05空间角与空间距离
空间向量的应用求空间角与距离
空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。
坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。
可以预测到,今后的高考中,还会继续表达法向量的应用价值。
2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。
特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。
计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。
计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。
其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。
2024高考数学基础知识综合复习第21讲空间角与距离课件
3
A.-4
3
B.4
1
C.8
1
D.-8
解析 如图,取 CC1 中点 M,AC 中点 N,连接 MN,MB1,NB1,NB.
在直三棱柱 ABC-A1B1C1 中,AC=AA1=2,BC=1,所以 AA1⊥平面 A1B1C1.
设
2-
BM=t,因为△B1C1M∽△CNC1,由相似比得
2
解得
2 2 -2+4
AN=
,由等面积法得
2-
2 -2+4
≥1(当且仅当
3
CG=
2 3
2 -2+4
=
2
4
,CN= ,由余弦定理可
2-
,所以
1
tan∠C1GC=
t=1 时,等号成立),故(cos∠C1GC)max=
求解.
考向3
二面角
典例4直三棱柱ABC-A1B1C1中,各棱长均等于2,M为线段BB1上的动点,则平
面ABC与平面AMC
1所成的二面角为锐角,则该角的余弦值的最大值为
2
___________.
2
解析 延长 C1M 交 CB 于点 N,连接 AN,则平面 AMC1∩平面 ABC=AN,作 CG
⊥AN 于点 G,连接 C1G,∠C1GC 为所求的二面角的平面角.
1.空间角
(1)异面直线所成的角
①定义:已知两条异面直线 a,b 经过空间任一点 O 分别作直线 a'∥a,b'∥b,
我们把直线 a'与 b'所成的角叫做异面直线 a 与 b 所成的角(或夹角).
高三数学空间角与空间距离的计算通用版知识精讲
高三数学空间角与空间距离的计算通用版【本讲主要内容】空间角与空间距离的计算 空间直线与直线、直线与平面、平面与平面所成角的大小,直线与直线、直线与平面、平面与平面间的距离的求解【知识掌握】 【知识点精析】空间的角和距离是空间图形中最基本的数量关系,空间的角主要研究射影以及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解决. 1. 空间的角的概念及计算方法(1)空间角概念——空间的角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系进行定量分析的一个重要概念,由它们的定义,可得其取值X 围,如①两异面直线所成的角θ∈(0,2π) ②直线与平面所成的角θ∈[0,2π] ③二面角的大小,可用它们的平面角来度量,其平面角θ∈(0,π).说明:对于空间角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的,因此求这些角的过程也是直线、平面的平行与垂直的重要应用.通过空间角的计算和应用进一步提高运算能力、逻辑推理能力及空间想象能力.(2)空间的角的计算方法①求异面直线所成的角常用平移法(转化为相交直线);②求直线与平面所成的角常利用射影转化为相交直线所成的角; ③求二面角α-l -β的平面角(记作θ)通常有以下几种方法: (ⅰ)根据定义; (ⅱ)过棱l 上任一点O 作棱l 的垂面γ,设γ∩α=OA ,γ∩β=OB ,则∠AOB =θ(图1);(ⅲ)利用三垂线定理或逆定理,过一个半平面α内一点A ,分别作另一个平面β的垂线AB (垂足为B ),或棱l 的垂线AC (垂足为C ),连结AC ,则∠ACB =θ或∠ACB =π-θ(图2);(ⅳ)设A 为平面α外任一点,AB ⊥α,垂足为B ,AC ⊥β,垂足为C ,则∠BAC =θ或∠BAC =π-θ(图3);(ⅴ)利用面积射影定理,设平面α内的平面图形F 的面积为S ,F 在平面β内的射影图形的面积为S ‘,则cos θ=SS '.2. 