高中物理必修2课件
高中物理必修2人教版5.7生活中的圆周运动课件
A.当以v的速度通过此弯路时,火车重力与轨道面支持 力的协力提供向心力 B.当以v的速度通过此弯路时,火车重力、轨道面支持 力和外轨对轮缘弹力的协力提供向心力 C.当速度大于v时,轮缘挤压外轨 D.当速度小于v时,轮缘挤压外轨
2.(多选)(2013·新课标全国卷Ⅱ)公路急转弯处通常是 交通事故多发地带。如图,某公路急转弯处是一圆弧,当 汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑
v2
G FN m r
G
FN
v2
FN G m r
G
FN
FN = G
G
小 结:
最高点
最低点
汽车对桥面的压力 超重失重状态
N G m v2 G r
N G m v2 G r
课堂练习
1、质量 m=100t的火车在轨道上行驶,火车内
外轨连线与水平面夹角为370 ,弯道半径
R=30m。 (1)当火车的速度v1=10m/s时,轨道何处受侧压
G
火车行驶速率v<v临界
注意 从这个例子我们进一步知道 :
1、火车转弯时向心力是水平的.
2、向心力是按效果命名的力, 如果认为做匀速圆周运动的物 体除了受到其他力的作用,还 要再受到一个向心力,那就不 对了。
1、火车轨道在转弯处外轨高于内轨,其高度差由转弯半 径与火车速度确定。若在某转弯处规定行驶的速度为v,
实例 二、拱形桥
思考:
公路上的拱 形桥是常见的, 汽车过桥时, 也可以看做圆 周运动。那么 是什么力提供 汽车的向心力 呢?
1、汽车过凸形桥
质量为m 的汽车以恒定的速率v通过半径为r的拱
桥,如图所示,求汽车在桥顶时对路面的压力是多 大?
人教版高中物理必修第二册:向心力【精品课件】
F1=
4m 2n2r t2
,钢球所受合力的表达式F2=
mg r h
。下面是一次实验得到的数据,代入上式
计算结果F1= 0.101N,F2= 0.098 N,图中细线与竖直方向的夹角θ 比较小,可认为tan
θ=sin θ。(g取9.80 m/s2,π2≈9.86,计算结果保留三位小数)
m/kg
r/m
n/转
Fn=mvr 2 Fn=m ω2r Fn =m4Tπ22r
4、变速圆周运动中的合力并非向心力
在匀速圆周运动中合力充当向心力
当堂检测
1.如图所示是游乐园转盘游戏,游客坐在匀速转动的水平转盘上,与转盘相对静止,关于他 们的受力情况和运动趋势,下列说法中正确的是( C ) A.游客在匀速转动过程中处于平衡状态 B.受到重力、支持力、静摩擦力和向心力的作用 C.游客受到的静摩擦力方向沿半径方向指向圆心 D.游客相对于转盘的运动趋势与其运动方向相反
3.[多选]如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有
两个小球A和B紧贴内壁,且A球的质量为B球的2倍,分别在如图所示的水平面内做匀速
圆周运动,则( AB )
A.A球的线速度大于B球的线速度
B.A球的角速度小于B球的角速度
C.A球运动周期小于B球运动周期
D.A球对筒壁的压力小于B球对筒壁的压力
,由于mA=2mB,则知FA=2FB,根据牛顿第三定律得,小球对
筒壁的压力F′A=2F′B。
4.[多选]如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而
未滑动。当圆筒的角速度增大以后,下列说法正确的是( BC )
A.物体所受弹力增大,摩擦力增大 B.物体所受弹力增大,摩擦力不变 C.物体所受弹力和加速度都增大 D.物体所受弹力增大,摩擦力减小
高中物理(新人教版)必修第二册:功与功率【精品课件】
功的正负 不表示方向,也不表示大小。
4.总功等于各个力对物体所做功的代数和。
1.物理意义:表示做功快慢的物理量
功
2.定义式:
PW t
一般用于求平均功率
率
3.计算式:P = F v cosα
一般用于求瞬时功率
4.单位:国际单位—— 瓦特 (W)
当堂小练
1.于功的概念,下列说法正确的是( C ) A.物体受力越大,位移越大,力对物体做功越关多 B.合力做的功等于各分力做功的矢量和 C.摩擦力可以对物体做正功 D.功有正负,但正负不表示方向,而表示大小
h
一、变力做功
【典例1】如图,用恒力F通过跨过光滑定滑轮的轻绳,将静止于水平 面上的物体从位置A拉到位置B,物体和滑轮的大小均忽略,定滑轮 距水平面高为h,物体在位置A、B时,细绳与水平面的夹角分别为α 和β,求绳的拉力F对物体做的功.
【分析】功是能量转化的量度,轻绳不存储能量,恒力F做功通 过绳子将能量转移到物体上,故此恒力F做功应该等于绳子对物 体做的功。
一、功
01 功的定义 (5)说明 ① 功是过程量,对应一段时间或位移是力对空间的积累效果;故计 算功时一定要指明是哪个力在哪个过程对物体做的功。 ②公式W = Fl cosα只适用于计算恒力的功,l是物体的位移,不是路 程。
mF M l
一、功
02 正功与负功 (1)力对物体做正功和负功的条件 根据公式:W = F l cosα 完成下表:
小
F
F1
2
F,2 其中F1为物体初状态时受到的力,
F2为物体末状态时受到的力.
