皿加海砂、玻棒)和试样干燥后的质量,g; m3一称量瓶(或蒸发皿加海砂、玻棒)的质量,g。 计算结果保留三位有效教字。
实验三 食品中粗灰分的测定
70以上 75 88―86 --21-15 18 ------1 9-10
0.98-0.97 0.97 0.97 0.94-0.82 0.82-0.72 0.69-0.60 0.65-0.57 0.30 0.32 0.48
食品 蜂蜜 面包 火腿、香 肠 小麦粉 干燥谷类 苏打饼干 饼干 西式糕点 香辛料 虾干 绿茶 脱脂奶粉 奶酪
4结果计算
式中:
X m1 m2 100 m3 m2
X一试样中灰分的含量,g/100 g;
m1一坩埚和灰分的质量,g;
m2一坩埚的质量,g;
m3一坩埚和试样的质量,g。
计算结果保留三位有效数字。
实验四 食品中蛋白质的测定---乙酰丙酮-甲醛比色法 GB/T5009.5—2003
1原理 蛋白质是含氮的有机化合物。食品与硫酸和催化
100 mL水中的溶解度,g 96.0 36.3 70.6 37.0 74.2 45.8 13.0 18.2
水分活度测定实验报告
水分活度测定实验报告摘要:水分活度关系到食品的保质期,测定食品的水分活度具有重要的意义。
水分活度的测定方法有多种,本文采用GYW-1水分活度测定仪对蛋糕的水分活度进行测定,得出了一些数据,结果仅供参考1前言1.1检测水分活度对食品的意义水分活度值对食品的营养、色泽、风味、质构以及食品的保藏性都有重要的影响。
水分活度仪一般来说,食品的水分活度越低,其保藏期就越长,但也有例外,例如,如果脂肪中的水分活度过低,则会加快脂肪的酸败。
因此,食品中水分活度的测定具有重大意义。
水分活度是食品和药品行业重要的参数。
它指产品中水的能量状态,是产品中能够被微生物所利用的水分的程度,是酶和微生物生长的基础数据。
水在产品中,比如食物,被限制在不同的成分中,如蛋白质、盐、糖。
这些俄化学绑定的水是不影响微生物的。
绑定的水分越多,能够蒸发的水汽就越少,所以产品里含水量多,并不等于它表面的水汽分压就一定高,平衡相对湿度就一定大,微生物就一定更活跃。
水分活度对产品稳定性影响很大(抵抗微生物,香味保持),对粉末结块、化学品稳定,物理特性如纸张尺寸等都有重要影响。
从水分活度定义很容易看出,在预测食品的安全性和预测有关微生物生长、生化反应率以及物理性质稳定性等方面,水分活度是极其重要的。
通过测定和控制食品的水分活度,可以做到以下几点:(1)预测哪种微生物是潜在的败坏和污染源;(2)确保食品的化学稳定性;(3)使非酶氧化反应和脂肪非酶氧化降到最小;(4)延长酶的活性和食品中维生素;(5)优化食品的物理性质,如质构和货架期1.2GYW-1水分活度检测仪简介该仪器由深圳冠亚集团研发生产,其原理是把被测样品置于密封的空间内,在保持恒温的条件下,使样品与周围空气的蒸汽压达到平衡,这时就可以以气体空间的水蒸汽压作为样品蒸汽压的数值。
同时,在一定温度下纯水的饱和蒸汽压是一定的,所以可以应用上述水分活度定义的公式,计算出被测奶油蛋糕的水分活度。
2试验设备与试验材料2.1实验设备2.1.1GYW-1水分活度检测仪厂家:深圳冠亚测量通道:3通道2.1.2电子天平型号:AS220/C/1;制造商:欧洲瑞德威RADWAG;感量:0.1mg。
第10章食品生物化学实验实验一 水分活度的测定
如果环境空气干燥,湿度低,食品中的水分会蒸发,食品 质量减轻;反之空气潮湿,食品因吸收空气水分而受潮,质量 增加。但不管是蒸发还是吸收水分,最终是食品中水分与环境 平衡为止。根据这一原理,食物在康威氏微量扩散皿的密封和 恒温条件下,分别向Aw较高或较低的标准饱和溶液中扩散,当 达到平衡后,依据样品在高Aw标准饱和溶液中质量的增加和在 低Aw标准饱和溶液中质量的减少,则可计算出样品的Aw。
食品生物化学ቤተ መጻሕፍቲ ባይዱ
第十章 实验指导
• 实验一 水分活度的测定 • 实验二 还原糖含量的测定 • 实验三 淀粉的提取和性质实验氨基酸的纸上层析 • 实验四 动植物油脂中不饱和脂肪酸的比较实验 • 实验五 油脂酸价的测定 • 实验六 氨基酸的纸色谱 • 实验七 从牛奶中制取酪蛋白 • 实验八 动物肝脏DNA的提取与检测 • 实验九 酶的底物专一性实验 • 实验十 α- 淀粉酶活力的测定 • 实验十一 维生素C的性质实验 • 实验十二 脂肪转化为糖的定性实验
