[整理]二阶系统的阶跃响应.
二阶系统的阶跃响应
控制系统的时域性能指标
一阶系统的单位阶跃响应
二阶系统的阶跃响应
典型二阶系统方框图,其闭环传递函数为:
s
Cs Rs
K v / s(Tm s 1)
Kv
1 K v / s(Tm s 1) Tm s2 s K v
2 n
s2 2 n s
2 n
式中
K v-- 开环增益;
ω n--无阻尼自然频率或固有频率,
Kv
n
;
Tm
ζ --阻尼比,
4. 无阻尼 (ζ = 0)
其时域响应为 在这种情况下,系统的响应为等幅
Cs
2
n
s(s2
2 n
)
c t 1 cos nt
(不衰减 )振荡,
5
图 ζ= 0 时特征根的分布
图 ζ= 0 时二阶系统的阶跃响应
5. 负阻尼( ζ< 0)
当 ζ <0 时,特征根将位于复平面的虚轴之右,其时域响应中的
e 的指数将是正的时间
函数,因而 e nt 为发散的,系统是不稳定的。
显然, ζ ≤ 0 时的二阶系统都是不稳定的,
而在 ζ ≥ 1 时,系统动态响应的速度又太慢,
所以对二阶系统而言, 欠阻尼情况是最有实际意义的。 下面讨论这种情况下的二阶系统的动
态性能指标。
欠阻ห้องสมุดไป่ตู้二阶系统的动态性能指标
1. 上升时间 tr
二阶系统的阶跃响应(PPT课件)
三、二阶系统的其他输入响应
即,输入变为原来的积分时,输出也变为原来的积分。
结论
一、单位脉冲信号是单位阶跃信号的一阶导数,所以系 统的单位脉冲响应也为单位阶跃响应的一阶导数。 二、单位斜坡信号和单位加速度信号是单位阶跃信号的 一重二重积分,所以系统的单位斜坡响应好单位加速 度响应也为单位阶跃响应的一重积分和二重积分。
一、二阶系统的阶跃响应
当 1系统有两个正实根 单位阶跃响应为
e
( 2 1 )n t
h(t ) 1
2 2 1( 2 1)
e
( 2 1 )n t
2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
解之得 td 似描述
1 0.6 0.2 2
n
欠阻尼下用 t d
1 0.7
n
近
二、二阶系统的动态过程分析
2、上升时间tr的计算 1 t c ( t ) 1 e sin( d t ) 中,令 c(t d ) 1 在 2
n
1
,得
1 1 2
2 n 1 1 n 1 C ( s) R( s)G ( s) 2 2 s ( s n ) s ( s n ) s n
c(t ) 1 e
n t
(1 nt )
相应的阶跃响应 非周期地 趋向于稳态输出,此时系统为 临界阻尼情况。
一、二阶系统的阶跃响应
二、二阶系统的动态过程分析
要求:能熟记以上动态性能指标在欠阻尼下的求取公式, 及求取方法(便于非欠阻尼下的计算) 例:设系统结构图如下,若要求系统具有性能指标 t p 1s ,试确定系统参数K和τ,并计算单 % 20% , 位阶跃响应的特征量, t , 和 t。 t d s r
二阶系统的阶跃响应
线性定常系统的重要特性
1、对于零初始条件下的线性定常系统,若输入为 r(t)
其对应的输出为 c(t) ,拉氏变换为 C(s) R(s)G(s)
2、若输入变为
dr(t)
r1 (t )
dr(t) t
R1(s) L[ t ] sR(s)
,其拉氏变换为
这时系统输出为 C1(S) G(s)R1(s) G(s)sR(s) sC(s)
二、二阶系统的动态过程分析
4、最大超调量 %的计算
在 c(t) 1
1 1
2
e nt
sin( dt
)
中,将t t p 代入得
c(t p ) 1
1 e / 1 2 sin( ) 1 2
因为 cos 则 sin( ) 1 2
1 2
解之得 t s
1
n
ln( 0.05
1 2 )
4.5
,近似为
ts
3.5
n
3.5
4.5
若误差带为0.02,则
ts
n
二、二阶系统的动态过程分析
由此可见, n 越大,ts 越小,若 n一定,则调节
时间 ts 与
不一样的。
成反比。这与 td
,t p ,tr
一、二阶系统的阶跃响应
当 0
系统有一对纯虚根
s1,2 jn
单位阶跃响应时
C(s)
R(s)G(s)
1 s
n2 s2 n2
可以算出 系统的阶跃响应为等幅振荡,振荡频率为 自然频率,此时为无阻尼情况。
二阶系统的阶跃响应实验报告
二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。
实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。
在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。
实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。
2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。
3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。
实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。
2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。
3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。
结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。
通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。
自动控制原理实验二阶系统的阶跃响应
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
二阶系统的阶跃响应实验报告
二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。
2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。
3. 进一步了解数字控制的基本原理和实现方法。