空间的距离问题 (1)空间各种距离是对点、线、面组成的空间图形位置关系进行定量分析的重要概念.空间距离是指两点间距离、点线距离、点面距离、线线距离、线面距离以及面面距离等,距离都要转化为两点间距离即线段长来计算,在实际题型中,这六种距离的重点和难点是求点到平面的距离,因线线距离、线面距离和面面距离除用定义能直接计算出结果的外,都要转化为求点到平面的距离进行计算.(2)空间的距离问题主要是:求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离.(3)求距离的一般方法和步骤是: 一作——作出表示距离的线段;二证——证明它就是所要求的距离;三算——计算其值. 此外,我们还常用体积法或向量法求点到平面的距离.【解题方法指导】例1. 三棱锥P-ABC 中,∠ABC =90,PA =1,AB =3,AC =2,PA ⊥平面ABC.(1)求直线AB 与直线PC 所成的角; (2)求PC 和面ABC 所成的角; (3)求二面角A-PC-B 的大小.PA BC解:(1)作矩形ABCD.∴AB 和PC 所成角即为CD 和PC 所成角,且CD ⊥PD .CD =3,AD =1,PD =2,tanPCD =3632=.故AB 和PC 所成角为arctan 36(2)∵PA ⊥面ABC ,PC 和面ABC 所成角即为∠ACP ,求得tanACP =21, ∴∠ACP =arctan21 (3)∵PA ⊥面ABC ,∴面PAC ⊥面ABC ,过B 作BG ⊥AC 于G ,则BG ⊥面PAC.过G 作GH ⊥PC 于H ,连接BH ,则BH ⊥PC . ∴∠BHG 为二面角A-PC-B 的平面角. 在Rt △ABC 与Rt △PBC 中,PB =2,BC =1,AC =2,AB =3∴PC =5∴BH =52,BG =23. ∴sinBHG =4155223==BH BG ∴∠BHG =arcsin 45.故二面角A-PC-B 的大小为arcsin 45.例2. 在正三棱柱111C B A ABC -中,各棱长都等于a ,D 、E 分别是1AC 、1BB 的中点, (1)求证:DE 是异面直线1AC 与1BB 的公垂线段,并求其长度;(2)求二面角C AC E --1的大小; (3)求点1C 到平面AEC 的距离.解:(1)取AC 中点F ,连接DF .∵ D 是1AC 的中点,F∴DF ∥1CC ,且121CC DF =.又11//CC BB ,E 是1BB 的中点, ∴DF ∥BE ,DF =BE ,∴四边形BEDF 是平行四边形, ∴DE ∥BF ,DE =BF .∵1BB ⊥面ABC ,⊂BF 面ABC ,∴1BB ⊥BF .又∵F 是AC 的中点,△ABC 是正三角形,∴BF ⊥AC ,a BF 23=. ∵1BB ⊥BF ,1BB ∥1CC ,∴BF ⊥1CC ,∴BF ⊥面11A ACC , 又∵⊂1AC 面11A ACC ,∴BF ⊥1AC , ∵DE ∥BF ,∴DE ⊥1AC ,DE ⊥1BB ,∴DE 是异面直线1AC 与1BB 的公垂线段,且a DE 23=. (2)∵11//CC BB ,DE ⊥1BB , ∴DE ⊥1CC , 又∵为DE ⊥1AC ,∴DE ⊥面11A ACC . 又⊂DE 面1AEC ,∴面1AEC ⊥面1ACC , ∴二面角C AC E --1的大小为90°.(3)连接CE ,则三棱锥1CEC A -的底面面积为221a S CEC =∆,高a h 23=.所以32123232311a a a V CEC A ==⋅⋅-.在三棱锥AEC C -1中,底面△AEC 中,a CE AE 25==,则其高为a ,所以22a S AEC =∆.