空间向量与平行、垂直关系

合集下载

2利用空间向量证明平行垂直关系(学生版)

2利用空间向量证明平行垂直关系(学生版)

利用空间向量证明平行垂直关系(讲案)【教学目标】一、方向向量与法向量概念【知识点】1.直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量。

注:(1)在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量。

(2)在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,在直线上任取两点,所形成的向量即为该直线的方向向量,可参与向量运算或向量的坐标运算。

(3)直线的方向向量是非零向量且不唯一。

⊥,取直线l的方向向量a,则向量a叫做平面α的法向量。

2.平面的法向量:直线l a(注意:平面的法向量是非零向量且不唯一)3.确定平面的法向量的方法(1)直接法:几何体中有具体的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量,即观察是否有垂直于平面的向量,若有,则此向量就是法向量。

(2)待定系数法:几何体中没有具体的直线,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为(,,)n x y z =(ii )找出(求出)平面内的两个不共线的向量的坐标a 111(,,)a b c =,222,,)(b a b c =(iii )根据法向量的定义建立关于,,x y z 的方程0n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ;(iv )解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量. 4. 空间位置关系的向量表示12,n n2l 1212//(n n n kn k R ⇔=∈2l ⊥12120n n n n ⊥⇔⋅=n , 的法向量为m l α0n m n m ⊥⇔⋅=α⊥//()n m n km k R ⇔=∈的法向量分别为,n mβ //()n m n km k R ⇔=∈β⊥0n m n m ⊥⇔⋅=【例题讲解】★☆☆例题1.(2020•和平区)若(1A -,0,1),(1B ,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)★☆☆练习1.已知直线1l 的方向向量(2,,1)m m =,2l 的方向向量1(1,,2)2n =,且21l l ⊥,则(m = )A .8B .8-C .1D .1-★☆☆练习2.直线1l 、2l 的方向向量分别为(1a =,2,2)-,(2b =-,3,2),则( ) A .12//l l B .1l 与2l 相交,但不垂直C .12l l ⊥D .不能确定★☆☆练习3.若直线l 的方向向量为(2v =,1,3),且直线l 过(0A ,y ,3),(1B -,2-,)z 两点.则y = ,z = .★☆☆练习4.已知点(1A ,2-,0)和向量(3,4,6)a =-,||2||AB a =,且AB 与a 方向相反,则点B 坐标为( )A .(7-,6,12)B .(7,10-,12)-C .(7,6-,12)D .(7-,10,12)★☆☆例题2.已知(2AB =,2,1),(4AC =,5,3),则下列向量中是平面ABC 的法向量的是( ) A .(1,2,6)-B .(2-,1,1)C .(1,2-,2)D .(4,2-,1)★☆☆练习1.(2020•聊城)若直线l 的方向向量为m ,平面α的法向量为n ,则能使//l α的是( ) A .(1m =,2,1),(1n =,0,1) B .(0m =,1,0),(0n =,3,0)C .(1m =,2-,3),(2n =-,2,2)D .(0m =,2,1),(1n =-,0,1)-★☆☆练习2.(2020秋•和平区)如图,在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系,则平面11A BC 的法向量是( )A .(1,1,1)B .(1-,1,1)C .(1,1-,1)D .(1,1,1)-★★☆练习3.(2020•辽宁)已知平面α上三点(3A ,2,1),(1B -,2,0),(4C ,2-,1)-,则平面α的一个法向量为( )A .(4,9-,16)-B .(4,9,16)-C .(16-,9,4)-D .(16,9,4)-★☆☆例题3.直线l 的方向向量(1a =,3-,5),平面α的法向量(1n =-,3,5)-,则有( ) A .//l α B .l α⊥C .l 与α斜交D .l α⊂或//l α★★☆练习1.(2019•杨浦区)空间直角坐标系中,两平面α与β分别以1(2n =,1,1)与2(0n =,2,1)为其法向量,若l αβ=,则直线l 的一个方向向量为 (写出一个方向向量的坐标)★☆☆练习2.若直线l 的方向向量为(4,2,)m ,平面α的法向量为(2,1,1)-,且l α⊥,则m = . ★☆☆练习3.(2020•菏泽)设平面α的法向量为(1,2-,)λ,平面β的法向量为(2,μ,4),若//αβ,则(λμ+= ) A .2 B .4C .2-D .4-二、利用空间向量证明平行关系【知识点】(1)线线平行:若空间不重合两条直线,a b 的方向向量分别为,a b ,则////a b a b ⇔⇔()a b R λλ=∈; (2)线面平行:若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=;(3)面面平行:若空间不重合的两个平面,αβ的法向量分别为a b ,,则////a b αβ⇔⇔a b λ=.【例题讲解】★☆☆例题1.如图,在长方体1111OAEB O A E B -中,||3OA =,||4OB =,1||2OO =,点在棱1AA 上,且12AP PA =,点S 在棱1BB 上,且12SB BS =,点Q 、R 分别是11O B 、AE 的中点,求证://PQ RS .★☆☆例题2.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .建立适当的空间直角坐标系,利用空间向量方法解答以下问题: 求证://PA 平面EDB .★☆☆练习1. 如图,在长方体1111ABCD A B C D -中,12AD AA ==,6AB =,E 、F 分别为11A D 、11D C 的中点.分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -. (1)求点E 、F 的坐标; (2)求证:1//EF ACD 平面.P★★☆练习2. 如图,在四棱锥P ABCD -中,PB ⊥平面ABCD ,AB AD ⊥,//AB CD ,且1AB =,2AD CD ==,E 在线段PD 上.若E 是PD 的中点,试证明://AE 平面PBC .★☆☆例题3.如图,在正方体1111ABCD A B C D -中,求证:平面11//AB D 平面1BDC .★☆☆练习1. 已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB ,1DD 的中点,求证: (1)1//FC 平面ADE ; (2)平面//ADE 平面11B C F .★★☆练习2. 如图,已知棱长为4的正方体1111ABCD A B C D -中,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点,求证:平面//AMN 平面EFBD .三、利用空间向量证明垂直关系【知识点】(1)线线垂直:设直线,的方向向量分别为,,则要证明,只需证明,即。

空间向量平行公式和垂直公式

空间向量平行公式和垂直公式

空间向量平行公式和垂直公式
1、向量垂直公式
向量a=(a1,a2),向量b=(b1,b2)。

a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)。

a垂直b:a1b1+a2b2=0。

2、向量平行公式
向量a=(x1,y1),向量b=(x2,y2)。

x1y2-x2y1=0。

a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。

相关信息:
空间中具有大小和方向的量叫做空间向量。

向量的大小叫做向量的长度或模(modulus)。

规定,长度为0的向量叫做零向量,记为0。

模为1的向量称为单位向量。

与向量a长度相等而方向相反的向量,称为a的相反向量。

记为-a方向相等且模相等的向量称为相等向量。

1、共线向量定理
两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb
2、共面向量定理
如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是:存在唯一的一对实数x,y,使c=ax+by
3、空间向量分解定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc。