实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。
通过向系统输入一个单位阶跃信号,可以使系统达到稳态。
在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。
二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。
欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。
在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。
具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。
2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。
3. 记录系统的超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。
实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。
2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。
3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。
4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。
5. 分析实验结果,并总结出二阶系统的阶跃响应特性。
实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。
通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。
我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。
二阶系统的阶跃响应
由于实际响应曲线的收敛速度比包络线的收敛速度要快, 因此可用包络线代替实际响应来估算调节时间。即认为响应曲 线的包络线进入误差带时,调整过程结束。
当t=t’s时,有:
e nts %
1 2
C(t)
1 1 1 2 e nt 1 1 2
1
Δ=5
ln( 1 2 %)
ts
tr
1
d
tg 1(
1 2
)
tg1( 1 2 ) tg1( 1 2n )
n
tg( ) n
1 2
n
tg1( 1 2 )
1 2
tr
d
n 1 2
称为阻尼角,这是由于 cos 。
20
n
n
jn 1 2
180
jn 1 2
3.3 二阶系统的阶跃响应
c(t) 1
1
e e ( 2 1)nt
( 2 1)nt
2 2 1 ( 2 1) ( 2 1)
特征方程还可为
12
s2
2
ns
2 n
(s
1 )(s T1
1 T2
)
3.3 二阶系统的阶跃响应
两阶系统的瞬态响应
式中
T1
n (
1
2
1)
T2
n (
1
2
1)
这里 T1 T2
,
2 n
1 T1T2
3.3 二阶系统的阶跃响应
第三节 二阶系统的阶跃响应
1
3.3 二阶系统的阶跃响应
一、典型二阶系统的数学模型
由二阶微分方程描述的系统称为二阶系统。它在控制工程
中的应用极为广泛。许多高阶系统在一定的条件下,也可简化
二阶系统的阶跃响应-10页精选文档
实验一 一、二阶系统的阶跃响应 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T 对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容(一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。
惯性环节的模拟电路及其传递函数如图1-1。
(二)构成下述二阶系统的模拟电路,并测量其阶跃响应。
典型二阶系统的闭环传递函数为()2222nn n s s s ωζωωϕ++=(1) 其中ζ和n ω对系统的动态品质有决定的影响。
构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应:图1-1 一阶系统模拟电路图R1R2电路的结构图如图1-3系统闭环传递函数为式中 T=RC ,K=R2/R1。
比较(1)、(2)二式,可得 n ω=1/T=1/RCξ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC 值可以改变无阻尼自然频率n ω。
今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。
电阻R 取100K Ω,电容C 分别取1f μ和0.1f μ,可得两个无阻尼自然频率n ω。
操作步骤:1. 启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2. 测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
3. 连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D 、D/A卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
二阶系统的阶跃响应
一、二阶系统的阶跃响应
当 1系统有两个正实根 单位阶跃响应为
e
( 2 1 )n t
h(t ) 1
2 2 1( 2 1)
e
( 2 1 )n t
2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
二阶系统的阶跃响应
经过实验知,
过阻尼和临界阻尼响应曲线中,临界阻尼响应速度最 快;
欠阻尼响应曲线中,阻尼比越小,超调量越大,上升 时间越小,通常取阻尼比在0.4-0.8之间,此时超调量 合适,调节时间短; 若系统有相同的阻尼比,而振荡频率不同,则振荡特 性相同,但响应速度不同,振荡频率大的,响应速度 快.