一、变力做功 02 平均值法
【典例2】如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相 连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧, 木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.
高中物理(新人教版)必修第二册:向心力【精品课件】
2.向心力的特点 (1)向心力方向时刻发生变化(始终指向圆心且与
v
速度方向垂直)。
F OF
F v
(2)向心力的作用:只改变线速度的方向不改变速
度大小。 (3)力是矢量,向心力的方向时刻发生改变,所以
v
向心力是变力。
一、向心力 2.向心力的特点
那么向心力是怎样产生的他是物体受到的吗?
rO ω
(4)向心力并不是像重力、弹力、摩擦力那样作为具有某种性质的力来命名的。 (5)向心力是根据力的作用效果来命名的,它可以是某一个力,或者是几个力 的合力来提供。
2.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体,
物体随圆筒一起转动,物体所需的向心力由下面哪个力
来提供( B )
A.重力
B.弹力
C.静摩擦力
D.滑动摩擦力
3.如图,半径为r的圆筒绕竖直中心轴转动,小橡皮块紧帖在圆筒内壁上,它 与圆筒的摩擦因数为μ,现要使小橡皮不落下,则圆筒的角速度至少多大?
三、变速圆周运动和一般曲线运动的受力特点 1.变速圆周运动的受力特点
F Fn
同时具有向心加速度和切向加速度的 圆周运动就是变速圆周运动 ,匀速 圆周运动切向加速度为零。
当物体做圆周运动的线速度逐渐减小 时,物体所受合力的方向与速度方向 的夹角是大于 90°还是小于 90°呢?
三、变速圆周运动和一般曲线运动的受力特点 2.一般曲线运动的受力特点
向心力
学习目标
1.知道向心力,通过实例认识向心力的作用及向心力的来源 。 2.通过实验,理解向心力的大小与哪些因素有关,能运用向 心力公式进行计算。 3.知道向心加速度及其公式,能用牛顿第二定律分析匀速圆 周运动的向心力和向心加速度。
新课导入
高中物理必修二全册课件
万有引力定律由牛顿提出,是经典物理学中非常重要的基本定律之一。它适用于任何两 个物体,无论它们是质点还是有一定形状和大小的物体。根据万有引力定律,两个物体 之间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。这个定律在
解释天体运动规律和地球上物体的运动规律等方面都有着广泛的应用。
天体运动的基本规律
要点一
总结词
天体运动的基本规律是指天体在万有引力的作用下绕着其 他天体做圆周运动,或者在自身重力的作用下做自由落体 运动的规律。
要点二
详细描述
天体运动的基本规律包括开普勒三定律和牛顿第二定律等 。开普勒三定律是描述行星绕太阳运动的规律,分别是轨 道定律、面积定律和周期定律。牛顿第二定律则是描述物 体在力作用下的加速度与力和质量的定量关系。在天体运 动中,万有引力起着决定性的作用,它使得天体能够保持 稳定的运动轨道和运动速度。
02
牛顿运动定律
牛顿第一定律
总结词
描述物体运动状态的改变需要力
详细描述
牛顿第一定律,也被称为惯性定律,指出除非受到外力作用,否则物体会保持 其静止状态或匀速直线运动状态不变。
牛顿第二定律
总结词
描述力与加速度之间的关系
详细描述
牛顿第二定律指出,物体受到的力与它的加速度成正比,即F=ma。这个定律解 释了力是如何改变物体的运动状态的。
总结词
理解匀速圆周运动的向心加速度和向心力是学习匀速圆周 运动的关键。
详细描述
向心加速度是指物体做匀速圆周运动时,加速度始终指向 圆心,其大小为a=v^2/r,向心力是指物体做匀速圆周运 动时,需要一个指向圆心的力来提供向心力,其大小为 F=ma=mv^2/r。
高中物理 必修2_1. 曲线运动课件24张PPT.ppt
C、匀减速直线运动 D、曲线运动
(4)关于曲线运动,下列说法正确的是( B)
A、曲线运动一定是变速运动,速度大小 一定要变化
B、曲线运动中的加速度一定不为零,但 可以等于恒量
C、曲线运动中的物体,不可能受恒力作用
D、在平衡力作用下的物体,可以作曲线 运动
(5)某物体在一足够大的光滑平面上向东 运动,当它受到一个向南的恒定外力作用时, 物体运动将是( ) B
2.曲线运动是变速运动。
生变化)
(至少方向发
三.物体(质点)做曲线运动的条件
物体受到的合外力与物体的速度方向不在一条 直线
课后作业:
(1)下列说法中正确的是( AD)
A、两匀速直线运动的合运动的轨迹必 是直线
B、两匀变速直线运动的合运动的轨迹 必是直线
C、一个匀变速直线运动和一个匀速直 线运动的合运动的轨迹一定是直线
D、几个初速度为零的匀变速直线运动 的合运动的轨迹一定是直线
(2)小船在静水中的速度是v,今小船要 渡过一条小河,渡河时小船向对岸垂直划行, 若小船行到河中间时,水流速度增大,则渡 河时间与预定的时间相比( A ) A、不变 B、减小 C、增加 D、无法确定
(3)物体受到几个力的作用而做匀速直线运 动,如果撤掉其中的一个力,而其余的力不 变,它可能做( BCD)
A、直线运动,但加速度方向不变,大小不 变,是匀变速运动
B、曲线运动且是匀变速曲线运动
C、曲线运动,但加速度方向改变,大小不 变,是非匀变速运动
D、曲线运动,加速度大小和方向均改变, 是非匀变速运动
[课堂训练]
画出质点沿曲线从左向右运动时,在A、B、C
三点的速度方向
vA
教科版高中物理必修二全册教学精品课件
教科版高中物理必修二全册教学精品课件一、教学内容1.第一章《直线运动》:包括匀速直线运动、匀变速直线运动、直线运动的图像表示;2.第二章《牛顿运动定律》:涉及牛顿第一定律、牛顿第二定律、牛顿第三定律;3.第三章《曲线运动》:包括平抛运动、圆周运动、一般曲线运动;4.第四章《万有引力与航天》:万有引力定律、天体运动、航天原理。
二、教学目标1.理解并掌握直线运动、牛顿运动定律、曲线运动和万有引力定律的基本概念和原理;2.能够运用所学的物理知识解决实际问题,培养分析和解决问题的能力;3.通过物理学习,提高学生的科学素养,培养对自然现象的观察和思考能力。
三、教学难点与重点1.教学难点:曲线运动、万有引力定律的应用;2.教学重点:直线运动、牛顿运动定律、曲线运动的基本概念和原理。
四、教具与学具准备1.教具:PPT课件、黑板、粉笔、模型、实验器材;2.学具:笔记本、教材、文具、实验报告册。
五、教学过程1.导入:通过实际案例或实验现象引入新课,激发学生的兴趣;2.新课:讲解章节内容,结合PPT和模型演示,使学生理解并掌握基本概念和原理;3.例题讲解:针对重点和难点,给出典型例题,分析解题思路和方法;4.随堂练习:设计适量练习题,巩固所学知识;5.实验演示:结合教学内容,进行实验演示,增强学生的直观感受;7.布置作业:布置适量作业,巩固所学知识。
六、板书设计1.课题:清晰展示本节课的课题;2.重难点:用不同颜色粉笔标出,便于学生记忆;3.公式和概念:书写规范,排列有序;4.例题和解答:展示解题过程和答案。
七、作业设计1.作业题目:(1)匀速直线运动的物体,速度和加速度的关系是什么?(2)根据牛顿第二定律,分析物体受力情况;(3)简述平抛运动的特点;(4)计算地球和月球之间的万有引力。
2.作业答案:(1)速度和加速度的关系:匀速直线运动的物体,加速度为零;(2)物体受力情况:根据牛顿第二定律,物体受力等于质量乘以加速度;(3)平抛运动特点:水平方向匀速直线运动,竖直方向自由落体运动;(4)地球和月球之间的万有引力:F = G Mm Me / r^2。
教科版高中物理必修二全册教学课件
教科版高中物理必修二全册教学课件一、教学内容1. 第一章:运动的描述本章主要介绍了位移、速度、加速度等物理概念,以及它们之间的关系。
通过本章的学习,学生能够理解物体的运动状态,并运用相关物理量进行描述。
2. 第二章:力的作用本章阐述了力的概念、力的计量以及力的作用效果。
学生将学习到如何计算合力,以及力对物体运动状态的影响。
3. 第三章:能量的转化与守恒本章介绍了能量的分类、能量的转化和守恒定律。
学生将能够理解不同形式的能量之间的转化,并应用能量守恒定律解决实际问题。
4. 第四章:动量与冲量本章主要讲述动量和冲量的概念,以及它们在碰撞和爆炸现象中的应用。
通过本章的学习,学生将掌握动量守恒定律。
5. 第五章:机械能守恒定律本章介绍了机械能的概念以及机械能守恒定律。
学生将学会如何判断机械能的转化,并运用机械能守恒定律解决机械能问题。
6. 第六章:简谐振动本章阐述了简谐振动的概念、特点以及振动方程。
学生将能够分析简谐振动的特点,并应用振动方程解决实际问题。
7. 第七章:波动与光学本章主要介绍波动和光学的相关知识,包括波的传播、干涉、衍射以及光的折射和全反射。
通过本章的学习,学生将掌握波动和光学的基本原理。
8. 第八章:电磁感应本章讲述了电磁感应现象及其应用,包括法拉第电磁感应定律和感应电流的条件。
学生将学会分析电磁感应现象,并应用相关知识解决实际问题。
二、教学目标1. 理解并掌握物理概念和规律,能够运用它们解决实际问题。