任意不共面的三个向量都可作为空间的一个基底,零向量的表示唯一。

空间向量的垂直和平行关系

空间向量的垂直和平行关系

空间向量的垂直和平行关系空间向量是三维空间中具有大小和方向的量,它们之间存在着不同的关系。

其中最常见的关系是垂直和平行关系。

本文将深入探讨空间向量的垂直和平行关系,并分析其特点和性质。

一、垂直关系当两个向量的数量积等于零时,它们被称为垂直向量。

具体地说,对于空间中的向量A和A来说:A⋅A=AAA cos A=0其中,A⋅A表示向量A和A的数量积,AAA表示向量A和A的叉积,A表示两个向量之间的夹角。

当A为90度时,cos A=0,表明向量A和A 垂直。

垂直向量的特点和性质如下:1. 垂直向量的数量积为零,即两个向量之间的夹角为90度。

2. 向量的数量积等于零并不意味着它们一定是垂直的,还需考虑向量的长度和方向。

3. 若两个向量垂直,则它们的叉积为非零向量。

4. 若两个向量平行,则它们的数量积为非零常数。

5. 若一个向量与另一个非零向量垂直,则它与另一个向量平行。

二、平行关系当两个向量的叉积为零时,它们被称为平行向量。

具体地说,对于空间中的向量A和A来说:AAA=AAA sin A=0其中,AAA表示向量A和A的代数长度,sin A表示两个向量之间的夹角的正弦值。

当sin A等于零时,表明向量A和A平行。

平行向量的特点和性质如下:1. 平行向量的叉积为零,即两个向量之间的夹角的正弦值为零。

2. 平行向量之间的数量积可能为非零常数,也可能为零。

3. 若两个向量平行,则它们的数量积为非零常数。

4. 若两个向量垂直,则它们的叉积为非零向量。

5. 若一个向量与另一个非零向量平行,则它与另一个向量垂直。

通过对空间向量的垂直和平行关系进行分析,我们可以得出以下结论:1. 垂直和平行是空间向量最基本的关系,它们之间存在着一定的对应性。

2. 垂直和平行关系可以通过向量的数量积和叉积进行判断。

3. 垂直和平行向量在解决实际问题中具有重要的应用价值,如物理力学中的受力分析和几何学中的平面垂直关系。

在实际问题中,我们常常需要确定向量之间的关系,特别是垂直和平行关系。

空间向量的平行与垂直定理

空间向量的平行与垂直定理

空间向量的平行与垂直定理空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

在研究物理、几何和力学等领域时,我们经常需要判断两个向量之间的关系,这个定理就为我们提供了一个有力的工具。

我们来研究两个向量的平行性。

如果两个向量的方向相同或相反,那么它们是平行的。

也就是说,如果向量A和向量B的方向相同或相反,我们可以写成A∥B。

这种平行关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于它们的模长的乘积,即A·B=|A||B|,那么向量A和向量B是平行的。

接下来,我们来研究两个向量的垂直性。

如果两个向量的数量积等于0,那么它们是垂直的。

也就是说,如果向量A和向量B的数量积为0,我们可以写成A⊥B。

这种垂直关系可以用向量的数量积来判断。

具体来说,如果两个向量A和B的数量积等于0,即A·B=0,那么向量A和向量B是垂直的。

空间向量的平行与垂直定理在几何和物理问题中有广泛的应用。

例如,在平面几何中,我们经常需要判断两条线段的平行性或垂直性。

根据空间向量的平行与垂直定理,我们可以通过计算两个向量的数量积来判断它们之间的关系。

这样,我们就可以得到准确的结论,避免了繁琐的几何证明过程。

在物理学中,空间向量的平行与垂直定理也具有重要的应用价值。

例如,在力学中,我们经常需要计算物体受力的情况。

如果两个力的方向相同或相反,那么它们是平行的;如果两个力的数量积为0,那么它们是垂直的。

根据空间向量的平行与垂直定理,我们可以通过计算向量的数量积来判断力的方向和性质,从而进行精确的力学分析。

除了在几何和物理中的应用,空间向量的平行与垂直定理还可以应用于其他领域。

例如,在计算机图形学中,我们经常需要计算向量的平行和垂直关系,以确定图形的方向和位置。

在工程学中,空间向量的平行与垂直定理可以应用于结构分析和力学设计等方面。

空间向量的平行与垂直定理是空间向量运算中的一条重要定理,它描述了空间中两个向量的平行和垂直关系。

3.2.2空间向量与平行.垂直关系

3.2.2空间向量与平行.垂直关系
∴A→B1⊥M→N,∴AB1⊥MN.
法二 (坐标法) 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴, OO1 为 z 轴建立如图所示的空间直角坐标 系.由已知得
A(-12,0,0),B(12,0,0),C(0, 23,0),N(0, 23,14),B1(12,0, 1), ∵M 为 BC 中点,∴M(14, 43,0).
题型二 证明线线垂直
【例2】 已知正三棱柱 ABC-A1B1C1 的各棱长
都为 1,M 是底面上 BC 边的中点,N 是侧
棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥ MN. [思路探索] 解答本题可先选基向量,证明A→B1·M→N=0 或先 建系,再证明A→B1·M→N=0.
解 法一 (基向量法)
(3)若直线 l 的方向向量是 u,平面α的法向量是 v,则有 l∥α⇔u⊥v⇔u·v=0;l⊥α⇔u∥v⇔u=kv(k∈R).
空间垂直关系的向量表示
(1)线线垂直
设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b =(b1,b2,b3),则l⊥m⇔a_⊥__b__⇔ a_·_b_=__0__⇔ _a_1_b_1+__a_2b2+a3b3=0 (2)线面垂直
设直线l的方向向量是u=(a1,b1,c1),平面α的法向量是v=(a2, b2,c2),则l⊥α⇔u∥v⇔ __u_=__k_v.
(3)面面垂直
设平面α的法向量u=(a1,b1,c1),平面β的法向量v= (a2,b2,c2),则α⊥β⇔__u_⊥__v_⇔ ___u_·_v=__0_ ⇔ _a_1_a_2_+__b_1b_2_+__c_1_c_2=__0___ .
试一试:若平面α与β的法向量分别是a=(4,0,-2),

8.7.1 利用空间向量证明平行与垂直关系

8.7.1 利用空间向量证明平行与垂直关系

B.-13,23,-23 D.23,13,-23
解析:验证4个选项,可知C正确.
第8章 第1节 第1课时
第19页
名师伴你行 ·高考一轮总复习 ·数学(理)
(2)若平面α,β的法向量分别为n1=(2,-3,5),n2=(-

告 一
3,1,4),则(
C
)
A.α∥β

B.α⊥β

u2=(a2,b2,c2).
课 时
若α1⊥α2,则u1⊥u2⇔u1·u2=0⇔ a1a2+b1b2+c1c2=0 .
作 业

若α1∥α2,则u1∥u2⇔u1=ku2⇔
告 二
__(_a_1_,__b_1,__c_1_)_=__k_(a_2_,__b_2_,__c_2)__.
第8章 第1节 第1课时
第10页
第8章 第1节 第1课时
第32页
名师伴你行 ·高考一轮总复习 ·数学(理)
(3)借助棱锥的高线建系等.对于正棱锥,利用顶点在底面
报 的射影为底面的中心,可确定z轴,然后在底面确定互相垂直
告 一
的直线分别为x,y轴.如图4.




报 告 二
第8章 第1节 第1课时

〈D→A,B→C〉,
作 业
报 告
解得cos〈D→A,B→C〉= 22,所以〈D→A,B→C〉=45°.