二、二阶系统的动态过程分析
控制工程中,一般选取适度的阻尼比,较快的响应速 度和较短的调节时间。 1、延迟时间td的计算 1 c ( t ) 1 e sin( t ) 中,令 c(t ) 0.5 ,得 在 d 1
n t 2 d
n t d
1
ln
2 sin( 1 2 nt d arcsin ) 1 2
一、二阶系统的阶跃响应
上式中
T1 T2
1
n ( 2 1)
1
n ( 2 1)
由此可见 阻尼比的值决定了系统的阻尼程度。
一、二阶系统的阶跃响应
具体讨论 欠阻尼情况下的阶跃响应 当 0 1 系统有一对具有负实部的共轭复数根
s1, 2 n jn 1
一、二阶系统的阶跃响应
当
系统有一对纯虚根 0 s1, 2 jn
二阶系统的阶跃响应
二阶系统的阶跃响应一.实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率nω对系统动态性能的影响。
二.实验内容1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。
3.运行Matlab软件中的simulink仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与理论计算的结果作比较。
三.实验步骤1. 典型环节的simulink仿真分析在实验中观测实验结果时,只要运行Matlab,利用Matlab软件中的simulink仿真功能,以及Matlab编程功能,可以完成常见的控制系统典型环节动态响应。
研究特征参量ζ和nω对二阶系统性能的影响标准二阶系统的闭环传递函数为:2222)()(n n n s s s R s C ωζωω++=二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。
典型二阶系统的结构图如图所示。
不难求得其闭环传递函数为2222)()()(n n n B s s R s Y s G ωζωω++==其特征根方程为222n n s ωζω++=0 方程的特征根: 222n n s ωζω++=0))(()1)(1(2121=--=++s s s s T s T s 式中, ζ称为阻尼比; n ω称为无阻尼自然振荡角频率(一般为固有的)。
当ζ为不同值时,所对应的单位阶跃响应有不同的形式。
当ζ=0.1时的仿真结果当ζ=0.3真结果当ζ=1时的结果当ζ=2时的仿真结果三.实验总结结论:二阶系统的阻尼比ξ决定了其振荡特性ζ< 0 时,阶跃响应发散,系统不稳定;ζ≥ 1 时,无振荡、无超调,过渡过程长;0<ζ<1时,有振荡,ξ愈小,振荡愈严重,但响应愈快;ζ= 0时,出现等幅振荡。
(整理)自动控制原理实验-二阶系统阶跃响应及性能分析
bbb{2}='\fontsize{16}\fontname{宋体}超调量';
bbb{3}='\fontsize{6} ';
bbb{4}='\fontsize{14}\it\sigma_\rho%=16.3%';
text(1.15,0.90,bbb,'color','b','HorizontalAlignment','Center')
与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能
指标要求,求出参数K1、a,再用step()画出即可。
代码:a=63.2;b=[1,3.5p=roots(b);
s=0:0.01:5;
step(sys,s);grid
xlabel('s')
ylabel('y(s)')
实验中心201311月10机电年级专姓名学号实验课程名称自动控制原理成绩实验项目名称二阶系统阶跃响应及性能分析指导教师一实验目的二实验内容三使用仪器材料四实验过程原始记录程序数据图表计算等五实验结果及总结一实验目的掌握控制系统时域响应曲线的绘制方法
广州大学学生实验报告
开课学院及实验室:实验中心2013年11月10日
格式1:step (sys) [Y,X,T]=step(sys)
格式2:step (sys,t) [Y,X]=step(sys,t)
格式3:step (sys,iu) [Y,X,T]=step(sys,iu)