2. 培养学生的实验操作能力,提高观察和分析问题的能力。
3. 培养学生的团队合作精神,提高沟通和表达的能力。
三、教学难点与重点重点:物理概念和规律的理解和运用。
难点:物理概念和规律的推导和证明。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备、实验器材。
学具:教科书、笔记本、实验报告册、作业本。
五、教学过程1. 实践情景引入:通过实验或生活实例,引导学生关注物理现象,激发学习兴趣。
2. 概念讲解:讲解教科书中的基本概念和物理规律,引导学生理解和掌握。
人教版高中物理人教版必修2全套优质课件
人教版高中物理人教版必修2全套优质课件一、教学内容1. 第一章机械运动1.1 位移和路程1.2 速度和速率1.3 加速度1.4 匀变速直线运动2. 第二章动力学2.1 力2.2 牛顿第一定律2.3 牛顿第二定律2.4 动能和势能二、教学目标1. 理解并掌握位移、速度、加速度等基本概念。
2. 掌握匀变速直线运动的规律,并能运用到实际问题中。
3. 了解牛顿三定律,并能运用牛顿第二定律解决简单动力学问题。
三、教学难点与重点1. 教学难点:加速度的概念,牛顿第二定律的应用。
2. 教学重点:匀变速直线运动的规律,牛顿三定律。
四、教具与学具准备1. 教具:PPT课件,实物演示(如小车、斜面等)。
2. 学具:笔记本,教材,练习册。
五、教学过程1. 导入:通过展示一辆小车在斜面上加速下滑的实验,引出加速度的概念。
2. 新课导入:讲解位移、速度、加速度等基本概念,通过例题进行讲解。
3. 课堂讲解:介绍匀变速直线运动的规律,结合实际例子进行讲解。
4. 随堂练习:布置几道有关匀变速直线运动的练习题,让学生独立完成。
5. 知识拓展:引入牛顿三定律,重点讲解牛顿第二定律。
6. 实践应用:给出实际动力学问题,引导学生运用牛顿第二定律解决问题。
六、板书设计1. 在黑板上画出小车在斜面上下滑的示意图,标注相关物理量。
2. 列出位移、速度、加速度的定义和公式。
3. 写出匀变速直线运动的规律和牛顿三定律。
七、作业设计1. 作业题目:(1)计算给定位移、时间和初速度的匀变速直线运动的末速度。
(2)已知物体的质量和加速度,求作用力。
2. 答案:(1)末速度 = 初速度 + 加速度× 时间(2)作用力 = 质量× 加速度八、课后反思及拓展延伸1. 反思:本节课学生对加速度的理解程度,以及对牛顿第二定律的应用能力。
2. 拓展延伸:引导学生了解其他力学定律,如动量守恒定律、能量守恒定律等,为后续学习打下基础。
重点和难点解析1. 教学难点与重点的确定2. 教学过程中的实践情景引入和例题讲解3. 作业设计中的题目难度和答案解析4. 课后反思及拓展延伸的深度和广度一、教学难点与重点的确定在高中物理教学中,加速度和牛顿第二定律是核心概念,对于学生的理解具有较大难度,因此确定它们为教学难点和重点。
高中教育物理必修第二册《3.1 天体运动》教学课件
(2)太阳不在椭圆的中心,而是在其中的一个焦点上,太阳的位置是
所有行星轨道的一个共同焦点.
(3)行星与太阳间的距离是不断变化的.
2.对开普勒第二定律的理解——确定行星运动的快慢
(1)行星离太阳越近时速度越大,在近日点速度最大;行星靠近太阳
时速度增大.
(2)行星离太阳越远时速度越小,在远日点速度最小;行星远离太阳
(1)行星的轨道是什么样的?
是椭圆.
(2)太阳的位置有什么特点?
在所有行星运动椭圆轨道的一个共同焦点上.
(3)行星在轨道上不同位置的速度大小有什么特点?
距离太阳越近,速率越大,反之越小.
(4)不同的行星绕太阳运行的周期是否相同?
不同.
归纳总结
1.对开普勒第一定律的理解——确定行星运动的轨道
(1)行星绕太阳运动的轨道严格来说不是圆而是椭圆,不同行星的轨
答案:BC
解析:根据开普勒第一定律的内容可以判定:行星绕太阳运动的轨道
是椭圆,有时远离太阳,有时靠近太阳,所以它离太阳的距离是变化的,
A错误,B正确;行星围绕着太阳运动,运动的轨道都是椭圆,所以某
个行星绕太阳运动的轨道一定是在某一固定的平面内,C正确,D错
误.
素养训练2 火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒
时速度减小.
(3)“行星与太阳的连线在相等的时间内扫过的面积相等”是对同一
颗行星来说的,不同的行星之间则无法比较.
3.对开普勒第三定律的理解——确定行星运动的周期
r3
(1)公式: 2 =k,k是一个对所有行星都相同的物理量,由中心天体
T
太阳决定,与行星无关.
