01-12.1 邻接矩阵-PPT

合集下载

离散数学邻接矩阵

离散数学邻接矩阵

离散数学邻接矩阵离散数学中邻接矩阵是一个非常重要的概念,它与图论密不可分。

在这篇文章中,我将简单介绍什么是邻接矩阵,如何使用邻接矩阵表示图,以及邻接矩阵的一些应用。

1.什么是邻接矩阵?邻接矩阵是一个正方形的矩阵,用来表示无向图或有向图的连接关系。

在一个n个节点的图中,邻接矩阵是一个n×n的矩阵。

如果一个节点i与节点j有边相连,则邻接矩阵A中第i行第j列的元素为1,否则为0。

如果是有权图,则邻接矩阵的元素可以表示边的权值。

当图中存在自环时,邻接矩阵中的对角元素可以代表自环的权值。

邻接矩阵可以用下面的公式来表示:\[ A_{i,j} = \begin{cases}1, & \mbox{如果(i, j)是有向边或无向边} \\0, &\mbox{否则}\end{cases}\]考虑下面的无向图:![image.png](attachment:image.png)用邻接矩阵表示这个图,得到:![image-2.png](attachment:image-2.png)2.如何使用邻接矩阵表示图?使用邻接矩阵来表示图,需要明确图的类型。

对于无向图,邻接矩阵是对称的;对于有向图,邻接矩阵则不一定是对称的。

使用邻接矩阵可以方便地计算图的一些性质,例如计算度、邻居、路径等。

当然,为了提高计算效率和节省空间,通常使用压缩存储的方法来存储邻接矩阵。

3.邻接矩阵的应用邻接矩阵在图论中有很广泛的应用。

下面列举几个应用:(1)判断节点之间是否有连接关系。

如果邻接矩阵中第i行第j列的元素为1,表示节点i和节点j有连接关系。

(2)计算节点的度。

对于无向图,节点的度数是指与该节点相连的边的数目。

邻接矩阵中第i行或第i列的元素加起来就是节点i的度数。

对于有向图,节点的度数分入度和出度,可以通过邻接矩阵的不同来计算。

(3)计算路径矩阵。

路径矩阵表示从一个节点到另一个节点的最短路径。

通过邻接矩阵和路径算法,可以计算任意两个节点之间的最短路径。

一阶邻接矩阵和二阶邻接矩阵

一阶邻接矩阵和二阶邻接矩阵

一阶邻接矩阵和二阶邻接矩阵一、一阶邻接矩阵邻接矩阵是图论中常用的一种数据结构,用于表示图中节点之间的连接关系。

一阶邻接矩阵是指仅考虑相邻节点之间的连接关系的邻接矩阵。

一阶邻接矩阵的构造方法如下:1. 首先确定图中的节点个数,假设共有n个节点。

2. 创建一个n×n的矩阵,初始化所有元素为0。

3. 对于每一对相邻节点,将矩阵中对应位置的元素置为1。

举个例子来说明,假设有如下的图:A --B -- C| |D E其中,A、B、C、D、E分别表示图中的节点。

根据连接关系,可以得到一阶邻接矩阵如下:A B C D EA 0 1 0 1 0B 1 0 1 0 1C 0 1 0 0 0D 1 0 0 0 0E 0 1 0 0 0在一阶邻接矩阵中,每个节点对应一行和一列,矩阵中的元素表示两个节点之间是否有连接。