格式4:step (sys,iu,t) [Y,X]=step(sys,iu,t)
自控原理实验二阶系统的阶跃响应
二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。
二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。
三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(nn n S S S R S C ωζωω++= (2-1)闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。
它的数学表达式为:)(111)(2βωζζω+--=-t Sin e t C d t n式中21ζωω-=n d ,ζζβ211-=-tg。
2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。
3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。
(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。
自动控制实验报告二-二阶系统阶跃响应
自动控制实验报告二-二阶系统阶跃响应
本实验以三角波输入作为扰动源,考察了二阶系统的阶跃响应。
本实验共分为准备和实验两部分,具体过程如下:
1. 准备:
(1)准备理论分析
根据二阶系统的理论分析,比例的系统的输出响应可以用“先过斜坡,后弹跳”的曲线来描述。
当输入为阶跃信号时,最终的输出也应随之发生阶跃。
(2)安装系统设备
系统的设备由负反馈比例控制器与多功能电路板组成,本实验采用比例控制实现,用一个三角波发生器后装置来产生三角波控制信号。
2. 实验:
(1)稳态响应
调整三角波周期参数,使系统实现稳态响应,测量得出输出与输入的闭环增益值,满足系统的稳态要求;
(2)阶跃响应
设定参数使得系统实现阶跃响应,测量得出系统的时间常数值以及输出响应与输入阶跃幅度之比,画图分析出输出在某一个阶跃时刻趋近系统的稳态响应值时所需的时间。
以上就是本次实验的概况。
本实验将三角波应用于二阶系统,进行阶跃响应实验,尝试测量、分析系统阶跃响应的指标,可见本实验对对比例系统的指标的测量及系统性能的分析有很大的意义。
二阶系统的阶跃响应
可求得: a 1, b 2n
2019/8/28
第三章 控制系统的时域分析
9
因此 :
X
c
(s)
1 s
s2
s 2n 2ns
n2
1 s
s2
s n 2ns n2
s2
n 2n s
n2
X c s
1 s
s
s n
2019/8/28
第三章线性系统的时域分析
13
(2)共轭复数极点实部的绝对值 n 决定了欠 阻尼响应的衰减速度,n 越大,即共轭复数极点离
虚轴越远,欠阻尼响应衰减得越快。欠阻尼响应的
振荡频率为 d ,其值总小于系统的无阻尼自然振荡
频率n 。
(3)欠阻尼响应过程的偏差随时间的推移而减
小,当时间趋于无穷时它趋于零。
r
s
1 s
则 输出的拉氏变换为:
Xc (s)
WB (s) X r
(s)
s2
n2 2ns
n2
1 s
1、欠阻尼:0 1
系统的闭环极点为: s1,2 n jn 1 2 jd
d n 1 2 称为阻尼自然振荡角频率。
- ξn 0
s2
(a) 0<ξ<1
j S平面
s1s2
- ξn 0
(b) ξ=1
j S平面
s1 s2
0
(c) ξ>1
j S平面
n s1
0
s2
(d) ξ=0
j S平面
二阶系统的阶跃响应的解析解
二阶系统的阶跃响应的解析解二阶系统的阶跃响应是指当输入信号为阶跃函数时,系统的输出信号随时间的变化情况。
阶跃响应是研究系统动态特性的重要指标之一,可以反映系统的稳定性、动态特性以及对输入信号的响应能力。
本文将从二阶系统的定义、阶跃响应的解析解推导以及实际应用等方面进行论述。
我们先来了解二阶系统的定义。
二阶系统是指系统的传递函数为二次多项式的系统,一般形式为:H(s) = K/(s^2 + 2ζωns + ωn^2)其中,K为系统的增益,ζ为阻尼比,ωn为系统的自然频率,s为复变量。