食品生物化学
三、原料与器材
面粉、康威尔微量扩散皿、方格坐标纸、分析天平。
四、试剂
标准饱和溶液(NaCl及K2CO3·2H2O的标准饱和溶液各10mL)
图10-1 康威氏微量扩散皿
食品生物化学
五、操作步骤 六、说明
1.康威尔皿密封一定要严。 2.在测样品的Aw前,应先估计一下样品的Aw,然后选择 高于和低于样品Aw的饱和溶液各两种,也可只取高于和低于样 品Aw的饱和溶液各一种。如本实验,估计面粉Aw值在0.6左右, 所以选氯化钠和碳酸钠两种标准饱和溶液。 3.多数样品在2h后可测得Aw,但油脂类食品测得时间要 长的多,有的达100hr,因此实验取材不宜选鱼、肉等含油脂较 多的食品及其他油炸食品。
实验一水分活度的测定扩散法(精)
3.1 扁形铝制或玻璃制称量瓶:内径60~70 mm,高 35 mm以下。
3.2 电热恒温干燥箱。
4分析步骤
4.1 固体试样:
取洁净铝制或玻璃制的扁形称量瓶,置于 95~l05 ℃干燥箱中,瓶盖斜支于瓶边,加热 0.5~l.0 h,取出盖好。置干燥器内冷却0.5 h,称量, 并重复干燥至恒重。称取2.00~l0.00 g切碎或磨细 的试样,放入此称量瓶中,试样厚度约为5 mm(不 要超过称量瓶容积的1/3)。95~l05℃干燥箱中, 瓶盖斜支于瓶边,干燥2h~4h后,盖好取出,放入 干燥器内冷却0.5 h后称量。然后再放入95~l05℃干 燥箱中干燥1 h左右,取出,放干燥器内冷却0.5 h 后再称量。至前后两次质量差不超过2 mg即为恒量 (做三个平行)。
100 mL水中的溶解度,g 96.0 36.3 70.6 37.0 74.2 45.8 13.0 18.2
表1-2 食品的水活度及水分含量
食品 蔬菜 水果 鱼贝类
水分含量,% 90以上 89-87 85-70
水活度 0.99-0.98 0.99-0.98 0.99-0.98
肉类 蛋 果汁 果酱 果干 果冻 糖果 速溶咖啡 巧克力 葡萄糖
试剂
水活度
102.5 44.8
硝酸钠 NaNO3
氯化钠 NaCl
0.737 0.752
230.8 122.7 154.1 182.8 133.6 166.7
溴化钾 KBr
氯化钾 KCl
氯化钡 BaCl2·2H2O
硝酸钾 KNO3
硫酸钾 K2SO4
重铬酸钾 K2Cr2O7
0.807 0.842 0.901 0.924 0.969 0.980
70以上 75 88―86 --21-15 18 ------1 9-10
实验1 食品水分活度(AW)的测定—— 水分活度仪测定法
实验一 食品水分活度(A W )的测定—— 水分活度仪测定法一、实验目的了解食品中水分存在的状态,食品水分活度(A W )的测定方法,掌握利用水分活度测定仪测定食品水分活度的方法二、 实验原理食品中的水是以自由态、水合态、胶体吸润态、表面吸附态等状态存在的。
不同状态的水可分为两类:由氢键结合力联系着的水称为结合水;以毛细管力系着的水称为自由水。
自由水能被微生物所利用,结合水则不能。
食品中含水量,不能说明这些水是否都能被微生物所利用,对食品的生产和保藏均缺乏科学的指导作用;而水分活度则反映食品与水的亲和能力大小,表示食品中所含的水分作为生物化学反应和微生物生长的可用价值。
水分活度近似地表示为在某一温度下溶液中水蒸汽分压与纯水蒸汽压之比值。
拉乌尔定德(Raoult ’s Law )指出,当溶质溶于水,水分子与溶质分子变成定向关系从而减少水分子从液相进入汽相的逸度,使溶液的蒸汽压降低,稀溶液蒸气压降低度与溶质的摩尔分数成正比。
水分活度也可用平衡时大气的相对湿度(ERH )来计算。
故水分活度(A W )可用下式表示:100n n n aw 1000ERH P P =+== 式中:P —样品中水的分压;Po —相同温度下纯水的蒸汽压;n o —水的摩尔数;n 1—溶液的摩尔数;ERH ——样品周围大气的平衡相对湿度(%)。
水分活度测定仪主要是在一定温度下利用仪器装置中的湿敏元件,根据食品中水蒸汽压力的变化,从仪器表头上读出指针所示的水分活度。
三、实验材料苹果块,市售蜜饯,面包,蛋糕。