若有连接,则元素为1;若无连接,则元素为0。

二、二阶邻接矩阵二阶邻接矩阵是在一阶邻接矩阵的基础上进一步考虑节点间间接连接关系的邻接矩阵。

二阶邻接矩阵的构造方法如下:1. 首先根据一阶邻接矩阵计算出节点之间的直接连接关系。

2. 创建一个n×n的矩阵,初始化所有元素为0。

3. 对于任意两个节点i和j,如果存在一个节点k,使得节点i与节点k直接相连,节点k与节点j直接相连,那么在矩阵中将第i 行第j列的元素置为1。

继续以前面的例子为例,根据一阶邻接矩阵可以得到节点之间的直接连接关系。

接下来,根据直接连接关系计算二阶邻接矩阵如下: A B C D EA 0 1 1 1 1B 1 0 1 1 1C 1 1 0 1 1D 1 1 1 0 1E 1 1 1 1 0在二阶邻接矩阵中,每个元素表示两个节点之间是否存在间接连接。

若存在间接连接,则元素为1;若不存在间接连接,则元素为0。

通过一阶邻接矩阵和二阶邻接矩阵,我们可以更清晰地了解节点之间的直接和间接连接关系。

这对于分析图的结构、研究节点之间的影响传播等问题非常有帮助。

邻接表 和邻接矩阵

邻接表 和邻接矩阵

邻接表和邻接矩阵
邻接表和邻接矩阵是表示图的两种常用数据结构,它们用于描述图中各个顶点之间的连接关系。

具体分析如下:
- 邻接表:邻接表是一种链表数组,其中每个数组元素对应一个顶点,并且包含一个链表,链表中的每个节点代表与该顶点相邻的顶点。

这种结构特别适合于表示稀疏图,即边的数量远小于顶点数量的平方的图。

在邻接表中,对于每个顶点,只需要存储与其直接相连的顶点,因此可以节省空间。

当图的顶点较多,且图为稀疏图时,邻接表通常是更合适的选择。

- 邻接矩阵:邻接矩阵是一种二维数组,其中行和列都代表图中的顶点。

如果两个顶点之间存在边,则相应的矩阵元素值为1(或者边的权重,如果是带权图),否则为0。

邻接矩阵适用于表示稠密图,即边的数量接近顶点数量的平方的图。

邻接矩阵的优点是可以快速地判断任意两个顶点之间是否存在边,但是当图非常稀疏时,它会占用较多的内存空间。

总的来说,邻接表和邻接矩阵各有优势,选择哪种数据结构取决于具体的应用场景。

如果图是稀疏的,并且需要节省存储空间,邻接表通常更合适;如果需要快速查询任意两点之间的关系,而图又相对稠密,邻接矩阵可能是更好的选择。

邻接矩阵和关联矩阵

邻接矩阵和关联矩阵

邻接矩阵和关联矩阵一、概念解释邻接矩阵和关联矩阵是图论中常用的两种表示图的方式。

邻接矩阵是指用一个二维数组来表示图中各个节点之间的连接情况,其中数组的行和列分别代表节点,如果节点i和节点j之间有连边,则邻接矩阵中第i行第j列的元素为1,否则为0。

关联矩阵是指用一个二维数组来表示图中各个节点和边之间的联系,其中数组的行代表节点,列代表边,如果节点i与边j有关联,则关联矩阵中第i行第j列的元素为1或-1,分别表示该节点是边的起点或终点;如果该节点与该边没有关联,则为0。

二、邻接矩阵1.构建邻接矩阵要构建一个无向图G={V,E}的邻接矩阵A(V*V),可以按以下步骤进行:(1)初始化A为全0矩阵;(2)遍历E集合中每一条边(u,v),将A[u][v]和A[v][u]均设为1;(3)对角线上所有元素均设为0。

2.应用场景邻接矩阵适用于稠密图(即节点数较多,边数较多)的存储和计算,因为其空间复杂度为O(V^2),而且可以快速判断任意两个节点之间是否有连边。

3.优缺点邻接矩阵的优点包括:(1)易于理解和实现;(2)空间利用率高;(3)可以快速判断任意两个节点之间是否有连边。

邻接矩阵的缺点包括:(1)对于稀疏图(即节点数很多,但是边数很少),会浪费大量空间;(2)插入或删除节点时需要重新构建整个矩阵,时间复杂度为O(V^2);(3)如果图中存在重边或自环,则需要额外处理。