阶跃响应的解析解是指通过对传递函数进行解析运算,得到的系统输出与时间的函数关系。
对于二阶系统的阶跃响应,可以通过拉普拉斯变换和反变换的方法进行求解。
具体求解过程如下:1. 将传递函数H(s)进行拉普拉斯变换,得到系统的传递函数表达式:H(s) = K/(s^2 + 2ζωns + ωn^2)2. 将输入信号的拉普拉斯变换表达式为1/s,代入传递函数表达式中,得到系统的输出信号的拉普拉斯变换表达式:Y(s) = K/(s(s^2 + 2ζωns + ωn^2))3. 对上述表达式进行部分分式分解,将其分解为多个简单分式的和的形式:Y(s) = A/s + (Bs + C)/(s^2 + 2ζωns + ωn^2)4. 对上述分式进行反变换,得到系统的输出与时间的函数关系:y(t) = A + (Bcos(ωdt) + Csin(ωdt))e^(-ζωnt)其中,A、B、C为待定常数,ωd为系统的阻尼角频率。
通过上述推导过程,我们得到了二阶系统的阶跃响应的解析解。
根据解析解的形式,我们可以看出阶跃响应的特点:随着时间的增加,系统的输出会逐渐趋向于稳定状态,同时存在振荡和衰减的现象。
其中,振荡的频率和衰减的速度受到系统的阻尼比和自然频率的影响。
二阶系统的阶跃响应在实际应用中具有重要的意义。
例如,在控制系统中,阶跃响应可以用来评估系统的性能指标,如超调量、调节时间等。
二阶系统的阶跃响应
8
3.3 二阶系统的阶跃响应
输入阶跃信号和阶跃响应之间的误差 :
Step Response
e(t ) r (t ) y (t ) 1 y (t )
Amplitude
1
=0.3,n=10
0.8
e nt 1
2
sin(n 1 2 t ),t 0
3
3.3 二阶系统的阶跃响应
二、典型二阶系统的阶跃响应 1 当输入为单位阶跃函数时,R ( s ) ,有: s 2 1 n 1 C ( s ) ( s ) 2 2 s s 2 n s n s 2 1 n 1 1 1 c(t ) L [( s) ] L [ 2 ] 2 s s 2 n s n s
3.3 二阶系统的阶跃响应
第三节 二阶系统的阶跃响应
1
3.3 二阶系统的阶跃响应
一、典型二阶系统的数学模型 由二阶微分方程描述的系统称为二阶系统。它在控制工程 中的应用极为广泛。许多高阶系统在一定的条件下,也可简化 为二阶系统来研究。 2 C ( s) n R( s ) s( s 2 n ) 典型结构的二阶系统如图所示。 2 n 开环传递函数为: G( s) 2 s 2 n s 2 n G( s ) 闭环传递函数为: (s) 2 2 1 G(s) s 2 n s n ( s ) 称为典型二阶系统的传递函数, n 称为 称为阻尼系数, 无阻尼振荡频率或自然频率。这两个参数称为二阶系统特征参 数。
9
3.3 二阶系统的阶跃响应
两阶系统的瞬态响应
⒊当 1 时,极点为:
阶跃响应函数为:
2
s1, 2 n
1 n n2 1 1 n C ( s) 2 s s 2n s n 2 s( s n )2 s s n ( s n )2
二阶系统阶跃响应实验报告
二阶系统阶跃响应实验报告实验报告:二阶系统阶跃响应一、实验目的1.了解二阶系统的阶跃响应特点;2.掌握二阶系统阶跃响应的测量方法;3.理解参数对二阶系统阶跃响应的影响。
二、实验原理二阶系统是指一个包含两个能量存储元件(电容、电感)的系统。
其传递函数可以表示为:Ts(s)G(s)=--------------(s^2 + 2ζωns + ωn^2)其中,Ts(s)为控制信号输入,G(s)为系统传递函数,ζ为阻尼比,ωn为自然频率。
当输入为单位阶跃信号时,输出的响应称为系统的阶跃响应,其数学表达式为:y(t)=-----------τ^2[1-e^(-t/τ)-t/τ*e^(-t/τ)]其中,τ为系统的时间常数,τ=1/ωn式中ωn为自然频率。
实验步骤1.搭建二阶电路系统,并接入信号发生器和示波器。
2.调节信号发生器产生单位阶跃信号,并将信号接入二阶电路系统中。
3.调节示波器进行观测,并记录输出信号的波形。
4.根据记录的波形数据,计算系统的时间常数τ、阻尼比ζ和自然频率ωn。
5.改变二阶电路系统中的参数(如电感或电容值),重新进行实验并记录数据。