NaCl 饱和溶液。
HD ~4型智能水分活度测定仪(无锡江宁机械厂)。
四、实验方法步骤(当所用的水分活度测定仪不同时,按照仪器说明书进行操作)1. 校正在校正前,选择设置功能。
选择测点,确认。
测点有 4 个。
校正时需注意下列事项:选择测点数 1 时,校正时只需将饱和盐放入 1 号传感器内,其余测点不会校正。
选择测点 2 时,校正时需将饱和盐放入 1、2 号传感器内,其余测点不会校正。
实验一 水分活度的测定
实验一水分活度的测定1实验目的熟知扩散法测水分活度的原理;掌握扩散法测定水分活度的方法。
2实验原理用一般食品水分测定方法定量地测定的水分即含水量,不能说明这些水是否都能被微生物利用,对食品的生产和保藏均缺乏科学的指导作用;而水分活度则反映食品与水的亲和能力大小,表示食品中所含的水分作为生物化学反应和微生物生长的可利用价值,水分活度近似地表示为在某一温度下溶液中水蒸汽分压与纯水蒸汽压之比值。
扩散法即用坐标内插法来测定食品的水分活度,这种方法并不需要特殊的仪器装置,可将一系列已知水分活度的标准溶液与食品试样一起放入密闭的容器中,在恒温下放置一段时间,测定食品试样重量的增减,根据增减值绘出曲线图,从图上查出食品重量不变值,即为该食品试样的水分活度a w。
3实验依据水分活动的测定样品在康威氏微量扩散皿的密封和恒温条件下,分别在a w较高和较低的标准饱和溶液中扩散平衡后,根据样品质量的增加(在a w较高的标准溶液中扩散平衡)和减少(在a w较低的标准溶液中平衡),以质量的增减为纵坐标,各个标准试剂的水分活度为横坐标,计算样品的水分活度值。
该法适用中等及高水分活度(a w>0.5)的样品。
4 仪器及材料1 仪器电热恒温干燥箱;扁形铝制或玻璃制称量瓶;干燥器;分析天平;康威氏微量扩散皿2 试剂标准水分活度试剂Nacl及K2CO3·2H2O:用标准试剂配成饱和盐溶液,其在25摄氏度时Aw值如表。
3 材料前次试验保存的面粉。
4 注意事项(1)取样时应该迅速,各份样品称量应在同一条件下进行。
(2)康威氏皿密封性应良好。
(3)试样的大小、形状对测定结果影响不大,取试样的固体部分或液体部分都可以,样品平衡后其测定结果没有差异。
5实验步骤面粉水分活度的测定a)预先恒重且精密称重的铝皿中精确称取1.00g均匀样品→迅速放入康威氏皿内室中,外室预先放入饱和NaCl试剂5 mL→迅速加盖密封(加凡士林)→移至培养箱(2 h)→取出铝皿,迅速称量→再次平衡0.5 h→称量,直至恒重→计算。
实验一 食品水分活度的测定(新)
实验一食品水分活度的测定(平衡相对湿度法)一、实验目的1、掌握水分活度的概念和平衡相对湿度法测定水分的原理。
2、学会平衡相对湿度法测定食品中水分活度的操作技术。
二、实验原理根据热力学原理,在某一温度下,食品的饱和蒸汽压P与同温度下纯水的饱和蒸汽压P0之比称为该食品的水分活度即:Aw=P/P0。
若将食品放置在恒定的各种温度和相对湿度的空气中直至他们的水分相互间扩散达到平衡一致,而物料本身的水分又稳定不变时,则Aw×100=相对湿度,因此,根据空气的相对湿度,就可以肯定各种温度下各种食品相应的水分活度,本实验用康维皿法进行实验。
康维皿法的基本原理:称取一定量的食品式样,放在各种不同的恒湿环境中,在恒温条件下,当达到平衡时,再称试样质量,计算增重或减重的数量。
若选取几种不同的恒湿环境,可得到不同的水分变化值。
将得到的测试数据作图,用内插法求出水分变化为零的平衡相对湿度,即为试样食品的水分活度。
三、实验器材及试剂康维皿(4只×5)、干燥箱、分析天平、凡士林、铝箔茶叶、奶粉五种饱和盐溶液(氯化钠、硝酸钾、氯化镁、硝酸镁、氯化钾)四、实验步骤1、取氯化钠、硝酸钾、氯化镁、硝酸镁、氯化钾各约5~10g,加适量蒸馏水便成为一个系列Aw的过饱和溶液(此步由实验老师提前完成),分别放于康维皿外室。
2、取铝箔做成与内室相吻合的碟状,用此容器称取试样净重1~2g(精确至毫克数量级),至于内室。
3、用玻璃板密盖康维皿,用凡士林密封其四周。
4、将康维皿放入保温箱中,在指定的温度下(40℃)下,搁置一段时间。
5、从康维皿里取出试样,测定水分含量。
6、计算制图。