三、关联矩阵1.构建关联矩阵要构建一个无向图G={V,E}的关联矩阵B(V*E),可以按以下步骤进行:(1)初始化B为全0矩阵;(2)遍历E集合中每一条边(u,v),将B[u][e]和B[v][e]均设为1,其中e表示第e条边;(3)对于每个节点i,在B中找到与之相关的所有边,并将它们标记为-1,表示该节点是这些边的终点。

2.应用场景关联矩阵适用于稀疏图(即节点数很多,但是边数很少)的存储和计算,因为其空间复杂度为O(V*E),而且可以快速判断任意两个节点之间是否有连边。

邻接矩阵

邻接矩阵

感谢观看
①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不 一定为0,有向图则不一定如此。
②在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行 所有非零元素的个数,而入度为第i列所有非零元素的个数。
③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零 外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
有向图邻接矩阵中第i行非零元素的个数为第i个顶点的出度,第i列非零元素的个数为第i个顶点的入度,第 i个顶点的度为第i行与第i列非零元素个数之和。
用邻接矩阵表示图,很容易确定图中任意两个顶点是否有边相连。
描述
用一个顺序表来存储顶点信息
表示法
在图的邻接矩阵表示法中: ①用邻接矩阵表示顶点间的相邻关系 ②用一个顺序表来存储顶点信息 图的矩阵 设G=(V,E)是具有n个顶点的图,则G的邻接矩阵是具有如下性质的n阶方阵: 【例】 下图中无向图G 5和有向图G 6的邻接矩阵分别为A1和A 2。 络矩阵 若G是络,则邻接矩阵可定义为: 其中: w ij表示边上的权值;
邻接矩阵
数据结构术语
Hale Waihona Puke 01 定义03 描述
目录
02 特点 04 表示法
逻辑结构分为两部分:V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中所有顶点数据; 用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩 阵和无向图邻接矩阵
定义
邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中 V={v1,v2,…,vn} 。G的邻接矩阵是一个具有下列性质的n阶方阵:

邻接矩阵

邻接矩阵

vn}, E二知%…,由,令气")为 称为D的邻接 矩阵,记作A(D),或简记
V V1 V1
=v 2
V3
V4
V2
02 00 00 00
卩3卩
4
10
10
定理
设A为有向图D的邻接矩阵,V二傍1,〃2,…,%}为顶点集,则A的[次幕4① (Z>1) 中元素
朮)为D中a到巧长度为I的通路数,其中 昭为巧到自身长度为[的回路数,而
-第四篇图论
-第十二章图的矩阵表示
f
本章各节间的关系概图
12.2可达矩阵
定义
性质
12.3关联矩阵
定义
性质
A
12.1邻接矩阵
定义
性质
图的矩阵表示
有向图
无向图
-图的矩阵表示在计算机科学技术相关领域的应用
-12. 1邻接矩阵
虹定义12. 1」
设G=<V, E〉为简单图,它有n个结点u = {%般2,..•*}, 贝IJn阶方 阵4(G)=(叱)称为G的邻接矩阵。
邻接矩阵的性质:
2)也4的元素的意义:
B — nxn — ATA
电 a21 … « * 。22 … * •••
«*
*
•••
% %…
%]…
a •* •
Uj2
•♦♦
。北 •♦♦
ani~ &
《2
^21 %2
«* * • • •
•・■ •
a
;2
a. si • •
•■•
•♦♦

a…
a a i _ nl an,Z
其中】aij
15邻接勺
0,力不邻接巧或i = j

邻接矩阵-南京大学

邻接矩阵-南京大学
v1 v2
v4
v3
0 0 A(G) 1 1
1 0 0 0 1 1 1 0 1 0 0 0
可推广到简单无向图
举例(邻接矩阵)
v1 v2
v4
v3
0 1 A(G) 1 1
1 0 1 0
1 1 0 1
1 0 1 0
简单无向图的邻接矩阵是对称矩阵
邻接矩阵(adjacency matrix)