6.分析不同参数对二阶系统阶跃响应的影响。
四、实验结果实验数据如下表所示:电感值(L),电容值(C),时间常数τ,斜率(t/τ),阻尼比ζ,自然频率ωn------,-------,------,-------,-----,-------L1,C1,τ1,t1/τ1,ζ1,ωn1L2,C2,τ2,t2/τ2,ζ2,ωn2L3,C3,τ3,t3/τ3,ζ3,ωn3(插入阶跃响应图像)五、实验分析根据实验结果的波形数据,计算得到不同参数下的时间常数τ、阻尼比ζ和自然频率ωn,并填入上表。
通过对比不同参数下阶跃响应的图像,可以得出以下结论:1.时间常数τ:时间常数τ代表系统响应到达稳态所需的时间。
一般来说,时间常数越小,系统的响应速度越快。
根据实验数据的对比可以发现,当电感或电容值增加时,时间常数τ也相应增大,表示系统的响应速度减慢。
二阶电路阶跃响应
二阶电路是指由两个电感和两个电容构成的电路,常用于滤波、放大和振荡等应用。
在二阶电路中,阶跃响应是指当电路输入为阶跃信号时,电路输出的响应情况。
对于一个二阶系统,其阶跃响应可以分为三种情况:
1.无阻尼振荡:当系统存在无阻尼时,即无阻尼系数ζ=0时,系统会出现无阻尼振荡。
此时,系统的输出将会产生一系列周期性的波形,幅值振荡并逐渐趋向于稳定状态。
2.欠阻尼:当系统存在欠阻尼时,即0<ζ<1时,系统的输出将会发生震荡,并逐渐衰
减至稳定状态。
此时,系统的输出将会出现多次衰减的振荡,振荡的频率取决于系统的固有频率ωn和阻尼系数ζ。
3.过阻尼:当系统存在过阻尼时,即ζ>1时,系统的输出将不会发生震荡,而会快速
衰减至稳定状态。
此时,系统的响应将会非常迅速地趋向于稳定状态,但是衰减的速度取决于系统的阻尼系数ζ和固有频率ωn。
总之,二阶电路的阶跃响应会受到阻尼系数ζ、固有频率ωn等多个因素的影响,而不同的参数组合将会导致不同的响应情况。
因此,在实际应用中,需要根据具体的应用需求选择合适的参数组合以及相应的响应方式。
第二章二阶系统阶跃响应第二部分
一、 二阶系统的单位阶跃响应分析
1、什么是二阶系统单位阶跃响应?
二阶系统输入单位阶跃信号的响应,称为二阶系统单位阶跃响应。
标准二阶系统传递函数:
Y(s )
=
s(s 2
+
n2 2ns
+
n2 )
(式1)
典型的二阶系统阶跃响应曲线为: 其中: tr-- 为上升时间 tp-- 为峰值时间
y(t) ymax
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
2、仿真实现 (1)不同阻尼比阶跃响应仿真曲线
对应闭环系统传递函数:
(s) =
s2
+
1
2s + 1
(式16)
当ωn=1, 取ζ=0, 0.25 , 0.5, 1.0 , 2.0
时,如图:
结论:
➢ 无阻尼阶跃响应曲线为等幅振荡,此时超调量=100%,稳态时间是无穷大。 ➢ 欠阻尼阶跃响应曲线随值减小超调量增大,稳态时间变长。 ➢ 临界阻尼和过阻尼阶跃响应曲线超调量为零。
Experimental Course Of Automatic Control Theory
**大学 **学院
** University
实验二:二阶系统阶跃响应实验
第二部分:二阶系统阶跃响应的计算方法
主讲内容
1
二阶系统单位阶跃响应的分析
2 欠阻尼二阶系统单位阶跃响应性能指标
3
二阶系统阶跃响应的实现
1.02 y(∞) y(∞)
0.98 y(∞) 0.9 y(∞)
ess y(∞)
ts-- 为稳态时间或过渡过程时间
0.1 y(∞)
y(∞) --为稳态值 ess--为稳态误差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 一、二阶系统的阶跃响应 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、学习实验系统的使用方法。
2、学习构成一阶系统(惯性环节)、二阶系统的模拟电路,分别推导其传递函数。
了解电路参数对环节特性的影响。
3、研究一阶系统的时间常数T 对系统动态性能的影响。
4、研究二阶系统的特征参数,阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容(一) 构成下述一阶系统(惯性环节)的模拟电路,并测量其阶跃响应。
