九年级数学反比例函数的专项培优 易错 难题练习题附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学反比例函数的专项培优易错难题练习题附详细答案

一、反比例函数

1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= •OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD•DE=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点

(1)已知点A的坐标是(2,3),求k的值及C点的坐标;

(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.

【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比

例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,

∴k=6,C(﹣2,﹣3),

即k的值是6,C点的坐标是(﹣2,﹣3);

(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,

∵点A(2,3),k=6,

∴AN=2,

∵△APO的面积为2,

∴,

即,得OP=2,

∴点P(0,2),

设过点A(2,3),P(0,2)的直线解析式为y=kx+b,

,得,

∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,

当y=0时,0=0.5x+2,得x=﹣4,

∴点D的坐标为(﹣4,0),

设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,

则,得,

∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,

∴点D到直线AC的直线得距离为:= .

【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C

在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.

3.如图1,已知(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B 作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.

(1)如图2,连结BP,求△PAB的面积;

(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

【答案】(1)解:连接OP,

(2)解:如图1,∵四边形BQNC是菱形,

∴BQ=BC=NQ,∠BQC=∠NQC。

∵AB⊥BQ,C是AQ的中点,∴BC=CQ= AQ。∴∠BQC=60°,∠BAQ=30°。

在△ABQ和△ANQ中,∵,∴△ABQ≌△ANQ(SAS)。

∴∠BAQ=∠NAQ=30°。∴∠BAO=30°。

∵S四边形BQNC= ,∴BQ=2。∴AB= BQ= 。∴OA= AB=3。

又∵P点在反比例函数的图象上,∴P点坐标为(3,2)。

(3)解:∵OB=1,OA=3,∴AB= 。

相关文档
最新文档