设点1C 到平面AEC 的距离为d ,由AEC C CEC A V V --=11得32123231a a d =⋅, 所以a d 23=,即点1C 到平面AEC 的距离为a 23【考点突破】【考点指要】空间角是立体几何中的一个重要概念.它是空间图形中的一个突出的量化指标,是空间图形位置关系的具体体现,故它以高频率的姿态出现在历届高考试题中,可以在填空题或选择题中出现,更多的在解答题中出现.空间中各种距离都是高考中的重点内容,可以和多种知识相结合,是诸多知识的交汇点,考查题型多以选择题、填空题为主,有时渗透于解答题中,所以复习时应引起重视.【典型例题分析】例1. (2003全国卷文)如图,已知正四棱柱2,1,11111==-AA AB D C B A ABCD ,点E 为1CC 中点,点F 为1BD 中点.(1)证明EF 为BD 1与CC 1的公垂线;(2)求点1D 到平面BDE 的距离.解法1:(1)连结AC 交BD 于点O ,则点O 为BD 中点,连OF ,则可证OCEF 为矩形, 故EF ⊥CC 1 ,EF ∥AC .又可证AC ⊥平面BD 1 ∴AC ⊥BD 1,∴EF ⊥BD 1, 故 EF 为BD 1与CC 1的公垂线.O(2)连结D 1E ,则有三棱锥D1-DBE 的高d 即为点1D 到平面BDE 的距离. 由已知可证三角形DBE 为边长为2的正三角形,故2331311⋅⋅=⋅⋅=∆-d S d V DBE DBE D ; 又31311111=⋅===∆---DBD DBD C DBD E DBE D S CO V V V∴3123=d ∴332=d , 即1D 到平面BDE 的距离为332解法2:解(1)以D 为原点,建立如图所示的直角坐标系,则 )0,0,0(D ,)2,0,0(1D)0,1,1(B ,)0,1,0(C ,)2,1,0(1C ,)1,1,0(E ,)1,21,21(F ,∴)0,21,21(-=EF ,)2,1,1(1--=BD ,)2,0,0(1=CC∴01=⋅BD EF ,01=⋅CC EF ;∴1BD EF ⊥,1BD EF ⊥ 又EF 与CC 1、BD 1分别交于E 、F ,故EF 为BD 1与CC 1的公垂线. (2)由(1))0,1,1(--=BD ,)1,0,1(-=BE ,)2,1,1(1--BD , 设 平面BDE 的法向量为 ),,(z y x n =,则BD n ⊥,BE n ⊥,∴⎪⎩⎪⎨⎧=⋅=⋅00BE n BD n , ∴⎩⎨⎧=+-=--00z x y x , 即 ⎩⎨⎧=-=z x y x ,∴ 不妨设 )1,1,1(-=n ,则点1D 到平面BDE 的距离为33232||1===n n BD d , 即为所求.例2. (2006全国卷Ⅲ文20)如图,12l l ,是互相垂直的异面直线,MN 是它们的公垂线段.点A B ,在1l 上,C 在2l 上,AM MB MN ==.(Ⅰ)证明AC NB ⊥;(Ⅱ)若60ACB ∠=,求NB 与平面ABC 所成角的余弦值.C1l2解法一:(Ⅰ)由已知221l MN l l ⊥⊥,,1MNl M =,可得2l ⊥平面ABN .由已知1MN l AM MB MN ⊥==,,可知AN NB =且AN NB ⊥. 又AN 为AC 在平面ABN 内的射影, AC NB ∴⊥.(Ⅱ)Rt Rt CNA CNB △≌△,AC BC ∴=,又已知60ACB ∠=︒,因此ABC △为正三角形. Rt Rt ANB CNB △≌△,NC NA NB ∴==,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心, 连结BH ,NBH ∠为NB 与平面ABC 所成的角.在Rt NHB △中,cos 3ABHB NBH NB ∠===.N1l l解法二:如图,建立空间直角坐标系M xyz -.1l令1MN =,则有(100)(100)(010)A B N -,,,,,,,,.(Ⅰ)MN 是12l l ,的公垂线,21l l ⊥, 2l ∴⊥平面ABN .2l ∴平行于z 轴.故可设(01)C m ,,.于是(11)(110)AC m NB ==-,,,,,, ∵0011=+-=⋅NB AC AC NB ∴⊥. (Ⅱ)(11)AC m =,,,(11)BC m =-,,,AC BC ∴=.