五、数据分析表一奶粉的水分活度测定奶1 奶2空碟试样空碟+试样Δg1/g 空碟试样空碟+试样Δg2/g NaCl 0.140 1.112 1.353 0.091 0.142 1.156 1.401 0.089 KNO3 0.133 1.581 2.105 0.247 0.177 1.601 2.163 0.240 MgCl2 0.190 1.660 1.877 0.016 0.123 1.433 1.577 0.015 Mg(NO3)2 0.118 1.434 1.573 0.015 0.131 1.385 1.540 0.017 KCl 0.127 1.204 1.511 0.150 0.169 1.161 1.509 0.154 经整理(奶粉):NaCl KNO3 Mg(NO3)2 MgCl2 KClAw 0.75 0.89 0.51 0.31 0.83Δg奶/g 0.090 0.244 0.016 0.016 0.152表二茶叶的水分活度测定茶1 茶2空碟试样空碟+试样Δg1/g 空碟试样空碟+试样Δg2/g NaCl 0.130 1.075 1.310 0.098 0.122 1.172 1.409 0.098 KNO3 0.129 1.565 2.107 0.264 0.186 1.498 2.072 0.259 MgCl2 0.112 1.135 1.231 -0.014 0.120 1.046 1.150 -0.015 Mg(NO3)2 0.121 1.337 1.478 0.015 0.127 1.299 1.441 0.012 KCl 0.131 1.218 1.585 0.194 0.117 1.260 1.552 0.139 经整理(茶叶):NaCl KNO3 Mg(NO3)2 MgCl2 KClAw 0.75 0.89 0.51 0.31 0.83Δg茶/g 0.098 0.262 0.014 -0.015 0.167由上两图可得:奶粉的水分活度为:Aw奶=0.1292/0.3538=0.3652茶叶的水分活度为:Aw茶=0.1796/0.4329=0.4149六、结果讨论根据课堂所学的理论知识对实验结果进行必要的分析与讨论,为什么会得到你们所做的实验结果,说明原因或理论依据。
实验一水分活度的测定
实验一、水分活度的测定一、原理水分活度(Water Activity)主要反映物料平衡状态下的水分状态。
AW—1型智能水分活度测定仪由高精密度传感器采样,单片机为核心,进行信号采集和处理,并用标准盐饱和溶液分段校准。
可在短时间内精确测定样品的水分活度。
图1 整机连接示意图图2 前面板示意图二、操作方法⒈将测量头小心接入主机(见图1)。
⒉接通电源开关,电源指示灯亮,蜂鸣器鸣叫两声,数码显示亮,表示开机正常。
数秒后,根据当时温度,自动重新设置测量时间,秒点开始闪烁,进入稳定的测量周期。
⒊校准⑴估计样品Aw值,选择Aw最为接近的标准盐进行校准。
按“标准”键(见图2),每按一次分别选中“氯化钾”、“碘化钾”、“硝酸镁”和“自选”,对应红灯亮。
标准盐饱和溶液Aw值与温度的关系见表一。
表一、三种盐在不同温度下的Aw值温度(℃)硝酸镁碘化钾氯化钾51015202530⑵选中的标准饱和盐溶液倒入玻璃器皿中约1/3~1/2的高度(玻璃器皿中应有沉淀物),把器皿放入测试盒,顺时针方向旋紧密封,然后将测试盒小心与主机相连。
⑶按“样品”键,使“样品”显示为对应的插座号,按“-”键,则倒计时开始计时。
当环境温度在20℃以下时,测量时间为小时,在20℃以上时(含20℃),为1小时。
⑷同时按“+”、“-”键,校准红灯亮,当时间到00后,测量时间到,蜂鸣器鸣报数秒钟,校准红灯熄灭,这时Aw显示为该标准液的Aw值。
⑸取出标准液,清洗并干燥器皿。
⑹自选标准液Aw的设定:按“标准”键,选中“自选”,灯亮,按“自选”键,Aw的最末一位闪烁,这时按“+”,Aw的最末一位增加1,按“-”,则减少1。
如按“+”或“-”键的时间超过2秒,可快速增减。
调到预定值后,按“自选”键,Aw设定完毕,停止闪烁,显示测量值,其它步骤按⑵、⑶、⑷、⑸做。
⒋测量样品校准完毕后(如无需再校准,可直接进行测量,不必每次都先校准后测量),可测量样品,把样品放入玻璃器皿中,块状样品要碾成芝麻粒大小,越小越好。
实验一 水分活度的测定扩散法.