所以所成二面角的大小为135°.
第8章 第1节 第1课时
第23页
名师伴你行 ·高考一轮总复习 ·数学(理)




报告二 名校备考方案调研
时 作 业
报 告 二
第8章 第1节 第1课时

47空间向量证明空间中的平行与垂直

47空间向量证明空间中的平行与垂直

变式迁移 证明 如图所示建立空间直角坐标系 D-xyz,则有 已知正方体 ABCD-A1B1C1D1 的棱长为 2,E、F 分别是 BB1、 → A(2,0,0)、C(0,2,0)、C1(0,2,2)、E(2,2,1)、F(0,0,1),所以F DD1 的中点,求证: → (1)FC1∥平面 ADE; → =(0,2,1). DA=(2,0,0)、AE (2)平面 ADE∥平面 B1C1F.
1 2, 3 ,0 , 2
设 PA=AB=BC=1,则 P(0,0,1).
(1)∵∠ABC = 60°, ∴△ABC 为 正 三 角 形 . ∴C
1 E , 4
2 3 2 3 → → 设 D(0, y,0), AC⊥CD, 由 得AC· =0, y= CD 即 , D0, 则 ,0, 3 3 3 3 1 → 1 → 1 ∴CD=- , ,0.又AE= , , , 6 4 2 2 4
方法二
如图所示,取 BC 的中点 O,连结 AO.
因为△ABC 为正三角形,所以 AO⊥BC.
因为在正三棱柱 ABC—A1B1C1 中,平面 ABC⊥ 平面 BCC1B1, 所以 AO⊥平面 BCC1B1.
→ → → 取 B1C1 的中点 O1,以 O 为原点,以OB,OO1,OA为 x 轴,y 轴,z 轴建立空间直角坐标系,则 B(1,0,0),D(-1,1,0),A1(0,2, 3),A(0,0, 3),B1(1,2,0).
u ⇔ u1·2=0
.
题型一 线面平行的证明方法 题型一 线面平行的证明方法 例 1 如图所示,已知四边形 ABCD、ABEF 为两个正方形,M、N 分别 在其对角线 BF 和 AC 上,且例 1 如图所示,已知四边形 ABCD、ABEF 为两个 FM=AN,求证:MN∥平面 EBC.