简单有向图G = (V, E, ) ,设V=v1,…,vn,E= e1,…,em。

A(G)=aij称为G的邻接矩阵(n×n 阶矩阵),其中
1 如果v i邻接到v j a ij 0 否则
eE. (e)=(vi, vj)
举例(邻接矩阵)
邻接矩阵的运算

逆图(转置矩阵)

设G的邻接矩阵为 A ,则 G 的逆图的邻接矩阵是 A 的转 置矩阵,用AT表示。
0100 0011 A 1101 1000
0011 1010 T A 0100 0110
邻接矩阵的运算
邻接矩阵的运算

顶点的度


行中1的个数就是行中相应结点的出度
列中1的个数就是列中相应结点的入度
v1
v2
v4
v3
Hale Waihona Puke 0 0 A 1 11 0 0 0 1 1 1 0 1 0 0 0
Deg+(1)=1,Deg-(1)=2
Deg+(2)=2,Deg-(2)=2
Deg+(3)=3,Deg-(3)=1 Deg+(4)=1,Deg-(4)=2
邻接表

矩阵分析课件精品PPT

矩阵分析课件精品PPT

典型例题解析
例1
求矩阵A的特征值和特征向量,其中A=[[3,1],[2,2]]。
例2
已知矩阵A的特征值为λ1=2, λ2=3,对应的特征向量为 α1=[1,1]T, α2=[1,-1]T,求矩阵A。
解析
首先求出矩阵A的特征多项式为f(λ)=(λ-1)(λ-4),解得特 征值为λ1=1, λ2=4。然后分别将特征值代入(A-λI)x=0求 解对应的特征向量。
应用举例
通过克拉默法则求解二元、三元线性方程组,并验证解的正确性 。
典型例题解析
01
例题1
求解三元线性方程组,通过高斯消元 法得到增广矩阵的上三角形式,然后 回代求解未知数列向量x。
02
03
例题2
例题3
判断四元线性方程组的解的情况,通 过计算系数矩阵的行列式|A|以及替换 列向量后的矩阵行列式|Ai|,根据克 拉默法则判断方程组的解是唯一解、 无解还是无穷多解。
特殊类型矩阵介绍
01
02
03
04
方阵
行数和列数相等的矩阵称为方 阵。
零矩阵
所有元素都是零的矩阵称为零 矩阵。
对角矩阵
除主对角线外的元素全为零的 方阵称为对角矩阵。
单位矩阵
主对角线上的元素全为1,其 余元素全为0的方阵称为单位 矩阵。
矩阵性质总结
Байду номын сангаас
01
结合律
02
交换律
03 分配律
04
数乘结合律
数乘分配律
• 对于每一个特征值m,求出齐次线性方程组(A-mI)x=0的一个基础解系,则A对应于特征值m的全部特征向量(其中I是与A 同阶的单位矩阵)。
特征值和特征向量求解方法

邻接矩阵 检索-概述说明以及解释

邻接矩阵 检索-概述说明以及解释

邻接矩阵检索-概述说明以及解释1.引言1.1 概述:邻接矩阵是图论中一种常见的数据结构,用于描述图中各个顶点之间的连接关系。

在邻接矩阵中,图的顶点通常用矩阵的行和列来表示,矩阵的元素则表示顶点之间是否相连或具有何种关系。

邻接矩阵在图论中有着广泛的应用,可以用来表示网络结构、社交关系、路线规划等各种场景。

通过邻接矩阵,我们可以方便地进行图的遍历、查找、最短路径等操作,为解决各类实际问题提供了便利。

本文将重点介绍邻接矩阵的定义与概念,探讨邻接矩阵在图论中的应用,并详细介绍邻接矩阵检索算法,希望能够为读者提供对邻接矩阵及其应用的深入理解。

1.2文章结构1.2 文章结构本文主要分为三个部分,即引言、正文和结论。

在引言部分,将会对邻接矩阵进行概述,介绍文章的结构和目的。

其中,概述部分将对邻接矩阵的基本定义和概念进行简要介绍,为后续的正文部分做铺垫;文章结构部分将给出整篇文章的框架和布局,方便读者快速了解文章内容;而目的部分则会说明本文撰写的目的和意义。