实验一 水分活度的测定---扩散法
1原理
食品中的水分都随环境条件的变动而变化。当环
境空气的相对湿度低于食品的水分活度时,食品中的
水分向空气中蒸发,食品的质量减轻;相反,当环境
空气的相对湿度高于食品的水分活度时,食品就会从 空气中吸收水分,使质量增加。不管是蒸发水分还是 吸收水分,最终是食品和环境的水分达平衡时为止。
4
计算
示例说明,设食品在A点表示样品与氯化镁饱和
溶液达到平衡后质量减少10 mg(表示为-10)。B点 表示样品与硝酸钾标准饱和溶液达到平衡后增重15 mg(表示为+15),而C点为氯化钠饱和溶液达到平衡
后样品增加6.5 mg,连结三点,线段与横坐标相交于
D点。即可求得样品的水分活度值为0.57(图1-2)。
4.2
半固体或液体试样:
取洁净的蒸发皿,内加10.0g海砂及一根小玻 棒,置于95~l05℃干燥箱中,干燥0.5~1.0h后取出, 放入干燥器内冷却0.5h后称量,并重复干燥至恒量。 然后精密称取5~l0g试样,置于蒸发皿中,用小玻棒 搅匀放在沸水浴上蒸干,并随时搅拌,擦去皿底的 水滴,置95~l05℃干燥箱中干燥4h后盖好取出,放 入干燥器内冷却0.5h后称量。然后再放入95~l05℃ 干燥箱中干燥1 h左右,取出,放干燥器内冷却0.5h 后再称量。至前后两次质量差不超过2mg即为恒量 (做三个平行)。
5结果计算
m1 m2 X 100% m1 m3
式中: X一试样中水分的含量,%; m1一称量瓶(或蒸发皿加海砂、玻棒)和试样的质量,g; m2一称量瓶(或蒸发皿加海砂、玻棒)和试样干燥后的质量,g; m3一称量瓶(或蒸发皿加海砂、玻棒)的质量,g。 计算结果保留三位有效教字。
食品水分活度的测定
食品水分活度的测定方法一水分活度仪测定法一、实验原理食品中的水分以自由水、结合水等不同状态存在。
不同状态的水可分为两类:由氢键结合力联系着的水分称为结合水;以毛细管力联系着的水称为自由水。
其中,自由水是易被微生物所利用的水分,关系到食品的保藏性能。
食品水分含量的高低不能直接反映出能被微生物利用的水分的多少,而水分活度(Aw)的大小则可体现食品非水组分与食品中水分的亲和能力大小,表示食品所含水分在食品中生物化学反应、微生物生长中的可利用程度。
水分活度近似的表示为在某一温度下溶液中水蒸气分压与纯水蒸汽压之比。
拉乌尔定律指出,当溶质溶于水,水分子与溶质分子变成定向关系从而减少水分子从液相进入汽相的逸度,使溶液的蒸汽压降低,稀溶液蒸汽压降低率与溶质的摩尔分数成正比。
水分活度也可用平衡时大气的相对湿度(ERH)来计算。
故水分活度(Aw)可用下式表示:Aw=p/p0=n0/(n1+n0)= ERH/100式中p—样品中水的分压;p0—相同温度下纯水的蒸汽压;n0—水的摩尔数;n1—溶质的摩尔数;ERH—样品周围大气的平衡相对湿度(%)。
水分活度测定仪的测定原理:主要利用仪器中的传感器装置——湿敏元件,在一定温度下根据食品中水的蒸汽压力的变化,从仪器的表头上可读出指针所示的水分活度值。
二、材料、试剂与仪器试剂:氯化钡饱和溶液样品:果蔬块,面包,饼干,肉、鱼等。
仪器、设备:水分活度测定仪,研钵。
三实验步骤下面以SJN5021型水分活度测定仪(无锡江宁机械厂)为例,介绍水分活度仪法测定食品水分活度的步骤。
实际测定中,要结合所用型号的水分活度仪说明书进行操作。
(1)将等量的纯水及捣碎的样品(约2克)迅速放入测试盒,拧紧盖子密封,并通过转接电缆插入“纯水”及“样品”插孔。
固体样品应碾碎成米粒大小,并摊平在盒底。
(2)把稳压电源输出插头插入“外接电源”插孔(如果不外接电源,则可使用直流电),打开电源开关,预热15分钟,如果显示屏上出现“E”,表示溢出,按“清零”按钮。
水分活度的测定实验
水分活度的测定实验水分活度仪可以应用于反应食品平衡状态下的有效水分、稳定性和生物繁殖的可能性,还可以衡量微生物忍受干燥程度的能力。
水分活度主要反应食品平衡状态下的自由水分的多少,反应食品的稳定性和微生物繁殖的可能性,以及能引起食品品质变化的化学、酶及物理变化的情况,常用于衡量微生物忍受干燥程度的能力。
水分活度值越高,结合程度越低;水分活度值越低,结合程度越高;水分活度数值:用Aw表示,水分活度值等于用百分率表示的相对湿度,其数值在0-1之间。
水分活度的测试意义:Aw值对食品保藏具有重要的意义。
含有水分的食物等由于其水分活度之不同,其储藏期的稳定性也不同。
利用水分活度的测试,反映物质的保质期,已逐渐成为食品,医药,生物制品等行业中检验的重要指标。
测试方法:水分活度的测定方法有传统的扩散法和ERH 水分活度测试法等。