3.2.1 空间向量与平行、垂直关系

3.2.1  空间向量与平行、垂直关系

3.2.1空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?[新知初探]1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u=λv ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.(2)线面垂直设直线l 的方向向量是a =(a 1,b 1,c 1),平面α的法向量是u =(a 2,b 2,c 2),则l ⊥α⇔a ∥u ⇔a =λu ⇔a 1=λa 2,b 1=λb 2,c 1=λc 2(λ∈R).(3)面面垂直若平面α的法向量u =(a 1,b 1,c 1),平面β的法向量v =(a 2,b 2,c 2),则α⊥β⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)直线l 的方向向量是惟一的( )(2)若点A ,B 是平面α上的任意两点,n 是平面α的法向量,则AB ·n =0( ) (3)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行( )答案:(1)× (2)√ (3)√2.若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D .(-3,0,1)答案:A3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( )A .-2B .2C .6D .10 答案:D[典例] 已知平面α经过三点A (1,2,3),B (2,0,-,求平面α的一个法向量.[解] 因为A (1,2,3),B (2,0,-1),C (3,-2,0),所以AB =(1,-2,-4),AC =(2,-4,-3).设平面α的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB =0,n ·AC =0,即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.得z =0,x =2y ,令y =1,则x =2,所以平面α的一个法向量为n =(2,1,0).利用待定系数法求法向量的解题步骤[活学活用]四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系Axyz 中,分别求平面SCD 和平面SAB 的一个法向量.解:A (0,0,0),D (1,0,0),C (2,2,0),S (0,0,2).∵AD ⊥平面SAB ,∴AD =(1,0,0)是平面SAB 的一个法向量. 设平面SCD 的法向量为n =(1,y ,z ),则n ·DC =(1,y ,z )·(1,2,0)=1+2y =0,∴y =-12.又n ·DS =(1,y ,z )·(-1,0,2)=-1+2z =0, ∴z =12.∴n =⎝⎛⎭⎫1,-12,12即为平面SCD 的一个法向量.[典例] 已知正方体ABCD -A 111111的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1=(0,2,1),DA =(2,0,0),AE =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA ,n 1⊥AE , 即⎩⎨⎧n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1, 令z 1=2,则y 1=-1, 所以n 1=(0,-1,2).因为FC 1·n 1=-2+2=0,所以FC 1⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C B 11=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1,n 2⊥C B 11,得⎩⎪⎨⎪⎧n 2·FC 1=2y 2+z 2=0,n 2·C B 11=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.[活学活用]在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明:法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1),PQ =(-3,2,1),RS =(-3,2,1),∴PQ =RS ,∴PQ ∥RS ,即PQ ∥RS .法二:RS =RC +CS =12DC -DA +12DD 1,PQ =PA 1+A Q 1=12DD 1+12DC -DA ,∴RS =PQ ,∴RS ∥PQ , 即RS ∥PQ .利用空间向量证明垂直问题[典例] 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE ,∴以O 为原点建立空间直角坐标系O -xyz .如图所示.则由已知条件有C (1,0,0),E (0,-3,0),D (1,0,1),A (0,3,2).设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA =(a ,b ,c )·(0,23,2)=23b +2c =0, n ·DA =(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3), 又AB ⊥平面BCE , ∴AB ⊥OC , ∴OC ⊥平面ABE ,∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE .(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0.[活学活用]在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC . 证明:设正方体的棱长为2,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).法一:EF =(-1,-1,1),AB 1=(0,2,2),AC =(-2,2,0), ∴EF ·AB 1=(-1,-1,1)·(0,2,2)=0,EF ·AC =(-1,-1,1)·(-2,2,0)=0,∴EF ⊥AB 1,EF ⊥AC ,又AB 1∩AC =A , ∴EF ⊥平面B 1AC .法二:设平面B 1AC 的法向量为n =(x ,y ,z ). 又AB 1=(0,2,2),AC =(-2,2,0),则⎩⎪⎨⎪⎧ n ⊥AB 1,n ⊥AC ⇒⎩⎪⎨⎪⎧n ·AB 1=2y +2z =0,n ·AC =-2x +2y =0,令x =1,可得平面B 1AC 的一个法向量为n =(1,1,-1). 又EF =-n ,∴EF ∥n ,∴EF ⊥平面B 1AC .层级一 学业水平达标1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D 问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9解析:选C ∵l ⊥α,v 与平面α平行, ∴u ⊥v ,即u ·v =0, ∴1×3+3×2+z ×1=0, ∴z =-9.3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D AB =(-1,1,0),AC =(-1,0,1).设平面ABC 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1D D .A 1A解析:选B 建立如图所示的空间直角坐标系.设正方体的棱长为1. 则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫12,12,1, ∴CE =⎝⎛⎭⎫12,-12,1, AC =(-1,1,0),BD =(-1,-1,0),A D 1=(-1,0,-1),A A 1=(0,0,-1).∵CE ·BD =(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD .5.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A .1 B .2 C .3D .4解析:选C ∵A M 1=A A 1+AM =A A 1+12AB ,D P 1=D D 1+DP =A A 1+12AB ,∴A M 1∥D P 1,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.6. 已知点P 是平行四边形ABCD 所在的平面外一点,如果AB =(2,-1,-4),AD=(4,2,0),AP =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP 是平面ABCD 的法向量;④AP ∥BD .其中正确的是_______(填序号).解析:由于AP ·AB =-1×2+(-1)×2+(-4)×(-1)=0,AP ·AD =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 答案:①②③7.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.解析:由OP ⊥OQ ,得OP ·OQ =0. 即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0. ∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π38.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥面B 1DE ,则AE =________.解析:建立如图所示的空间直角坐标系, 则B 1(0,0,3a ),C (0,2a,0), D2a 2,2a 2,3a . 设E (2a,0,z )(0≤z ≤3a ), 则CE =()2a ,-2a ,z ,B E 1=(2a,0,z -3a ),B D 1=⎝⎛⎭⎫2a 2,2a 2,0.又CE ·B D 1=a 2-a 2+0=0,故由题意得2a 2+z 2-3az =0,解得z =a 或2a . 故AE =a 或2a . 答案:a 或2a9.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)P A ∥平面EDB ; (2)PB ⊥平面EFD .证明:以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系D -xyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝⎛⎭⎫0,12,12. ∴PB =(1,1,-1),DE =⎝⎛⎭⎫0,12,12,EB =⎝⎛⎭⎫1,12,-12,设F (x ,y ,z ),则PF =(x ,y ,z -1),EF =⎝⎛⎭⎫x ,y -12,z -12. ∵EF ⊥PB ,∴x +⎝⎛⎭⎫y -12-⎝⎛⎭⎫z -12=0,即x +y -z =0.① 又∵PF ∥PB ,可设PF =λPB , ∴x =λ,y =λ,z -1=-λ.② 由①②可知,x =13,y =13,z =23,∴EF =⎝⎛⎭⎫13,-16,16. (1)设n 1=(x 1,y 1,z 1)为平面EDB 的一个法向量,则有⎩⎨⎧n 1·DE =0,n 1·EB =0,即⎩⎨⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,∴⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1. 取z 1=-1,则n 1=(-1,1,-1). ∵PA =(1,0,-1),∴PA ·n 1=0. 又∵P A ⊄平面EDB ,∴P A ∥平面EDB .(2)设n 2=(x 2,y 2,z 2)为平面EFD 的一个法向量,则有⎩⎨⎧n 2·EF =0,n 2·DE =0,即⎩⎨⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,∴⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2. 取z 2=1,则n 2=(-1,-1,1).∴PB ∥n 2,∴PB ⊥平面EFD .10.已知在长方体ABCD -A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD =AA 1=a ,AB =2a .试问在线段CD 1上是否存在一点N 使MN ∥平面ADD 1A 1,若存在确定N 的位置,若不存在说明理由.解:以D 为原点,建立如图所示的空间直角坐标系, 则A (a ,0,0),B (a,2a,0), C (0,2a,0),D 1(0,0,a ), E ⎝⎛⎭⎫12a ,2a ,0,M ⎝⎛⎭⎫34a ,a ,0, DC =(0,2a,0),CD 1=(0,-2a ,a ),假设CD 1上存在点N 使MN ∥平面ADD 1A 1并设CN =λCD 1=(0,-2aλ,aλ)(0<λ<1).则DN =DC +CN =(0,2a,0)+(0,-2aλ,aλ) =(0,2a (1-λ),aλ),MN =DN -DM =⎝⎛⎭⎫-34a ,a -2aλ,aλ. 又DC 是平面ADD 1A 1的一个法向量. ∴MN ⊥DC ,则2a (a -2aλ)=0,λ=12.又MN ⊄平面ADD 1A 1.故存在N 为CD 1的中点使MN ∥平面ADD 1A 1.层级二 应试能力达标1.已知a =⎝⎛⎭⎫1,2,52,b =⎝⎛⎭⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( ) A .x =3,y =152B .x =32,y =154C .x =3,y =15D .x =3,y =154解析:选D ∵l 1∥l 2,∴321=x 2=y 52,∴x =3,y =154,故选D.2.在如图所示的空间直角坐标系中,ABCD -A 1B 1C 1D 1是棱长为1的正方体,给出下列结论:①平面ABB 1A 1的一个法向量为(0,1,0); ②平面B 1CD 的一个法向量为(1,1,1); ③平面B 1CD 1的一个法向量为(1,1,1); ④平面ABC 1D 1的一个法向量为(0,1,1).其中正确结论的个数为( )A .1B .2C .3D .4解析:选B ∵AD =(0,1,0),AB ⊥AD ,AA 1⊥AD ,又AB ∩AA 1=A ,∴AD ⊥平面ABB 1A 1,∴①正确;∵CD =(-1,0,0),而(1,1,1)·CD =-1≠0,∴(1,1,1)不是平面B 1CD 的法向量,∴②不正确;∵B C 1=(0,1,-1),CD 1=(-1,0,1),(1,1,1)·B C 1=0,(1,1,1)·CD 1=0,B 1C ∩CD 1=C ,∴(1,1,1)是平面B 1CD 1的一个法向量,∴③正确;∵BC 1=(0,1,1),而BC 1·(0,1,1)=2≠0,∴(0,1,1)不是平面ABC 1D 1的法向量,即④不正确.因此正确结论的个数为2,选B.3.若平面α,β的一个法向量分别为m =⎝⎛⎭⎫-16,13,-1,n =⎝⎛⎭⎫12,-1,3,则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合解析:选D ∵n =-3m ,∴m ∥n ,∴α∥β或α与β重合.4.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 建系如图,设正方体的棱长为2,则A (2,2,2),A1(2,2,0),C (0,0,2),B (2,0,2),∴M (2,1,1),N (1,1,2),∴MN =(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0),∵-1×0+0×1+1×0=0,∴MN ⊥n ,∴MN ∥平面BB 1C 1C .故选B.5.若直线l 的一个方向向量为a =(1,0,2),平面α的一个法向量为u =(-2,0,-4),则直线l 与平面α的位置关系为________.解析:∵u =-2a ,∴a ∥u ,∴l ⊥α.答案:l ⊥α6.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则BP =________.解析:∵AB ⊥BC ,∴AB ·BC =0,∴3+5-2z =0,∴z =4.∵BP =(x -1,y ,-3),且BP ⊥平面ABC ,∴⎩⎨⎧ BP ·AB =0,BP ·BC =0,即⎩⎪⎨⎪⎧ x -1+5y +6=0,3x -3+y -12=0,解得⎩⎨⎧ x =407,y =-157,故BP =⎝⎛⎭⎫337,-157,-3.答案:⎝⎛⎭⎫337,-157,-37.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),则B E 1=(0,-2,-4), EF =(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ).则n ·B E 1=-2y -4z =0,n ·EF =-2x +2y =0,得x =y ,z =-24y ,令y =1,得n =⎝⎛⎭⎫1,1,-24.又平面BDD 1B 1的一个法向量为AC =(-22,22,0),而n ·AC =1×(-22)+1×22+⎝⎛⎭⎫-24×0=0,即n ⊥AC ,∴平面B 1EF ⊥平面BDD 1B 1.8.如图,在三棱锥P -ABC 中,三条侧棱P A ,PB ,PC 两两垂直,且P A =PB =PC =3,G 是△P AB 的重心,E ,F 分别为BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 与直线PG 和BC 都垂直.证明:(1)如图,以三棱锥的顶点P 为原点,以P A ,PB ,PC 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系P -xyz .则A (3,0,0),B (0,3,0),C (0,0,3),E (0,2,1),F (0,1,0),G (1,1,0),P (0,0,0). 于是EF =(0,-1,-1),EG =(1,-1,-1).设平面GEF 的法向量是n =(x ,y ,z ),则⎩⎨⎧ n ⊥EF ,n ⊥EG ,即⎩⎪⎨⎪⎧ y +z =0,x -y -z =0,可取n =(0,1,-1).显然PA =(3,0,0)是平面PBC 的一个法向量.又n ·PA =0,∴n ⊥PA ,即平面PBC 的法向量与平面GEF 的法向量垂直,∴平面GEF ⊥平面PBC .(2)由(1),知EG =(1,-1,-1), PG =(1,1,0),BC =(0,-3,3),∴EG ·PG =0,EG ·BC =0,∴EG ⊥PG ,EG ⊥BC ,∴EG 与直线PG 和BC 都垂直.。

空间向量的垂直与平行

空间向量的垂直与平行

空间向量的垂直与平行空间向量是三维空间中的矢量,具有方向和大小。

在进行向量运算时,了解向量之间的垂直与平行关系至关重要。

本文将探讨空间向量的垂直与平行性质,以及它们在几何和物理等领域的应用。

1. 垂直向量两个向量的垂直关系可以通过它们的点积(内积)来判断。

设有向量A和向量B,若它们的点积等于零,则A与B垂直。

点积的计算公式为:A·B = |A| × |B| × cosθ其中,A·B表示向量A与向量B的点积,|A|和|B|分别表示向量A 和向量B的模长,θ表示向量A与向量B之间的夹角。