惯性环节的模拟电路及其传递函数如图1-1。
(二)构成下述二阶系统的模拟电路,并测量其阶跃响应。
典型二阶系统的闭环传递函数为 ()2222nn n s s s ωζωωϕ++=(1) 其中ζ和n ω对系统的动态品质有决定的影响。
图1-1 一阶系统模拟电路图R1R2构成图1-2典型二阶系统的模拟电路,并测量其阶跃响应:电路的结构图如图1-3系统闭环传递函数为()()()()222/1//11/2TS T K s T s U S U s ++==ϕ 式中 T=RC ,K=R2/R1。
比较(1)、(2)二式,可得 n ω=1/T=1/RCξ=K/2=R2/2R1 (3)由(3)式可知,改变比值R2/R1,可以改变二阶系统的阻尼比。
改变RC 值可以改变无阻尼自然频率n ω。
今取R1=200K ,R2=0K Ω,50K Ω,100K Ω和200K Ω,可得实验所需的阻尼比。
图1-2 二阶系统模拟电路图图1-3 二阶系统结构图R2电阻R取100KΩ,电容C分别取1fμ和0.1fμ,可得两个无阻尼自然频率ω。
n 操作步骤:1.启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
3.连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4.在实验课题窗口中单击选择实验一[典型环节阶跃响应],5.鼠标双击实验课题弹出实验课题参数窗口。
在参数窗口中设置响应的实验参数后,鼠标单击确认等待屏幕显示去显示实验结果。
6.观测计算机屏幕显示出的响应曲线及数据。
7.记录波形及数据于表1-1。
8.关闭电源,拆线。
9.测试计算机与实验箱的通信是否正常,通信正常继续。
如果信不正常查找原因使通信正常后才能可以继续进行实验。
10.连接被测量典型环节的模拟电路(图1-2)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的DA1输入。
检查无误后接通电源。
11.在实验课题窗口中单击选择实验二[二阶系统阶跃响应]。
鼠标双击实验课题弹出实验课题参数窗口。
在参数窗口中设置响应的实验参数后,鼠标单击确认等待屏幕显示区显示实验结果。
12.观测计算机屏幕显示出的响应曲线及数据。
13.记录波形及数据于表1-2。
四、实验结果与分析1.分析推导一阶系统的传递函数2.记录一阶系统实验数据于表1-1,并计算Ts(秒)理论值。
表1-1 一阶系统实验数据记录表3.进行电路分析,推导得到二阶系统的传递函数。
4.记录二阶系统实验数据于表1-2 表1-2 二阶系统实验数据记录表5. 定量分析ξ和n ω与最大超调量P M 和调节时间s t 之间的关系。
6. 在实验过程中出现了什么问题?你是如何解决的?实验二 系统频率特性测量 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、加深了解系统频率特性的物理概念。
2、掌握系统频率特性的测量分析方法。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容1、模拟电路图及系统结构图分别如图2-1和图2-2。
2、系统传递函数 取R3=500K Ω,则系统传递函数为()()()50010500122++==s S S U S U S G 若输入信号()t U t U ωsin 11=,则在稳态时,其输出信号为 ()()ψ+=t U t U ωsin 22改变输入信号角频率ω值,便可测得二组U2/U1和ψ和ω变化的数值,这个变化规律就是系统的幅频性和相频特性。
操作步骤图2-1 系统模拟电路图图2-2 系统结构图1.连接被测量典型环节的模拟电路。
电路的输入U1的A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
2.启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
3.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