(2)椭圆轨道半长轴越长的行星,其公转周期越长;反之,则公转周
2024年「人教版」高中物理必修第二册全册课件
2024年「人教版」高中物理必修第二册全册课件一、教学内容1. 章节一:静电场详细内容:电荷与电场、电场强度、电势、静电能、电容、静电场中的导体与电容器。
2. 章节二:电流与磁场详细内容:电流、电阻、磁场、电磁感应、交流电、电磁场。
二、教学目标1. 理解并掌握静电场和电流与磁场的基本概念、基本原理。
2. 学会运用物理公式进行问题分析,提高解决实际问题的能力。
3. 培养学生的实验操作能力,激发对物理现象的好奇心和探索精神。
三、教学难点与重点1. 教学难点:电场强度、电势、电磁感应等概念的理解;物理公式的运用。
2. 教学重点:电荷与电场、电流与磁场的基本原理;实验操作技巧。
四、教具与学具准备1. 教具:电荷模型、电场线演示器、电流表、磁场演示器等。
2. 学具:实验器材(导线、电阻、电容等)、计算器、草稿纸等。
五、教学过程1. 导入:通过实践情景引入,如静电现象、磁铁吸引铁钉等,激发学生兴趣。
2. 知识讲解:(1)静电场:电荷与电场、电场强度、电势、静电能、电容、静电场中的导体与电容器。
(2)电流与磁场:电流、电阻、磁场、电磁感应、交流电、电磁场。
3. 例题讲解:选取典型例题,讲解解题思路与方法。
4. 随堂练习:设计针对性的练习题,巩固所学知识。
5. 实验操作:指导学生进行相关实验,提高动手能力。
六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、实验步骤等。
2. 板书布局:清晰、条理分明,突出重点。
七、作业设计1. 作业题目:(1)计算题:电场强度、电势的计算;电流、电阻的计算。
(2)实验题:设计一个简单的电路,观察电流与电压的关系。
(3)分析题:分析电磁感应现象在实际生活中的应用。
2. 答案:详细解答,注重解题过程。
八、课后反思及拓展延伸2. 拓展延伸:(1)查阅资料,了解静电场、电流与磁场的最新研究动态。
(2)开展小组讨论,探讨物理现象在实际生活中的应用。
(3)鼓励学生进行创新实验,提高实验技能。
高中物理【机械能守恒定律】优秀课件
人教物理必修第二册
返回导航 上页 下页
[思路点拨] 解答此题应注意把握以下两点: (1)机械能守恒时物体或系统的受力特点。 (2)机械能守恒时能量转化特点。
人教物理必修第二册
返回导航 上页 下页
[答案] C [解析] 图1中“蛟龙号”被吊车吊下水的过程中,钢绳的拉力对它做 负功,所以机械能不守恒,故A错误;图2中物块在F作用下沿固定光 滑斜面匀速上滑,力F做正功,物块机械能增加,故B错误;图3中物 块沿固定斜面匀速下滑,在斜面上物块受力平衡,重力沿斜面向下的 分力与摩擦力平衡,摩擦力做负功,物块机械能减少,故C正确;图4 中撑竿跳高运动员在上升过程中撑竿的弹性势能转化为运动员的机械 能,所以运动员的机械能不守恒,故D错误。
人教物理必修第二册
返回导航 上页 下页
机械能守恒定律
人教物理必修第二册
返回导航 上页 下页
学习目标要求
核心素养和关键能力
1.了解人们追寻守恒量和建立“能量 1.物理观念:与功和机械能相关的初
”概念的漫长过程。 步能量观念。
2.知道什么是机械能,知道物体的动 2.科学思维:(1)守恒思想。
能和势能可以相互转化。 (2)能对熟悉物理情境建构物理模型。
人教物理必修第二册
返回导航 上页 下页
2.能的转化: 在伽利略的理想斜面实验中,小球的_重__力__势__能___和 ___动__能___相互转化。
人教物理能的相互转化 1.物体沿光滑斜面上升,重力对物体做____负____功,物体的速度减 小,动能___减__少___,高度增加,物体的重力势能增加。
A.若取地面为零势能面,物体在 A 点具有的机械能是12mv2+mgH
B.若取桌面为零势能面,物体在 A 点具有的机械能是12mv2
(人教版)物理必修二:5.1《曲线运动》ppt课件
vcosθ
vsinθ
图5-1-1
三、运动描述的实例
1.蜡块的位置:蜡块沿玻璃管匀速上升
的速度设为vy,玻璃管向右匀速移动
的速度设为vx,从蜡块开始运动的时
刻计时,在某时刻t,蜡块的位置P可
以用它的x、y两个坐标表示x=_v_x_t,
y=_v_y_t__.
图5-1-2
2.蜡块的速度:速度的大小 v=___v_2x_+__v_2y__,速度的方向满
答案 C
解析设蜡块沿玻璃管匀速上升的速度为 v1, 位移为 x1,蜡块随玻璃管水平向右移动的速
度为 v2,位移为 x2,如图所示,v2=tanv310°
=0.1 3
m/s≈0.173 m/s.蜡块沿玻璃管匀速上升的时间 t=vx11=
3
1.0 0.1
s=10 s.由于合运动与分运动具有等时性,故玻璃管水
运动,C选项错误;物体做曲线
运动,一定有加速度,但不一定恒定,D选项错误.