如果A·B = 0,则cosθ = 0,即θ = 90°,这说明向量A与向量B相互垂直。

利用向量的垂直关系,我们可以解决诸如平面交线、直线垂直性等几何问题。

在物理学中,垂直向量的概念也被广泛应用于力的分解和求和等问题。

2. 平行向量两个向量的平行关系可以通过它们的叉积(外积)来判断。

设有向量A和向量B,若它们的叉积等于零,则A与B平行。

叉积的计算公式为:|A × B| = |A| × |B| × sinθ其中,A × B表示向量A与向量B的叉积,|A × B|表示向量A与向量B叉积结果的模长,|A|和|B|分别表示向量A和向量B的模长,θ表示向量A与向量B之间的夹角。

如果A × B = 0,则sinθ = 0,即θ = 0°或θ = 180°,这说明向量A与向量B相互平行。

平行向量常常涉及到直线的平行性和共面性的问题。

在物理学上,平行向量用于计算力的合成以及判断物体的平衡状态等应用。

3. 垂直向量和平行向量的应用垂直向量和平行向量在几何和物理学中有广泛的应用。

以下是它们的一些具体应用:3.1 几何应用- 判断直线的垂直性或平行性,用于解决平面几何中的交线问题。

- 通过垂直向量和平行向量的性质,求解平面的法线向量和方向向量。

空间向量与平行、垂直关系

空间向量与平行、垂直关系


5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1308:5 9:3608: 59:36D ecembe r 13, 2020

6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 8时59 分36秒0 8:59:36 20.12.1 3
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Sunday, December 13, 20201
3-Dec-2020.12.13
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1308:59:3613 December 202008:59
应用举例:
例1.在正方体ABCD-A1B1C1D1中, M, N分别是
C1C, B1C1 的中点, 求证:MN∥平面zA1BD.
解题思路:如图建立空间直
D1
C1
角坐标系,求出平面A1BD的 A1
B1
法向量 n (1,1,1) ,只需
证明 MN n ,即证 MN n 0
y
M(0, 2, 1 ), N(1, 2, 2 )
MN (1, 0, 1)
x
MN n 1 0 1 0
例2.正方体ABCD-A1B1C1D1中,E、F分别 是BB1、CD的中点,求证:平面AED⊥平面
A1FD1.
z
略解:如图建立空间直角坐标系
设棱长为2 则 E(2, 2, 1), A( 2, 0, 0 )
DE (2, 2, 1), AE (0, 2, 1)
• 10、你要做多大的事情,就该承受多大的压力。12/13/
2020 8:59:36 AM08:59:362020/12/13

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

空间向量与立体几何:第5讲利用空间向量证明平行与垂直问题

()
A.相交
B.平行
C.在平面内
D.平行或在平面内
→ → → →→ → 解析 ∵AB=λCD+μCE,∴AB,CD,CE共面.则 AB 与平面 CDE 的位置关系是平行或在平面内.
答案 D
6.已知平面α内有一点 M(1,-1,2),平面α的一个法向量为 n=(6,-3,6),则下列点 P 中,在平面α
内的是
()
A.P(2,3,3)
B.P(-2,0,1)
C.P(-4,4,0)
D.P(3,-3,4)
→ 解析 逐一验证法,对于选项 A,MP=(1,4,1),


∴MP·n=6-12+6=0,∴MP⊥n,
∴点 P 在平面α内,同理可验证其他三个点不在平面α内.
答案 A
∵PB⊄面 EFG,∴PB∥平面 EFG.
【变式探究】 如图,平面 PAC⊥平面 ABC,△ABC 是以 AC 为斜边的等腰直角三角形,E,F,O 分别为
PA,PB,AC 的中点,AC=16,PA=PC=10.
【例 2】如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正方形,O 为底面中心,A1O⊥平面 ABCD,AB =AA1= 2.
号是________.
答案 ①②③
4.若直线 l 的方向向量为 a,平面α的法向量为 n,能使 l∥α的是
()
A.a=(1,0,0),n=(-2,0,0)
B.a=(1,3,5),n=(1,0,1)
C.a=(0,2,1),n=(-1,0,-1)
D.a=(1,-1,3),n=(0,3,1)
→→ → 5.若AB=λCD+μCE,则直线 AB 与平面 CDE 的位置关系是
【规律技巧】 恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键. 利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

探究 1:求平面的法向量 【例 1】
如图,已知四边形 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,SA=AB=BC=1,AD= ,试建立适当的坐标系,求: (1)平面 ABCD 与平面 SAB 的一个法向量; (2)平面 SCD 的一个法向量.
1 2
【方法指导】一般情况下,使用待定系数法求平面的法向量 的步骤:①设出平面的法向量为 n=(x,y,z);②找出(求出)平面内 的两个不共线的向量 a=(a1,b1,c1),b=(a2,b2,c2);③根据法向量的 定义建立关于 x,y,z 的方程组 一个解,即得法向量. n·a = 0, n·b = 0; ④解方程组,取其中的
【解析】不妨设正方体的边长为 a,建立空间直角坐标系 Dxyz(如图),则 E(a,2,0),F(2,a,0),G(a,0,2). 设平面 EFG 的法向量为 n=(x,y,z), GE=(0,2,-2),
a a FE=( ,- ,0), 2 2 1 1 a a a a a
n ⊥ GE,⇒ 1 1 n ⊥ FE n·FE = x- y = 0,
2
2
2
2
(法二)以CD,CB,CE为正交基底,建立空间直角坐标系,则 E(0,0,1),D( 2,0,0),B(0, 2,0),A( 2, 2,0),M( , ,1),DE= (- 2,0,1),BE=(0,- 2,1),AM=(- 2 ,- 2 ,1). 设平面 BDE 的法向量为 n=(a,b,c),∴n⊥DE,n⊥BE, n·DE = 0, - 2a + c = 0, ∴ ∴ n·BE = 0, - 2b + c = 0, 令 c=1,则 a= 2 ,b= 2 ,n=( 2 , 2 ,1),∴n·AM=0.