水分活度分析仪技术参数(1)供电电压:交流220V(47~63Hz)(2)工作环境:温度0~50℃湿度0~95%RH(3)测量范围:温度0~50℃活度0.000~0.990Aw(4)测量精度:温度±0.1℃活度±0.013Aw(@25℃)(5)重复性:≤0.010Aw(6)分辨率:0.001Aw(7)测量时间:一般样品10~15分钟(最长时间为60分钟)(8)测量通道:单通道(可根据客户的要求定制)(9)校准方式:自动校准(校正值补偿功能)(10)显示方式:大触摸彩屏反应时间快(11)显示速度:实时显示检测曲线(12)操作方式:触摸(13)输出方式:微型打印机(14)通讯方式:RS232(15)功耗:20W(16)外形尺寸:280mm×226mm×120mm水分活度分析仪工作原理冠亚水分活度仪工作原理是把被测样品置于密封的空间内,在保持恒温的条件下,使样品与周围空气的蒸汽压达到平衡,这时就可以以气体空间的水蒸汽压作为样品蒸汽压的数值。
同时,在一定温度下纯水的饱和蒸汽压是一定的,所以可以应用上述水分活度定义的公式,计算出被测样品的水分活度。
实验一、食品水分活度的测定要点
实验一、食品水分活度的测定1、目的要求1.1 水分活度的概念和扩散法测定水分活度的原理。
1.2 测定食品中水分活度的操作技术。
1.3 水分活度仪法测定食品中水分活度的方法。
第一法坐标插入法(康威微时扩散法)1、实验原理食品中的水分,都随环境条件的变动而变化。
当环境空气的相对湿度低于食品的水分活度时,食品中的水分向空气中蒸发,食品的质量减轻;相反,当环境空气的相对湿度高于食品的水分活度时,食品就会从空气中吸收水分,使质量增加。
不管是蒸发水分还是吸收水分,最终是食品和环境的水分达到平衡为止。
据此原理,采用标准水分活度的试剂,形成相应湿度的空气环境,在密封和恒温条件下,观察食品试样在此空气环境中因水分变化而引起的质量变化,通常使试样分别在A w较高、中等和较低的标准饱和盐溶液中扩散平衡后,根据试样质量的增加(即在较高A w标准饱和盐溶液达平衡)和减少(即在较低A w标准饱和盐溶液达平衡)的量,计算试样的A w值,食品试样放在以此为相对湿度的空气中时,既不吸湿也不解吸,即其质量保持不变。
2、实验器材2.1 分析天平2.2 恒温箱2.3 康维氏微量扩散皿2.4 小玻璃皿或小铝皿(直径25mm~28mm、深度7mm)2.5 凡士林2.6 各种水果、蔬菜等食品。
3、实验试剂至少选取3种标准饱和盐溶液。
标准饱和盐溶液的A w值(25 ℃)见表-1。
表-1 标准饱和盐溶液的A w值(25 ℃)4.1 在3个康维皿的外室分别加入A w高、中、低的3种标准饱和盐溶液5.0mL, 并在磨口处均匀涂一层凡士林。
4.2 将3个小玻皿准确称重,然后分别称取约1 g的试样于皿内(准确至毫克数,每皿试样质量应相近)。
迅速依次放入上述3个康维皿的内室中,马上加盖密封,记录每个扩散皿中小玻皿和试样的总质量。
4.3 在25℃的恒温箱中放置(2±0.5)h后,取出小玻皿准确称重,以后每隔30 min 称重一次,至恒重为止。
记录每个扩散皿中小玻皿和试样的总质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、水分活度的测定一、原理水分活度(Water Activity)主要反映物料平衡状态下的水分状态。
AW—1型智能水分活度测定仪由高精密度传感器采样,单片机为核心,进行信号采集和处理,并用标准盐饱和溶液分段校准。
可在短时间内精确测定样品的水分活度。
图1 整机连接示意图图2 前面板示意图二、操作方法⒈将测量头小心接入主机(见图1)。
⒉接通电源开关,电源指示灯亮,蜂鸣器鸣叫两声,数码显示亮,表示开机正常。
数秒后,根据当时温度,自动重新设置测量时间,秒点开始闪烁,进入稳定的测量周期。
⒊校准⑴估计样品Aw值,选择Aw最为接近的标准盐进行校准。
按“标准”键(见图2),每按一次分别选中“氯化钾”、“碘化钾”、“硝酸镁”和“自选”,对应红灯亮。
标准盐饱和溶液Aw值与温度的关系见表一。
⑵,把器皿放入测试盒,顺时针方向旋紧密封,然后将测试盒小心与主机相连。
⑶按“样品”键,使“样品”显示为对应的插座号,按“-”键,则倒计时开始计时。
当环境温度在20℃以下时,测量时间为1.5小时,在20℃以上时(含20℃),为1小时。
⑷同时按“+”、“-”键,校准红灯亮,当时间到00后,测量时间到,蜂鸣器鸣报数秒钟,校准红灯熄灭,这时Aw显示为该标准液的Aw值。
⑸取出标准液,清洗并干燥器皿。
⑹自选标准液Aw的设定:按“标准”键,选中“自选”,灯亮,按“自选”键,Aw的最末一位闪烁,这时按“+”,Aw的最末一位增加1,按“-”,则减少1。