在正文部分,将围绕着邻接矩阵展开讨论。

具体而言,将首先介绍邻接矩阵的定义与概念,让读者对其有一个清晰和全面的认识;接着将探讨邻接矩阵在图论中的应用,以便读者更深入地理解这一概念;最后将重点讨论邻接矩阵的检索算法,为读者提供一种快速高效地检索邻接矩阵信息的方法。

在结论部分,将对全文进行总结,回顾本文所涉及的内容和观点;同时也将展望邻接矩阵在未来的应用和发展方向,为读者呈现一幅邻接矩阵所展现出的无限可能;最后提出结论,总结本文的主要观点和贡献,为本文画上一个完整的句号。

1.3 目的邻接矩阵是图论中一种重要的数据结构,用于表示图中各个顶点之间的连通关系。

邻接矩阵检索算法则是基于邻接矩阵的数据结构,用于实现对图的快速检索和查询操作。

本文旨在探讨邻接矩阵检索算法的原理和实现方法,通过深入分析算法的逻辑结构和实用性,帮助读者更好地理解和应用邻接矩阵在图论中的作用。

通过本文的阐述,读者将能够了解邻接矩阵在图论中的重要性和应用价值,掌握邻接矩阵检索算法的具体实现方式,从而提升对图的处理和分析能力。

邻接矩阵计算

邻接矩阵计算

邻接矩阵:图的表示方法与计算方法
邻接矩阵是一种用于表示图(graph)的矩阵,其中每个元素表示两个节点之间的连接关系。

邻接矩阵是一个方阵,其行和列都对应图中的节点。

如果节点i和节点j之间存在一条边,则矩阵中的相应元素为1;否则为0。

在计算邻接矩阵时,首先需要确定图的顶点数和边数。

然后,根据这些信息可以创建一个空的矩阵,其行数和列数分别对应顶点的数量。

接下来,遍历图的每一条边,并标记邻接矩阵中相应位置的元素为1,以表示两个节点之间的连接关系。

如果图中存在自环边(即从节点到自身的边),则需要对邻接矩阵进行填充,使其对角线上的元素也为1。

最后,如果图是无向图,则需要对邻接矩阵进行补全,使得矩阵的上三角和下三角元素相等。

下面是一个简单的Python代码示例,用于计算邻接矩阵:
def compute_adjacency_matrix(vertices, edges):
adjacency_matrix = [[0] * vertices for _ in range(vertices)]
for edge in edges:
u, v = edge
adjacency_matrix[u-1][v-1] = 1
adjacency_matrix[v-1][u-1] = 1
return adjacency_matrix
在这个例子中,vertices参数表示顶点的数量,edges参数是一个包含边的列表,其中每个边都是一个包含两个顶点索引的元组。

该函数将创建一个大小为vertices x vertices的零矩阵,然后遍历边的列表,将邻接矩阵中相应位置的元素标记为1。

最后,该函数返回邻接矩阵。

高级英语(考研方向) 邻接矩阵

高级英语(考研方向) 邻接矩阵

高级英语(考研方向)邻接矩阵【原创实用版】目录1.邻接矩阵的定义2.邻接矩阵的应用3.邻接矩阵的举例4.邻接矩阵的计算方法正文一、邻接矩阵的定义邻接矩阵(Adjacency Matrix)是一种用来表示有向图或无向图中各个顶点间关系的矩阵。