向量垂直与平行的公式

向量垂直与平行的公式

向量垂直与平行的公式嘿,咱今天来好好聊聊向量垂直与平行的公式。

向量这玩意儿,在数学的世界里可有着不小的作用。

想象一下,在一个三维空间里,向量就像是一个个有着特定方向和长度的箭头,它们指引着我们去探索数学的奥秘。

先来说说向量垂直的公式。

如果两个向量 a = (x1, y1, z1) 和 b = (x2, y2, z2) 垂直,那么它们的点积就等于 0 。

也就是 x1 * x2 + y1 * y2 + z1 * z2 = 0 。

这就好比在操场上,两个跑步的同学,方向完全不同,一点儿也不相互影响,那他们在力量上的作用就是相互垂直的。

记得有一次我在课堂上给学生们讲这个知识点,我举了个例子。

我说:“想象一下,你正在爬楼梯,楼梯的倾斜方向就是一个向量,而你往上爬的力就是另一个向量。

如果这两个向量垂直,那你往上爬的力就对楼梯的倾斜没有推动作用,就像你使了半天劲,结果白费劲,根本没让楼梯动起来。

”学生们听了都哈哈大笑,但是也一下子就记住了这个概念。

再讲讲向量平行的公式。

如果两个非零向量 a = (x1, y1, z1) 和 b = (x2, y2, z2) 平行,那么就存在一个实数λ ,使得a = λb 。

也就是说,x1 / x2 = y1 / y2 = z1 / z2 。

这就好像两个人朝着同一个方向跑步,速度快慢不同,但始终在同一条路上。

我还记得有个学生,在做作业的时候总是把垂直和平行的公式弄混。

我就跟他说:“你想想啊,垂直就像是两个人闹别扭,谁也不理谁,相互的作用为零;平行呢,就是两个人好得跟一个人似的,朝着一个方向走。

”这孩子后来就记住了,再也没弄错过。

在解决实际问题的时候,这两个公式可是大有用处。

比如说在物理中,计算力的合成和分解,就经常要用到向量的知识。

还有在工程设计中,确定物体的运动方向和受力情况,也离不开向量的帮忙。

总之,向量垂直与平行的公式虽然看起来有点复杂,但只要咱们多琢磨琢磨,多联系实际,就能轻松掌握。

向量法证明平行与垂直-人教版高中数学

向量法证明平行与垂直-人教版高中数学

知识图谱-利用向量证明空间中的平行关系-利用向量证明空间中的垂直关系直线的方向向量与直线的向量方程利用向量方法证明线面平行关系利用向量方法证明线线与面面的平行关系利用向量方法证明线线垂直平面的法向量利用向量方法证明线面垂直利用向量方法证明面面垂直第02讲_向量法证明平行与垂直错题回顾利用向量证明空间中的平行关系知识精讲一.直线的方向向量与直线的向量方程1.点的位置向量在空间中,我们取一定点作为基点,那么空间中任意一点的位置就可以用向量来表示,我们把向量称为点的位置向量.2.直线的方向向量空间中任一直线的位置可以由上的一个定点以及一个定方向确定,如图,点是直线上的一点,向量表示直线的方向向量,则对于直线上任一点,有,这样点和向量,不仅可以确定直线的位置,还可具体表示出上的任意点;直线上的向量以及与共线的向量叫做的方向向量.3.直线的向量方程直线上任意一点,一定存在实数,使得①,①式可以看做直线的参数方程,直线的参数方程还可以作如下表示:对空间中任意一确定点,点在直线上的充要条件是存在唯一的实数满足等式②,如果在上取,则上式可以化为③;①②③都叫做空间直线的向量参数方程.二.平面的法向量1.平面法向量的定义已知平面,如果向量的基线与平面垂直,则向量叫作平面的法向量或者说向量与平面正交.2.平面法向量的性质(1)平面上的一个法向量垂直于平面共面的所有向量;(2)一个平面的法向量有无限多个,它们互相平行.三.用向量方法证明空间中的平行关系1.线线平行设直线的方向向量分别是,则要证明或与重合,只需要证明,即.2.线面平行(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明;(2)根据线面平行的判定定理:如果直线(平面外)与平面内的一条直线平行,那么这条直线与这个平面平行;所以,要证明一条直线和一个平面平行,也可以在平面内找到一个向量与已知直线的方向向量是共线向量即可;(3)根据共面向量定理可知:如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共面向量确定的平面一定平行.已知两个不共线向量与平面共面,一条直线的一个方向向量为,则由共面向量定理,可得或在内存在两个实数,使.3.面面平行(1)若能求出平面的法向量,要证明,只需要证明即可.(2)由面面平行的判定定理:要证明面面平行,只要转化为相应的线面平行、线线平行即可,已知两个不共线的向量与平面共面,则由两平面平行的判定与性质,得.三点剖析一.方法点拨1.在平面内,直线的向量方程可类比点斜式方程,直线的方向向量、斜率都是刻画直线方向的量,只是从不同角度引入,它们有一定的关系:斜率为的直线,其方向向量为,反之,方向向量为的直线不一定存在斜率;在空间中,用方向向量刻画直线较为方便.2.空间中建系描述选取三条两两相交的直线的交点作为原点,以哪三条直线为轴,建立空间直角坐标系.例如:正方体中,建系的描述为:以点为坐标原点,分别以所在直线为轴,建立空间直角坐标系.3.用空间向量证明平行关系需要注意的问题(1)用空间向量的方法证明立体几何中的平行问题,主要运用了直线的方向向量和平面的法向量,同时也要借助空间中已有的一些关于平行的定理.(2)用向量方法证明平行问题的步骤①建立空间图形与空间向量的关系,用空间向量表示问题中涉及的点、直线、平面;②通过向量运算研究平行问题;③根据运算结果解释相关问题.4.平面法向量的求法(1)建立适当的坐标系;(2)设出平面法向量为;(3)找出(求出)平面内的两个共线的向量的坐标;(4)根据法向量的定义建立关于的方程组;(5)解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.有时候,题目中的线面垂直条件比较明显,可以将垂线的方向向量作为平面的法向量来解决问题.题模精讲题模一直线的方向向量与直线的向量方程例1.1、已知向量=(2,4,5),=(3,x,y)分别是直线l1、l2的方向向量,若l1∥l2,则()A、x=6,y=15B、x=3,y=C、x=3,y=15D、x=6,y=例1.2、从点沿向量的方向取线段长,则B点的坐标为( )A、B、C、D、题模二平面的法向量例2.1、在空间直角坐标系内,设平面经过点,平面的法向量为,为平面内任意一点,求满足的关系式.例2.2、(1)设平面的法向量为,平面的法向量为,若,则__________;则__________.(2)若的方向向量为,平面的法向量为,若,则__________;若,则__________.题模三利用向量方法证明线面平行关系例3.1、已知正方形和正方形相交于分别在上,且,求证平面.例3.2、在正方体中,的中点,求证:.题模四利用向量方法证明线线与面面的平行关系例4.1、在正方体中,分别是的中点.证明:.例4.2、如右图所示,在平行六面体中,分别是的中点.求证:平面∥平面..随堂练习随练1.1、已知,,则直线的模为的方向向量是________________.随练1.2、已知点若点为直线上任意一点,则直线的向量参数方程为______________,当时,点的坐标为______________.随练1.3、已知,且均与平面平行,直线的方向向量,则()随练1.4、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确随练1.5、已知平面经过三点,试求平面的一个法向量.随练1.6、在正方体中,分别是的中点,求证:.随练1.7、已知正方体的棱长为2,分别是的中点,求证:(1);(2).利用向量证明空间中的垂直关系知识精讲一.直线方向向量与平面法向量在确定直线、平面位置关系中的应用设空间两条直线的方向向量分别是,两个平面的法向量分别是,则有下表与与与二.用向量方法证明空间中的垂直关系1.线线垂直设直线的方向向量分别是,则要证明,只需要证明,即.2.线面垂直(1)设直线的方向向量是,平面的法向量是,要证明,只需要证明.(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3.面面垂直(1)根据面面垂直的判定定理转化为证相应的线面垂直,线线垂直;(2)证明两个平面的法向量互相垂直.一、方法点拨1.平面法向量可以不唯一,只要是垂直于平面的直线,其方向向量都可以当作法向量进行运算.2.平面中的平行、垂直关系的向量论证,注意复习线面、面面平行与垂直的判定定理,将这种位置关系的判断转化为向量间的代数运算,体现了向量的工具性功能.题模精讲题模一利用向量方法证明线线垂直例1.1、设的方向向量,的方向向量,若,则( )A、1B、2C、D、3例1.2、在正三棱柱中,.求证:.题模二利用向量方法证明线面垂直若直线的方向向量为,平面的法向量为,则( )A、B、C、D、斜交例2.2、在正方体中,分别是棱的中点,试在棱上找一点,使得.题模三利用向量方法证明面面垂直例3.1、若两个不同平面的法向量分别为,则( )A、B、C、相交但不垂直D、以上均不正确例3.2、在长方体中,,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.随堂练习随练2.1、如图所示,已知空间四边形的各边和对角线的长都等于,点分别是的中点.求证:随练2.2、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.随练2.3、在正棱锥中,三条侧棱两两互相垂直,的重心,分别为上的点,且(1)求证:平面;(2)求证:的公垂线段.自我总结课后作业作业1、已知,把按向量平移后所得的向量是( )A、B、C、D、作业2、正四面体的高的中点为,则平面的一个法向量可以是________,平面的一个法向量可以是________.作业3、若直线是两条异面直线,它们的方向向量分别是,则直线的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.作业4、是正四棱柱,侧棱长为3,底面边长为2,E是棱BC的中点,求证:.作业5、如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求二面角C1-AB-C的余弦值.作业6、已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:(1)求以向量,为一组邻边的平行四边形的面积S;(2)若向量分别与向量,垂直,且||=,求向量的坐标.作业7、如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.作业8、在直三棱柱中,底面是以为直角的等腰直角三角形,,的中点,在线段,使?若存在,求出;若不存在,请说明理由.作业9、如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BA D=∠FAB=90°,BC AD,BE AF,G,H分别为FA,FD的中点(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?(Ⅲ)设AB=BE,证明:平面ADE⊥平面CDE.。