如按“+”或“-”键的时间超过2秒,可快速增减。
调到预定值后,按“自选”键,Aw设定完毕,停止闪烁,显示测量值,其它步骤按⑵、⑶、⑷、⑸做。
⒋测量样品校准完毕后(如无需再校准,可直接进行测量,不必每次都先校准后测量),可测量样品,把样品放入玻璃器皿中,块状样品要碾成芝麻粒大小,越小越好。
然后顺时针方向旋紧密封,将测试盒小心与主机相连。
重复步骤⑶,当时间到00后,测量时间到,蜂鸣器鸣报数秒钟,这时Aw显示为该样品的Aw值。
⒌从玻璃器皿中取出样品,清洗并干燥器皿。
三、使用注意事项⒈测量头(测试盒内器件)为贵重的精密器件,需轻拿轻放,严禁直接接触样品和水,不能用手触摸。
如不小心接触了液体,需自动蒸发干后方能使用。
⒉为提高测量精度,测试盒及玻璃器皿应是干燥和清洁的,每次用毕后应清洗干燥处理。
测量Aw>0.95样品时,测量Aw结束后应立即把测量头放在通风处,经10分钟后方能重新测量。
⒊配制饱和盐溶液时,应用蒸馏水稀释,放置几天后有固体沉淀物,才能使用。
不必每次测量之前校准,一般在隔几天或要求测量结果特别正确时进行校准。
实验二、总糖的测定一、原理样品中原有的和水解后产生的转化糖都具有还原性质,在碱性溶液中能将铁氰化钾还原。
根据铁氰化钾的浓度和检液滴定量可以计算出样品中糖的含量。
反应式如下:C6H12O6+6K3Fe(CN)6+6KOH → (CHOH)4·(COOH)2+6K4Fe(CN)6+4H2O当滴定到终点时,稍微过量的转化糖立即将次甲基蓝还原为无色的隐色体,此时颜色消失。
反应如下:二、试剂与器材⒈ 1%的次甲基蓝指示剂。
⒉盐酸:分析纯。
⒊ 20%和30%氢氧化钠溶液。
⒋ 1%铁氰化钾溶液:置棕色瓶中保存。
每次使用前按下述方法标定铁氰化钾的浓度。
准确称取经105℃烘干并冷却之后的蔗糖1.000g,用少量水溶解并移入500ml容量瓶中,用水稀释至刻度,摇匀。
取出此液50ml于100ml容量瓶中,加盐酸5ml摇匀,置65~70℃水浴上加温30min,取出,迅速冷却至室温。
用30%氢氧化钠溶液中和,加水至刻度,摇匀,倒入滴定管中。
吸取已配制好的铁氰化钾溶液5ml于150ml三角瓶中,加入2.5ml10%氢氧化钠溶液、12.5ml水和洁净的玻璃珠数个,于石棉网上加热至沸腾,保持1min。
然后加入次甲基蓝指示剂1滴,立即以糖液滴定至蓝色消失为止,记录用量。
正式滴定时,先加入比预实验少0.5ml的糖液,煮沸1min,加入次甲基蓝指示剂1滴,再用糖液滴定至无色。
按下述公式计算铁氰化钾的浓度:式中C:相当于5ml铁氰化钾溶液的转化糖的重量(g);V:滴定时消耗糖液的体积(ml);W:称取的蔗糖重量(g);0.95:换算系数(1g蔗糖可转化为0.95g转化糖)。
主要器材:滴定管,容量瓶、三角瓶。
三、操作步骤称取样品5~10g(视含糖量多少而增减),用200ml左右的水洗入250ml容量瓶内(样品中如含有较多的蛋白质、色素、胶体等可逐渐加入20%醋酸铅溶液10~15ml,至沉淀完全为止。
并加入10~15ml10%磷酸二氢钠溶液,至不再产生沉淀为止)。
加水至刻度,摇匀过滤。
吸取滤液50ml于100ml容量瓶中,按上述铁氰化钾标定方法进行转化、中和及滴定(以样液代替糖液,其余操作相同)。
按下述公式计算总糖含量:式中A:相当于5ml铁氰化钾溶液的转化糖的重量(g);V:滴定试样液消耗体积(ml)。
四、注意事项⒈当滴定到达终点时,过量的转化糖将指示剂次甲基蓝还原为无色的隐色体。
这种隐色体容易受空气中的氧所氧化,很快又变为次甲基蓝而显色。
⒉整个加温过程应在低温电炉上操作,这样重现性好、准确、误差小。
滴定要迅速,否则滴定终点不明显。
实验三、蜂蜜中果糖含量的测定一、原理果糖是具有酮基的还原糖(酮糖)。
测定时可用直接滴定法测定样品中总的还原糖含量,然后用碘量法测定样品中醛糖的含量,总的还原糖含量减去醛糖的含量即是果糖的含量。
二、蜂蜜中总还原糖含量的测定(直接滴定法)⒈原理将一定量的硫酸铜液(菲林试剂甲)和碱性酒石酸钾钠液(菲林试剂乙)等量混合,硫酸铜液与氢氧化钠作用,生成兰色氢氧化铜沉淀,氢氧化铜立即与酒石酸钾钠作用,生成可溶性酒石酸钾钠铜络合物。
在加热条件下(煮沸),以次甲基蓝作指示剂,用处理好的样品液滴定,样品液中还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,达到终点时,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为终点。