在矩阵中,行和列都对应图中的顶点。

如果顶点 i 与顶点 j 之间存在一条边,则矩阵的第 i 行第 j 列(记作 aij)处的元素为 1(有向图)或者对应的边的权(带权图);如果顶点 i 与顶点 j 之间不存在边,则 aij 为 0。

二、邻接矩阵的应用邻接矩阵在图论中有着广泛的应用,主要体现在以下几个方面:1.表示图的结构:邻接矩阵可以简洁地表示有向图或无向图的结构,便于进行相关操作和分析。

2.存储图的信息:邻接矩阵可以用来存储图的顶点数、边数以及边的权等信息。

3.计算图的性质:邻接矩阵可以用来计算图的聚类系数、平均路径长度、最短路径等图的性质。

三、邻接矩阵的举例假设有一个无向图,共有 4 个顶点,边的连接关系如下:- 顶点 1 与顶点 2、3、4 相连;- 顶点 2 与顶点 1、3、4 相连;- 顶点 3 与顶点 1、2、4 相连;- 顶点 4 与顶点 1、2、3 相连。

该图的邻接矩阵如下:```1 0 1 10 1 0 11 0 0 11 1 0 1```四、邻接矩阵的计算方法对于无向图,可以采用以下方法计算邻接矩阵:1.初始化一个二维数组,数组的行数和列数分别表示图中的顶点数。

2.遍历图中的每一条边,根据边的起点和终点,将对应的邻接矩阵元素值设为 1。

对于有向图,计算邻接矩阵的方法基本相同,只是在计算邻接矩阵时,需要根据边的方向来设置元素值。

邻接矩阵与可达矩阵计算

邻接矩阵与可达矩阵计算

1. 邻接矩阵
案例
有向图
0 1 A 0 0 0
邻接矩阵
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1. 邻接矩阵
案例
1 0 A2 1 0 0
0 1 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0
1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1

有向图
4 5 1 2 3
邻接矩阵
1 0 ( A I ) 0 0 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1
2. 系统结构模型
经过两步的可达矩阵
布尔运算乘积 2步可达矩阵
1 0 0 0 0
暨南大学应急管理学院
1. 邻接矩阵
本部分内容出自《离散数学》图论章节
1. 邻接矩阵
邻接矩阵的定义
设G=<V,E>是一个简单图,它有n个结 点V={v1,v2,…,vn},则n阶方阵A(G)= (aij)称为G的邻接矩阵。
1
aij
0
Vi与Vj之间存在关系; Vi与Vj之间没有关系或者相同;
1. 邻接矩阵
邻接矩阵表达有向图
有向图
4 5
邻接矩阵
0 0 A 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
1 2 3
1. 邻接矩阵
邻接矩阵表达有向图

《矩阵概念简易入门》课件

《矩阵概念简易入门》课件
些基本的数学性质,如加法、数乘、乘法等。
详细描述
矩阵的加法是将两个矩阵的对应元素相加,数乘则是将矩阵 中的每个元素乘以一个常数。此外,矩阵还可以进行乘法运 算,但要求第一个矩阵的列数等于第二个矩阵的行数。
特殊类型的矩阵
总结词
特殊类型的矩阵包括零矩阵、单位矩阵、对称矩阵等。
系数矩阵
线性方程组中的系数和常数项可以组 合成一个系数矩阵,通过对方程组进 行初等行变换,可以化简系数矩阵, 从而求得方程组的解。
在向量空间中的应用
向量空间
矩阵可以表示向量空间中的线性 变换,通过矩阵的乘法运算,可 以实现向量的线性组合、缩放、 旋转等操作。
特征值与特征向量
矩阵的特征值和特征向量在向量 空间中具有重要应用,它们可以 描述矩阵对向量空间的变换性质 ,以及向量在变换下的表现。
《矩阵概念简易入门》ppt课件
目录
• 矩阵的定义与性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的应用 • 总结与展望
01
矩阵的定义与性质
矩阵的定义
总结词
矩阵是一个由数字组成的矩形阵列,通常用于表示二维数据。
详细描述
矩阵是一个由行和列组成的二维表格,其中每个元素由行索引和列索引唯一确 定。矩阵可以用于表示各种数据结构,如线性方程组的系数矩阵、概率分布等 。
03
矩阵的逆与行列式
矩阵的逆
01
02
03
逆矩阵的定义
如果一个矩阵A存在一个 逆矩阵A^(-1),使得A * A^(-1) = I(单位矩阵) ,则称A为可逆矩阵。
逆矩阵的性质
逆矩阵是唯一的,且逆矩 阵与原矩阵的乘积等于单 位矩阵。
逆矩阵的计算方法
通过高斯消元法或LU分解 等数值方法求解。