二、对曲线运动条件的理解
1.物体做曲线运动的条件
(1)动力学条件:协力方向与物体的速度方向不在同一条直
线上.
(2)运动学条件:加速度方向与速度方向不在同一直线上. 2. 无力不拐弯,拐弯必有力.曲线运动
的轨迹始终夹在协力方向与速度方向
【例1】 下列说法中,正确的是
()
A.物体保持速率不变沿曲线运动,其加速度为0
B.曲线运动一定是变速运动
C.变速运动一定是曲线运动
D.物体沿曲线运动一定有加速度,且一定是匀加速曲线 运动
答案 B
解析 曲线运动的速度方向时刻变化,是变速运动,故加速度一定不
为0,故B选项正确,A选项错误;直线运动中速度大小变化仍是变速
人教版高中物理必修第二册:相对论时空观与牛顿力学的局限性【精品课件】
【分析】若选μ子为参考系,μ子的平均寿命为
t1=3.0μs;若以地面为参考系,μ子的平均寿命为:t2
t2
t1
v 2
1 ( )
c
3.0
1 0.99 2
21s
事实上,到达地面的μ子,大多产生于距地面8km的高空,科学家们根据经典理论,可
D.随着相对论、量子论的提出,经典力学已经失去了它的应用价值
【解析】A对:经典力学适用于宏观低速运动的物体,宏观物体是相对于微观粒子而言的。
B错:经典力学取得了巨大的成就,但它也具有一定的局限性,并不是普遍适用的。
C、D错:在微观高速情况下,要用量子力学和相对论来解释,但是并不会因为相对论和量子力学的出
地面上的观察者:闪光先到达车厢后壁,后到达前壁(图乙)
同时性是相对的
在爱因斯坦两个假设的基础上,经过严格的数学推导,可以得到下述结果。
a、相对时间
如果相对地面以v运动的某惯性参考系上的人,观察与其一起运动的物体完成某个动作的时间间隔
为t0,地面上的人观察该物体在同一地点完成这个动作的时间间隔为t,两者之间的关系为:
当堂检测
1. 2016年2月11日,科学家宣布探测到引力波的存在。引力波是实验验证爱因斯坦相对论的
最后一块缺失的“拼图”,相对论在一定范围内弥补了经典力学的局限性。关于经典力学,下
列说法正确的是( A )
A.经典力学完全适用于宏观低速运动
B.经典力学取得了巨大成就,是普遍适用的
C.随着物理学的发展,经典力学将逐渐成为过时的理论
其运动而存在的。这种绝对时空观,也叫牛顿力学时空观。
7.7动能和动能定理—人教版高中物理必修二课件
,
根
据
动
能
Ek
1 2
m 2v
得
Ek
1 2
m
v0
gt
2
,Ek
是
t
的二次函数,图象为开口向上的抛物线。
【点拨】本题四个图 像反映同样的定性 关系:Ek 随t先减小后 增大,要具体作出判 断,需写出Ek 随t变化 的函数关系式。
【例题3】
题3 关于做功和物体动能变化的关系,下列说法正确的是( D )
A. 只要有力对物体做功,物体的动能就增加 B. 只要物体克服阻力做功,它的动能就减少 C. 动力和阻力都对物体做功,物体的动能一定变化 D. 力对物体做功的代数和等于物体的末动能与初动能之差 【解题依据】 (1)动能定理说明,合力做功是物体动能变化的原因,物体动 能的变化用合力的功来量度。 (2)式中W>0, Ek >0(动力做功使动能增加); W<0, Ek <0 (阻力做功使动能减少)。
f FNF f Gl
v2 F
1.外力对物体做的功是多大? 2.物体的加速度是多大? 3.物体的初速度、末速度、位移之间有什么关系? 4.结合上述三式能推导出什么关系式?
W Fl
01 引 入
v1 情景1
FNF Gl
F ma
l v22 v12 2a
v2 F
W
1 2
m v22
1 2
m v12
01 引 入
或动能具有相对性; A.动能是普遍存在的机械能的一种基本情势,
②动能与速度都是状态量,具有瞬时性;
运动物体都具有动能
③速度是矢量,动能是标量:
B.公式Ek= mv2中,v是物体相对于地面的速 动能只与速度大小有关,与速度方向无关,仅
高中教育物理必修第二册《1.2 运动的合成与分解》教学课件
2.运动的合成与分解包括位移、速度、________的合成与分解.
平行四边形
3.运动的合成与分解遵循____________定则.
运动的合成
4.已知分运动求合运动,叫作___________,已知合运动求分运动,
运动的分解
叫作___________.
三、运动合成与分解的应用
分解
研究比较复杂的运动时,常常可以把一个运动________成两个或几
x=v合t=90 5 m.
5 5
2
m/s
(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?