空间向量xyz平行垂直公式

空间向量xyz平行垂直公式

空间向量xyz平行垂直公式空间向量xyz平行垂直公式是物理学和数学研究中经常使用的一个重要公式。

空间向量xyz平行垂直公式定义了两个空间向量之间的关系,能够描述两个向量的关系状态,如平行,垂直或交互。

空间向量xyz平行垂直公式的表达式如下:AB =|A | |B |cosθ其中,AB别表示两个空间向量,|A |表示向量A的模,|B |表示向量B的模,θ表示两个向量之间的夹角。

公式中=号左右两边表示两个向量运算后的结果,由公式总结可得:1.果AB =0,则表明向量A和B是垂直的;2.果AB >0,则表明向量A和B是共线的,夹角的角度小于90度;3.果AB <0,则表明向量A和B是共线的,夹角的角度大于90度。

空间向量xyz平行垂直公式有多种应用,在数学中常用于检验向量是否平行或垂直,而在物理学中则可以用来计算向量的投影,计算向量之间的夹角,以及计算函数的导数等等。

空间向量xyz平行垂直公式在各种领域都有着广泛的应用,如在空间概念理论中,可以用来分析宇宙中的物体的距离、力的大小以及物体的运动;在机械设计学中,可以用来表示物体的运动轨迹,以实现物体的自动对准和自动运动;在建筑学中,可以用来分析桥梁的结构,以及古代建筑的精密构建;在地理学中,可以用来计算河流之间的距离,以及地图上矩形和正方形等图形之间的位置关系;在四元数学中,也可以用来计算四元数之间的关系。

空间向量xyz平行垂直公式的应用广泛,为我们了解宇宙中物质之间的关系,提供了一种科学和有效的方法。

它可以帮助我们更好地分析向量之间的关系,从而得出精确的结论,研究出物质之间的新的联系。

空间向量xyz平行垂直公式的重要性不言而喻,是物理和数学研究的重要基础。

它为我们理解宇宙中物体之间的关系,提供了重要的参考,可以帮助我们更好地认识宇宙中的机理。

只有掌握了空间向量xyz平行垂直公式,我们才能更好地掌握宇宙的秩序,为科学技术发展做出贡献。

空间向量巧解平行、垂直关系

空间向量巧解平行、垂直关系

高中数学空间向量巧解平行、垂直关系编稿教师X咏霞一校黄楠二校杨雪审核X建彬一、考点突破知识点课标要求题型说明空间向量巧解平行、垂直关系1. 能够运用向量的坐标判断两个向量的平行或垂直。

2. 理解直线的方向向量与平面的法向量。

3. 能用向量方法解决线面、面面的垂直与平行问题,体会向量方法在立体几何中的作用。

选择题填空题解答题注意用向量方法解决平行和垂直问题中坐标系的建立以及法向量的求法。

二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。

难点:用向量语言证明立体几何中有关平行和垂直关系的问题。

考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。

2. 如果表示向量a的有向线段所在直线垂直于平面α,那么称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。

【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。

②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。

【随堂练习】A〔1,1,0〕,B〔1,0,1〕,C〔0,1,1〕,那么平面ABC的一个法向量的单位向量是〔〕A. 〔1,1,1〕B. (,,)333C.111(,,)333D. (,333-思路分析:设出法向量坐标,列方程组求解。

答案:设平面ABC的一个法向量为n=〔x,y,z〕,AB=〔0,-1,1〕,BC=〔-1,1,0〕,AC=〔-1,0,1〕,那么·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。

技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:〔1〕设出平面的法向量为n=〔x,y,z〕。

〔2〕找出〔求出〕平面内的两个不共线的向量a=〔a1,b1,c1〕,b=〔a2,b2,c2〕。

空间向量与平行、垂直关系26585

空间向量与平行、垂直关系26585
栏目 导引
第三章 空间向量与立体几何
解:以 A 点为原点建立空间直角坐标系,
则 A(0,0,0),D21,0,0,C(1,1,0),S(0,
0,1),
则D→C=21,1,0, D→S=-12,0,1. 易知向量A→D=21,0,0是平面 SAB 的一个法
向量.设 n=(x,y,z)为平面 SDC 的一个法向量,
解得xx= =3y.z, 令 z=1,则 x=y=3. 故平面 ABC 的一个平面法向量为 n=(3,3, 1).
栏目 导引
第三章 空间向量与立体几何
【名师点评】 求平面法向量的方法与步骤: (1)求平面的法向量时,要选取两相交向量,如 A→C、A→B. (2)设平面的法向量为 n=(x,y,z).
栏目 导引
第三章 空间向量与立体几何
【证明】 如图所示建立空间直角坐标系 Dxyz, 则有 D(0,0,0),A(2,0,0),C(0,2,0), C1(0,2,2),E(2,2,1),F(0,0,1),B1(2, 2,2), 所以F→C1=(0,2,1), D→A=(2,0,0),A→E=(0,2,1).
栏目 导引
第三章 空间向量与立体几何
n·D→C=12x+y=0


n·D→S=-12x+z=0
y=-12x

.
z=12x
取 x=2,则 y=-1,z=1, ∴平面 SDC 的一个法向量为(2,-1,1).
栏目 导引
第三章 空间向量与立体几何
利用空间向量证明平行关系
例2 已知正方体ABCDA1B1C1D1的棱长 为2,E、F分别是BB1、DD1的中点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
空间向量与立体几何
1 1 → ∴MN· n= 2, 0, 2 · (1,- 1,- 1)=0,


→ ∴MN⊥ n. 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
栏目 导引
第三章
空间向量与立体几何
1 → 1→ 1 → → → 法二:∵ MN = C1N - C1M = C1B1 - C1C = 2 2 2 1→ → → → → (D1A1-D1D)= DA1,∴MN∥DA1, 2 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
则有 D(0, 0, 0), A(2, 0,0), C(0, 2, 0), C1(0,2,2),E(2,2,1),F(0,0,1),B1(2, 2,2), → 所以FC1 = (0, 2, 1), → → DA= (2,0,0),AE= (0, 2, 1).
栏目 导引
第三章
空间向量与立体几何
(1)设 n1= (x1, y1, z1)是平面 ADE 的法向量, → → 则 n1⊥DA, n1⊥AE, → n1· DA= 2x1= 0 即 ,得 → n1·AE= 2y1+ z1=0
(-3,-9,0).
栏目 导引
第三章
空间向量与立体几何
解:(1)a· b= 1× 8+ (- 3)×2+ (- 1)× 2=0, ∴直线 l1, l2 垂直. 1 (2)∵ u=- v,∴ u∥ v,即平面 α, β 平行. 3
栏目 导引
第三章
空间向量与立体几何
典题例证技法归纳
题型探究 求平面的法向量
栏目 导引
第三章
空间向量与立体几何
z3=-2 令 x3= 2,∴ ,∴ n3= (2,- 1,- 2).(10 y3=- 1
分) → → 若 C1P⊥平面 A1DE,∴C1P∥ n3,∴C1P=λ n3, ∴ (1, y- 1,- 1)= λ(2,-1,-2), 1 1 ∴ λ = , y= , 2 2 ∴点 P 为 AB 中点时, C1P⊥平面 A1DE.(12 分 )
例1 已知△ABC的三个顶点的坐标分别
为A(2,1,0),B(0,2,3),C(1,1,3),试
求出平面ABC的一个法向量.
栏目 导引
第三章
空间向量与立体几何
【解】 设平面 ABC 的法向量为 n= (x,y, z). ∵ A(2, 1, 0), B(0,2,3), C(1, 1, 3), → → ∴AB= (-2, 1, 3),BC= (1,- 1,0). → AB= 0, n· - 2x+ y+ 3z= 0, 则有 即 → x- y= 0. BC= 0, n ·