邻接矩阵-南京大学

邻接矩阵-南京大学
k 1 n

Cij表示同时有边指向结点i和结点j的那些结点的个数; 若i=j,则Cii表示结点i的入度。
邻接矩阵的运算
v1 v2
0 0 A 1 1 1 0 0 0 1 1 1 0 1 0 0 0
v4
v3
1010 0210 T A A 1131 0011
邻接矩阵的运算

逆图(转置矩阵)

设G的邻接矩阵为 A ,则 G 的逆图的邻接矩阵是 A 的转 置矩阵,用AT表示。
0100 0011 A 1101 1000
0011 1010 T A 0100 0110
邻接矩阵的运算
邻接表
是单射

若图G = (V, E, ) 没有多重边,列出这个图的所有 边。对每个顶点,列出与其邻接的顶点。
b
a
c
e
d
顶点 a b c d e
相邻顶点 b, c, e a a, d, e c, e a, c, d
邻接表(有向图)
是单射

若图G = (V, E, ) 没有多重边,列出这个图的所有 边。对每个顶点,列出与其邻接的顶点。
从v2→v1,有二条长度为2的通路;有一条长度为3的通路
邻接矩阵的运算
v1 v2
0 0 A 1 1 1 0 0 0 1 1 1 0 1 0 0 0
v4
v3
3423 5546 B4 A1 A2 A3 A4 7747 3212

长度不大于k的通路个数
图的同构

图同构的定义

设G1=(V1, E1, 1)和G2=(V2, E2, 2)是两个简单无向图。

矩阵PPT课件

矩阵PPT课件
11
1 3 2 4
例1.设
A
1
5
7
8
0 4 6 9
求A+B
3 7 2 11
B
4
10
9
0
2 8 6 5
41310 34715 2 2 411
解: A+B
032121425
516108
7 9
412814 6 6
80 95
12
三、数与矩阵的乘法 (P30)
1. 定义
设 是常数, A = ( aij ) m×n ,则矩阵
a1n
a2
n
,
0
ann
其中 aij = 0, i > j
9.下三角矩阵
a11 a 21
a 22
0
,
其中 aij = 0, i < j
a n1 a n 2 a nn
8
§2 矩阵的运算
一、矩阵的加 法(P29)
1. 定义
设 A = ( aij )m×n , B = ( bij )m×n
2
1012
0 1
3 0
1
2
1 0
3 6
注:1.一般地AB BA 即矩阵乘法不满足交换律
2.只有A的列数等于B的行数,AB才有意义.也称 AB可乘,A右乘B,B左乘A
19
例4 设
A
1 1
1 1
,
B2 1 , 2 1
C 2 3 , 1 3
D1 5 2 5
试证: (1) AB = 0 ;
(2) ( A + B ) = A + B
(3) ( + μ ) A = A + μ A