答案:偏向上游与河岸成60°角
24 3 s
解析:
(2)欲使船渡河的航程最短,船的合运动方向应垂直河岸.船头应朝上游与河岸成某一角度β.
如图乙所示,由v2sin α=v1,得α=30°.所以当船头朝上游与河岸成一定角度β=60°时航程最短.
答案:C
解析:将炮弹的速度水平分解和竖直分解,如图,故水
平分速度为vx=v cos 60°=300 m/s,C正确.
素养训练2 一物体在光滑水平面上运动,它在x轴方向和y轴方向上
的两个分运动的速度—时间图像如图所示.
(计算结果可保留根号)
(1)判断物体的运动性质;
答案:物体做匀变速曲线运动
解析:由图甲可看出,物体沿x轴方向的分运动为匀
船
间与其他因素无关.
(2)当v船与v水的合速度与河岸垂直(这时v船>v水)时,位移最短,最短
位移为河宽d,此时v船cos θ=v水,v合=v船sin θ,渡河时间t=
v
d
.
sin θ
船
(3)如果v船<v水,渡河位移也存在最短情况,但最短位移大于河宽.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v
FN
mg l F F2
θ
v2 mg-FNO =m R
v2 FN-mg=m O R
FN
F1
θ
mg
v
mg
垂直半径方向 Ft =F2
匀 速 圆 周 运 动
4、两个有用的结论:
①皮带上及轮子边缘上各点的线速度相同 ②同一轮上各点的角速度相同
a
Ra
O1
Rb O2
Rc
c
b
离 心 运 动 与 向 心 运 动
F=Ff,
vm=P/Ff
动 结 论 能 1.内容: 合外力所做的功等于物体动能的变化。 定 理 2.表达式: W合=Ek2-Ek1
※ Ek2表示末动能,Ek1表示初动能
※ w:合外力所做的总功
方法一 : w F合 s cos 方法二: w w1 w2 w3 ...
机 械 只有重力(或弹力)做功 (1)内容:在只有重力(或弹力)做功 的情形下,物体的 能 动能和势能发生相互转化,而总的机械能保持不变. 守 恒 A m (2)定律的数学表达式 定 B 律 E +E =E +E V
4π2 r T2 3、向心力的来源: 沿半径方向的合力
匀速圆周运动:合力充当向心力
O 几 圆 种 锥 FT θ 常 摆 见 的 F合 O' 匀 速 mg 圆 周 火车 FN 运 转弯 θ 动 F合
FN r F静 mg
转盘
F静 FN
R O O
mg
θ
滚 r 筒
mg
几 种 常 见 的 圆 周 运 动
沿半径方向 Fn=F-F1=0
平 抛 运 动
O
θ
v0 O′
l
α
A
x
P (x,y)
速度方向的反向延长线 与水平位移的交点 O′ 有什么特点?
决定平抛运动在空中的 飞行时间与水平位移的 因素分别是什么? 速度
B
α
vx = v0
y
vy
v
位移
水平方向 竖直方向 合运动
x = v0 t 1 y = 2 g t2 l = x2 + y2
gt tan 2v0
0
W=0 W>0 W<0
表示力F对 物体不做功
表示力F对 物体做正功 表示力F对 物体做负功
COSα>0
π/2<α≤π
COSα<0
动 能 和 势 能
动能
势能
物体由于运 动而具有的 能叫做动能
相互作用的物体凭借其位 置而具有的能叫做势能
重力势能 弹性势能
1 mv 2 Ek=2
EP=m g h
1 k x2 EP=2
物体的动能和势能之和称为物体的机械能
动 能 定 理
情景:质量为m的物体,在水平牵引力F的 作用下经位移s, 速度由原来的v1变为v2,已知水平面的摩擦力大小为f.
则合外力对物体做功为 W=(F-f)s,而F-f=ma
由运动学公式有 v22 –v12 =2as
2 2 v 2-v 2 1 1 2 2 故可得 W = ma × = mv2- mv1 2a 2 2
v
垂直于绳方向的旋转运动
θ
?
v⊥
?
θ
v
?
θ
v∥
沿绳方向的伸长或收缩运动 注意:沿绳的方向上各点 的速度大小相等
v
v
?