(1,1, 0),
栏目 导引
第三章
空间向量与立体几何
设平面 A1BD 的法向量 n= (x, y, z), → → 则 n· DA1= 0 且 n· DB= 0,
x+ z= 0, 得 x+ y= 0,
取 x=1,得 y=- 1, z=- 1. ∴ n=(1,-1,-1).
栏目 导引
栏目 导引
第三章
空间向量与立体几何
想一想
直线的方向向量和平面的法向量是惟一的
吗? 提示:不惟一.
栏目 导引
第三章
空间向量与立体几何
2.空间中平行关系、垂直关系的向量表示 设直线l,m的方向向量分别为 a,b,平面 α,β 的法向量分别为u,v,则 线线平行 线面平行 面面平行 l∥m⇔a∥b⇔a=kb; l∥α⇔a⊥u⇔a· u=0; α∥β ⇔u∥v⇔u=kv;
栏目 导引
第三章
空间向量与立体几何
变式训练
3. 如图,在直三棱柱ABCA1B1C1中,
AB⊥BC,AB=BC=2,BB1=1,E为BB1的
中点,求证:平面AEC1⊥平面AA1C1C.
栏目 导引
第三章
空间向量与立体几何
证明:由题意得 AB , BC , B1B 两两垂直,
以 B 为原点 , 分别以 BA , BC , BB1 所在直线 为 x, y , z轴,建立如图所示的空间直角坐 标系,则 A(2, 0, 0),A1(2, 0, 1),C(0, 2,0),C1(0,2,1),
栏目 导引
第三章
空间向量与立体几何
(4)所求出向量中的三个坐标不是具体的值而
是比例关系,设定某个坐标为常数(常数不能
为0)便可得到平面的法向量.
栏目 导引
第三章
空间向量与立体几何
变式训练 1.如图所示,在四棱锥 S- ABCD 中,底面是直 角梯形,∠ ABC= 90°, SA⊥底面 ABCD,且 1 SA= AB= BC= 1, AD= ,建立适当的空间直 2 角坐标系,求平面 SCD 与平面 SBA 的一个法向 量.
x1=0 ,令 z1= 2,则 y1=-1, z1=-2y1
所以 n1= (0,- 1,2).
栏目 导引
第三章
空间向量与立体几何
→ → 因为FC1 · n1=- 2+ 2= 0,所以FC1 ⊥n1. 又因为 FC1⊄ 平面 ADE,所以 FC1∥平面 ADE. → (2)∵C1B1=(2, 0, 0), 设 n2= (x2, y2, z2)是平面 B1C1F 的一个法向量. → → 由 n2⊥FC1 , n2⊥C1B1,得
栏目 导引
第三章
空间向量与立体几何
1 → → E 0,0,2 ,则AA1 = (0,0,1),AC= (-2, 1 → → 2,0),AC1 = (- 2,2,1),AE= - 2, 0,2 .


设平面 AA1C1C 的一个法向量为 n1= (x, y, z), → n · AA 1 1 =0 z= 0, 则 ⇒ → - 2x+2y=0. n1· AC= 0 令 x= 1,得 y= 1,∴ n1= (1, 1,0).
名师微博 利用法向量与平面内两不共线向量垂直求法 向量是本题关键.
栏目 导引
第三章
空间向量与立体几何
取y2=1,则得x2=-2,z2=-1,
∴平面C1DE的一个法向量为n2=(-2,1,- 1).… (7分) ∴n1· n2=1+0-1=0,∴n1⊥n2, ∴平面A1B1F⊥平面C1DE.(8分)
线线垂直
线面垂直 面面垂直
l⊥m⇔a⊥b⇔a· b=0;
l⊥α⇔a∥u⇔a=ku; α⊥β ⇔u⊥v⇔u· v=0.
栏目 导引
第三章
空间向量与立体几何
做一做
根据下列各条件,判断相应的直线与直线、
平面与平面的位置关系: (1)直线l1,l2的方向向量分别是a=(1,-3, -1),b=(8,2,2); (2)平面α,β的法向量分别是u=(1,3,0),v=
栏目 导引
第三章
空间向量与立体几何
所 以 平 面 A1B1F 的 一 个 法 向 量 为 n1 =
-1,0,1 .(5 分) 2
设平面 C1DE 的一个法向量为 n2=(x2,y2,z2), 1 → n · DE = 0 2 2x2+y2=0 x2=-2y2 则 ⇒ ,∴ , → z2=- y2 n2·DC1=0 y2+z2=0
栏目 导引
第三章
空间向量与立体几何
利用空间向量证明垂直关系
例3 (本题满分12分)如图,在正方体
ABCD-A1B1C1D1,E、F分别是BC、CC1的 中点. (1)求证:平面A1B1F⊥平面C1DE; (2)在AB上确定一点P,使C1P⊥平面A1DE.
栏目 导引
第三章
空间向量与立体几何【思路点拨】 Nhomakorabea栏目 导引
第三章
空间向量与立体几何
→ n2·FC1=2y2+z2=0 x2=0 ,得 . → z2=-2y2 n2·C1B1=2x2=0 令 z2= 2,得 y2=-1, 所以 n2= (0,- 1,2),因为 n1=n2, 所以平面 ADE∥平面 B1C1F.
栏目 导引
第三章
空间向量与立体几何
变式训练
2.如图所示,在正方体ABCD-A1B1C1D1中, M、N分别是C1C、B1C1的中点.求证: MN∥平面A1BD.
栏目 导引
第三章
空间向量与立体几何
证明:法一:如图,以 D 为 原点, DA、 DC、 DD1 所在直 线分别为 x 轴、 y 轴、 z 轴建 立空间直角坐标系,设正方体的棱长为 1,则 1 1 可求得 M 0,1,2 、 N 2, 1, 1 、 D(0, 0, 0)、 A1(1, 0, 1)、 B(1,1,0), 1 → → 1 → 于是MN= 2, 0, 2 ,DA1= (1,0,1),DB=
栏目 导引
第三章
空间向量与立体几何
1 → → → - 1 , 1 ,- ∴A1B1= (0, 1,0), A1F= DE= 2 ,


→ → 1,1, 0,DC = (0 , 1 , 1) , A 1 1 D = (- 1 , 0 , 2 - 1). (3 分) (1)证明: 设平面 A1B1F 的一个法向量为 n1= (x1, y1, z1), → y = 0, n1·A1B1= 0 1 则 ⇒ 1 → - x + y - z = 0. n1·A1F= 0 1 1 21
栏目 导引
第三章
空间向量与立体几何
x=3z, 解得 x= y.
令 z= 1,则 x=y=3. 故平面 ABC 的一个平面法向量为 n= (3,3, 1).
栏目 导引
第三章
空间向量与立体几何
【名师点评】 求平面法向量的方法与步骤: (1)求平面的法向量时,要选取两相交向量,如 → → AC、AB. (2)设平面的法向量为 n= (x, y, z). → AC= 0 n· (3)联立方程组 并解答. → AB= 0 n·
相关文档
最新文档