邻接矩阵法

邻接矩阵法

邻接矩阵法邻接矩阵法是图论中一种常用的表示图结构的方法。

它通过一个二维矩阵来表示图中各个顶点之间的连接关系。

在邻接矩阵中,矩阵的行和列分别代表图中的顶点,而矩阵中的元素则表示对应顶点之间是否存在边。

邻接矩阵的定义假设有一个无向图G=(V,E),其中V为顶点集合,E为边集合。

邻接矩阵A是一个n×n的方阵,其中n为图中顶点的个数。

邻接矩阵A满足以下条件:•如果顶点i和顶点j之间存在边,则A[i][j]=1;•如果顶点i和顶点j之间不存在边,则A[i][j]=0。

对于有向图来说,邻接矩阵也可以用来表示其连接关系,只是在有向图中,边具有方向性。

邻接矩阵的应用邻接矩阵作为一种常见的图表示方法,在许多算法和应用中都得到了广泛的应用。

下面介绍一些常见的应用场景:1. 图遍历通过邻接矩阵,我们可以方便地遍历图中的顶点和边。

对于一个顶点i,我们只需要遍历邻接矩阵的第i行(或第i列),就可以获取到与该顶点直接相连的所有顶点。

2. 最短路径算法邻接矩阵常被用于求解最短路径问题,例如Dijkstra算法和Floyd-Warshall算法。

在这些算法中,通过邻接矩阵来表示各个顶点之间的距离或权重,然后根据具体的算法逻辑来计算最短路径。

3. 最小生成树邻接矩阵也可以用于求解最小生成树问题,例如Prim算法和Kruskal算法。

在这些算法中,邻接矩阵用来表示图中各个顶点之间的连接关系,并根据具体的算法逻辑选择合适的边来构建最小生成树。

4. 图的连通性判断通过邻接矩阵,我们可以判断一个图是否是连通图。

如果一个无向图的邻接矩阵是对称且连通的,则说明该图是一个连通图。

如果一个有向图的邻接矩阵是强连通的,则说明该有向图是强连通图。

邻接矩阵的优缺点邻接矩阵作为一种图的表示方法,具有以下优点:•表示简单:邻接矩阵直观地表示了图中各个顶点之间的连接关系,易于理解和实现。

•查询高效:通过邻接矩阵,可以快速判断两个顶点之间是否存在边,时间复杂度为O(1)。

矩阵教学课件

矩阵教学课件

例如:
13 2
6 2
5 2
是一个3 阶方阵.
2 2 2
(2) 只有一行的矩阵 A a1,a2 ,,an ,称为行矩阵(或行向量).
(3) 只有一列的矩阵
a1
B
a2
,
an
称为列矩阵(或列向量).
第二章 矩阵
§1 矩阵的概念
(4) 元素全为零的矩阵称为零矩阵, 记作O.
注意:不同阶数的零矩阵是不相等的.
例8: 设列矩阵X = (x1 x2 ···xn)T, 满足XTX = 1, E为n 阶单位 矩阵, H = E – 2XXT, 证明: H为对称矩阵, 且HHT = E.
证明: 自学 (见P49)
第二章 矩阵
§2 矩阵的运算
五、方阵的行列式 定义:由n阶方阵A的元素所构成的行列式(各元素的位
置不变),称为方阵A的行列式,记作|A| 或det A. 例
第二章 矩阵
§1 矩阵的概念 §2 矩阵的运算 §3 逆矩阵 §4 分块矩阵 §5 矩阵的初等变换 §6 矩阵的秩
第二章 矩阵
§1 矩阵的概念
一、矩阵的定义 定义: 由m×n个数aij (i = 1,2, ∙ ∙ ∙, m ; j = 1,2, ∙ ∙ ∙, n) 排
成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
ym am1 x1 am2 x2 amn xn .
表示一个从变量x1、x2、…xn到变量y1、y2、…ym的线性变换,
其中aij为常数。
第二章 矩阵
§1 矩阵的概念
,
x

矩阵(Matrix)PPT课件

矩阵(Matrix)PPT课件

a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.

1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档