根据样液消耗量可计算还原糖含量,反应过程如下:CuSO4+2NaOH=2Cu(OH)2↓⒉试剂⑴菲林试剂甲:称取硫酸铜34.63g,加蒸馏水溶解后,置于500ml容量瓶中,加水稀释至刻度,混匀。
⑵菲林试剂乙:称取酒石酸钾钠173g及氢氧化钠50g,加蒸馏水溶解后置于500ml容量瓶中,加水稀释至刻度,混匀,过滤后使用。
⑶标准还原糖液(2mg/ml):称取纯蔗糖9.5g,溶于50ml水中,加6mol/L盐酸5ml,在20~25℃室温下静置5d(或煮沸15min),使蔗糖转化,冷却后移入1000ml容量瓶中,加水稀释至刻度,再从稀释了的糖液中吸取100ml放入500ml容量瓶中,加1%酚酞2~3滴,以6mol/L氢氧化钠溶液中和后加水稀释至刻度,即为转化糖溶液。
此液1ml含转化糖2mg。
⑷1%次甲基蓝溶液。
⒊操作步骤⑴菲林试剂的标定。
准确吸取配好的菲林试剂甲、乙各5ml混于三角瓶中,加次甲基蓝指示剂2滴,加热至沸,由滴定管中滴入糖液,至蓝色完全褪尽,溶液呈清亮为止,根据滴定所用转化糖的体积校正菲林试剂10ml相当的转化糖的克数。
⑵称样品10g ,小心转入100ml容量瓶中,蒸馏水定容,吸10ml样品液放入250ml烧杯中,加水50ml,加2.5ml浓盐酸(12mol/L)在沸水中煮40min,取出冷却,此时样品中的蔗糖水解成还原糖,然后加1滴1%的酚酞,加6mol/L氢氧化钠中和至微红色,转移至100ml 容量瓶中,定容,摇匀。
准确取菲林试剂甲、乙各5ml,放入三角瓶中,加次甲基蓝指示剂2滴,加热至沸,用样品溶液进行滴定,直至样品转化液将菲林试剂滴定至沸腾的泡沫为清亮,同时有红棕色沉淀出现为终点。
记录样品液的体积,再重复一次。
⒋计算还原糖的含量(%)=式中A:10ml菲林试剂所相当的还原糖的质量(g);V:滴定时所用样品液的体积(ml);m:所称样品的质量(g)。
⒌注意事项因次甲基蓝在碱性溶液中被过量的还原糖还原成无色,在常温下又极易被大气中的氧氧化成蓝色,影响终点的确定,故滴定时瓶中须保持沸腾状态,同时滴定时要快速,尽可能在短的时间内滴定到终点。
三、蜂蜜中醛糖含量的测定(碘量法)1. 原理凡是含有游离醛基的和半缩醛羟基的糖,在碱性溶液中与碘作用,被氧化为相应的一元酸。
由于加入的碘量是已知过量的,没参加反应的碘与氢氧化钠作用生成次碘酸钠,存在于溶液中,当加入酸时,次碘酸钠与碘化钠(碘与氢氧化钠作用产生)反应又析出碘。
用硫代硫酸钠标准溶液滴定剩余的碘,就可计算出糖在氧化时消耗的碘量,由消耗的碘量就可计算出醛糖的含量。
I2(过量部分)+2NaOH=NaIO+NaI+H2ONaIO+NaI+2HCl=2NaCl+I2+H2OI2+2Na2S2O3=2NaI+Na2S4O62. 试剂⒈0.1mol/L硫代硫酸钠标准溶液。
⒉0.1mol/L碘标准溶液。
⒊0.1mol/L氢氧化钠溶液。
⒋0.5mol/L盐酸。
⒌0.5%淀粉指示剂。
3. 操作步骤准确称取样品10.00g,加蒸馏水转移到250ml容量瓶中,加水定容,摇匀,放置30min,过滤,取滤液50ml于碘量瓶中,准确加入0.1mol/L碘标准溶液25ml,在不断振摇下,加入37.5ml 0.1mol/L氢氧化钠溶液,加塞摇匀,放于暗处15min。
取出,加8ml0.5mol/L盐酸,摇匀后用0.1mol/L硫代硫酸钠标准溶液滴定,直至溶液由棕色变为淡黄色时,加入淀粉指示剂1ml,摇匀,继续滴定到溶液蓝色消失为止(在半分钟内不再显蓝色),记录硫代硫酸钠标准溶液用量。
以同样步骤作试剂空白实验。
4. 计算式中c:硫代硫酸钠标准溶液的浓度(mol/L);V1:空白滴定时所消耗硫代硫酸钠标准溶液的体积(ml);V2:样液滴定时所消耗的硫代硫酸钠标准溶液的体积(ml);m:样品质量(g) ;180.12:葡萄糖的摩尔质量(g/mol)。
5. 注意事项⑴样品中不可含有乙醇、丙酮等成分,因为它们会消耗碘。
蔗糖、丙三醇、甘露醇等也与碘反应,但影响较小。
⑵样品中醛糖含量较高时,此法测定误差为±0.5%。
四、蜂蜜中果糖含量计算果糖含量=总还原糖含量-醛糖含量实验四、蔗糖转化度的测定一、原理蔗糖的转化反应一般是在H+的催化下进行,其化学方程式为:C12H22O22(蔗糖)+ H2O = C6H12O6(葡萄糖)+C6H12O6(果糖)因水量较多,在反应进行中,水的浓度基本不变,所以反应速度只与蔗糖的浓度有关。
蔗糖、葡萄糖、果糖都具有旋光性,但旋光能力不同,故可以从反应过程中体系旋光性的变化,测定反应速度。
当反应开始时,体系为右旋,随着反应的进行,葡萄糖和果糖逐渐增多。
由于果糖的左旋程度大于葡萄糖的右旋程度,所以,在反应过程中,体系的旋光性,由右旋逐渐变成左旋,因此可以根据体系旋光度的变化,测定反应速度。