抛 体 运 动
1、条件: ①具有一定的初速度; ②只受重力。 2、性质: 匀变速运动 3、处理方法: 分解为水平方向的匀速直线运动 和竖直方向的匀变速直线运动。
平 抛 运 动
1、条件: ①具有水平初速度; ②只受重力。 2、性质: 匀变速曲线运动 3、处理方法: 分解为水平方向的匀速直线运动 和竖直方向的自由落体运动。
r R h (R为地球的半径,h为卫星距地面的高度)
人造地球卫星和宇宙速度
7.9km/s<v<11.2km/s(椭圆)
11.2km/s<v<16.7km/s (成为太阳的人造行星)
v>16.7km/s(飞出太阳系)
功 的 计 算
W Fs cos
α COSα
COSα=
W
物理意义
α=π/2 α<π/2
P=Fv
汽车启动问题
(1)汽车以额定功率起动
Ff一定
P一定,P=F v
F -Ff=ma 当a=0,v达 到最大值vm
a v
F=Ff, vm=P/Ff
汽车启动问题
(2)汽车以一定的加速度启动 a一定,F-Ff=ma
Ff一定
P=Fvห้องสมุดไป่ตู้Pm=F v
P=Pm
v
F -Ff=ma 当a=0,v达 到最大值vm
线速度的大小不变
变加速曲线运动
向 心 加 速 度 和 向 心 力
向 1、方向:始终指向圆心 心 2、物理意义:描述速度方向变化的快慢 加 3、向心加速度的大小: 速 v2 = vω = rω2 = 4π2r a n= r 度 T2
1、方向:始终指向圆心
向 2、向心力的大小: 心 v2 = mvω = mrω2 = m Fn= m r 力
k2 P2 k1 P1
1
h
h1
△h
末状态的机械能
初状态的机械能
h2
V2
C
D
只有重力做功的状态下,任意位置的 动能和势能总和相等。
功 率
功率的定义式: P=
W
t
P Fv cos
瞬时速度:瞬时功率
功率的另一表达式:
※ F:所指的力
※ v:物体的运动速度 平均速度:平均功率 ※
:F、 v的夹角,若F、v同向,则有:
解决天体运动问题的两条基本思路
⑴ 物体在天体(如地球)表面时受到的 重力近似等于万有引力。 离表面h高处:
Mm GM mg G 2 g 2 R R
GM g (R+h)2
⑵行星(或卫星)做匀速圆周运动所需的 向心力都由万有引力提供。
Mm v2 2 2 2 G 2 ma向 m mr mr ( ) r r T
曲 线 运 动
1、曲线运动的特点:
轨迹是曲线;运动方向时刻在改变;是变速 运动;一定具有加速度,合外力不为零。
2、做曲线运动的物体在某点速度方向是曲线
在该点的切线方向。
3、曲线运动的条件:运动物体所受合外力方
向跟它的速度方向不在同一直线上。
运 动 的 合 成 与 分 解
1、合运动:物体实际的运动;
离心运动:0 ≤F合<Fn
匀速圆周运动:F合= Fn
向心运动:F合>Fn
注意:这里的F合为沿着半径(指向圆心)的合力
万有引力定律
1.内容:宇宙间任何两个有质量的物体都存在相互吸
引力,其大小与这两个物体的质量的乘积成正比,
跟它们距离的平方成反比。 2.公式:
m1 m2 F=G r2
(G叫引力常数)
合力或加速度是否恒定
判断:两个匀速直线运动的合运动?一个匀速 直线运动与一个匀加速直线运动的合运动?
实 例 最短渡河时间 1: 小 当v船 垂直于河岸 船 渡 河
d tmin= v
v船
θ
v
d
船
v水
v船>v水
v船
θ
v
d
v水
最 短 渡 河 位 移
v船<v水
v
θ d
v船
v水
实 例 2: 绳 + 滑 轮
m1
F
F
m2
r
卡文迪许实验
【说明】
① m1和m2表示两个物体的质量,r表示他们的距离,
② G为引力常数。G=6.67×10-11 N· 2/kg2 m
G的物理意义——两质量各为1kg的物体相距1m时
万有引力的大小。 3.适用条件 : ——适用于两个质点或者两个均匀球体之间的相互作
用。(两物体为均匀球体时,r为两球心间的距离)
匀变速曲线运动
3、处理方法: 分解为水平方向的匀速直线运动和竖直 方向的竖直上抛或竖直下抛运动。
匀 速 圆 周 运 动
1、描述圆周运动快慢的物理量:
线速度v 、角速度ω 、转速n 、频率f 、周期T Δl v = Δt Δθ ω= Δt
1 n=f=T ω=
2π
T
v=
2πr
T
v = rω
2、匀速圆周运动的特点及性质
vx = v0 vy=gt
l = v02 + vy2
偏向角
gt tan 2 tan tan v0
练 习
a
如图为平抛运动轨迹的 一部分,已知条件如图 所示。 求v0 和 vb 。 h1 b
h2
x x
c
斜 抛 运 动
1、条件: ①具有斜向上或斜向下的初速度; ②只受重力。 2、性质:
ω
人造地球卫星和宇宙速度 1.卫星绕行速度、角速度、周期与半径的关系:
Mm v2 GM G 2 m v r r r
Mm GM 2 G 2 mr r r3
(r 越大,v 越小) (r 越大,ω越小)
Mm 2 2 4 2 r 3 (r 越大,T 越大) G 2 m( ) r T r T GM
分运动:物体同时参与合成的运动的运动。
2、特点:独立性、等时性、等效性、同体性
3、原则: 平行四边形定则或三角形定则 运动的合成是惟一的,而运动的分解不是惟一 的,通常按运动所产生的实际效果分解。
判 断 合 运 动 的 性 质
判断两个直线运动的合运动的性质
直线运动还是曲线运动?
合力的方向或加速度的方向与合 速度的方向是否同一直线 匀变速运动还是变加速运动?