测波德图4.鼠标双击选中[实验课题→系统频率特性测量→可测性检查]菜单项,系统进行数据采集,等待观察波形,如图2-3所示。
分别取2~3组不同信源频率,记录系统输入输出波形并由图形计算幅频和相频特性。
5.待数据采样结束后鼠标双击[实验课题→系统频率特性测量→数据采集] 系统进行数据自动采集。
6.待数据采样结束后鼠标双击[实验课题→系统频率特性测量→波德图观测]即可在显示区内显示出所测量的波德图。
四、实验结果与分析1.进行电路分析,求出系统传递函数,根据传递函数绘制波德图。
图2-3 数据采集2.利用可测性检查工具,观察记录信源频率分别取不同值时系统输入及响应曲线,并由图形计算出系统幅频特性及相频特性。
实验三 连续系统串联校正 实验报告___系__专业___班级 学号___姓名___成绩___指导教师__一、实验目的1、加深理解串联校正装置对系统动态性能的校正作用。
2、对给定系统进行串联校正设计,并通过模拟实验检验设计的正确性。
二、实验仪器1、EL-AT-II 型自动控制系统实验箱一台2、计算机一台三、实验内容1、串联超前校正(1)系统模拟电路图如图3-1,图中开关S 断开对应未校情况,接通对应超前校正。
(2)系统结构图如图3-2图中 ()21=s Gc()1005.01055.022++=s s Gc 2、串联滞后校正图3-1 超前校正电路图图3-2 超前校正系统结构图(1)模拟电路图如图3-3,开关S 断开对应未校状态,接通对应滞后校正。
(2)系统结构图示如图3-4图中()101=s Gc()()1111102++=s s s Gc 操作步骤1、启动计算机,在桌面双击图标[自动控制实验系统]运行软件。
2、测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
超前校正3、连接被测量典型环节的模拟电路(图3-1)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
4、开关S 放在断开位置。
5、选中[实验课题→连续系统串联校正→超前校正]菜单项,鼠标单击将弹出参数设置窗口。
系统加入阶跃信号。
参数设置完成后鼠标单击确认测量系统阶跃响应,并记录超调量%σ和调节时间ts 。
6、开关S 接通,重复步骤5,将两次所测的波形进行比较。
并将测量结果记入表3-1中:图3-3 滞后校正模拟电路图图3-4 滞后系统结构图滞后校正7、连接被测量典型环节的模拟电路(图3-3)。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
8、开关S放在断开位置。
9、选中[实验课题→连续系统串联校正→滞后校正]菜单项,鼠标单击将弹出参数设置窗口,系统加入阶跃信号。
参数设置完成后鼠标单标确认测量系统阶跃响应,并记录超调量%σ和调节时间ts。
10、开关S接通,重复步骤9,将两次所测的波形时行比较。
并将测量结果记入表3-2中:四、实验结果与分析1.记录的实验数据,分析校正前后系统性能。
表3-1表3-22.根据超前校正前后的系统传递函数,绘制超前校正前后系统的波德图,并从图上查出系统的幅值穿越频率ωc及相位裕度v。
分析校正结果。
实验四状态空间分析与设计实验报告___系__专业___班级学号___姓名___成绩___指导教师__一、实验目的1.加深理解能控性、能观性的概念及其判别准则。
2.运用状态反馈配置极点。
3.了解直线倒立摆系统的组成。
4.了解MATLAB的使用。
二、实验仪器二级倒立摆。
三、实验内容1.直线一级倒立摆的牛顿—欧拉方法建模。
2.分析得到直线一级倒立摆的状态空间方程。
3.研究一级倒立摆的能控性和能观性。
4.分析一级倒立摆的稳定性。
5.计算得到状态反馈阵,使一级倒立摆闭环极点位于-1+2j,-1-2j,-2+j,-2-j,画出模拟结构图。
6.演示二级倒立摆控制。
四、实验结果与分析1、写出直线一级倒立摆的状态空间方程。
2、使用MATLAB分析一级倒立摆的能控性和能观性。
3、用MA TLAB分析一级倒立摆稳定性。
4、计算得到状态反馈阵,使一级倒立摆闭环极点位于-1+2j,-1-2j,-2+j,-2-j,画出模拟结构图。
5、本次实验你有何收获?。