又已知60ACB ∠=︒,ABC ∴△为正三角形,2AC BC AB ===. 在Rt CNB △中,NB =NC =(0C . 连结MC ,作NH MC ⊥于H ,设(0)(0)H λλ>,.(012)(01HN MC λλ∴=--=,,,,,.∵021=--=⋅λλMC HN ,∴31=λ1033H ⎛⎫∴ ⎪ ⎪⎝⎭,,,可得2033HN ⎛⎫=- ⎪ ⎪⎝⎭,,, 连结BH ,则1133BH ⎛⎫=- ⎪ ⎪⎝⎭,,,∵092920=-+=⋅BH HN ,HN BH ∴⊥,又MC BH H =, HN ∴⊥平面ABC ,NBH ∠为NB 与平面ABC 所成的角.又(110)BN =-,,, ∴3623234cos =⨯=⋅=∠BN BH BN BH NBH【综合测试】一、选择题1、已知AB 是异面直线a 、b 的公垂线段,AB =2,a 与b 成30°,在直线a 上取AP =4,则点P 到直线b 的距离是( )A 、22B 、25C 、142D 、5 2、将锐角为60°,边长为a 的菱形ABCD 沿较短的对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A 、a 43B 、a 43C 、a 23 D 、64a 3、正方体ABCD-A 1B 1C 1D 1中,M 是DD 1的中点,O 为正方形A 1B 1C 1D 1的中心,P 是棱AB 上的垂足,则直线A 1M 与OP 所成的角( ).A 、30oB 、45oC 、60oD 、90o 4、二面角α-AB-β大小为θ(0°≤θ≤90°),AC ⊂α,∠CAB =45o ,AC 与平面β所成角为30o ,则θ角等于( ).A 、30oB 、45oC 、60oD 、90o 5、(2005某某卷文4)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则E 到平面AB C 1D 1的距离为( )A 、23 B 、22C 、21 D 、336、已知直线a 及平面α,a 与α间的距离为d .a 在平面α内的射影为a ',l 为平面α内与a '相交的任一直线,则a 与l 间的距离的取值X 围为( )A 、[),d +∞B 、(),d +∞C 、(]0,dD 、{}d二、填空题 7、(2005某某卷理12)如图,PA ⊥平面ABC ,∠ACB =90°且PA =AC =BC =a ,则异面直线PB 与AC 所成角的正切值等于____________.8、已知∠60o ,则以OC三、解答题:9. C 点到AB 1ABC DA 1E B 1C10.(2006理17)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证:PB ∥平面AEC ; (Ⅲ)求二面角E AC B --的大小.B[参考答案]一、选择题1. 选A 提示:过P 做直线b 的垂线2. 选A 提示:用异面直线距离公式求解3. 选D 提示:过A 1做OP 的平行线4. 选B 提示:过C 做平面β的垂线5. 选B. 提示:转化为求B 1到平面AB C 1D 1的距离6. 选D 提示:转化为a 与α间的距离 二、填空题7.2. 提示:将三角形ABC 补成正方形ACBD. 8. 33- 提示:利用直线与直线所成角的大小求出边长,再求二面角平面角的大小三、解答题:9. 解:由CD ⊥平面A 1B 1BA ∴CD ⊥DE ∵AB 1⊥平面CDE ∴DE ⊥AB 1,∴DE 是异面直线AB 1与CD 的公垂线段∵CE =23,AC =1 ,∴CD =.22∴21)()(22=-=CD CE DEABC DA 1E B 1C 110. 解法一:(Ⅰ)(Ⅱ)(略 解见第45讲【达标测试】第9题)(Ⅲ)过O 作FG AB ∥,交AD 于F ,交BC 于G ,则F 为AD 的中点.CDAB AC ⊥,OG AC ∴⊥. 又由(Ⅰ),(Ⅱ)知,AC PB EO PB ,⊥∥,AC EO ∴⊥. EOG ∴∠是二面角E AC B --的平面角.连接EF ,在EFO △中,1122EF PA FO AB ==,,word11 / 11 又PA AB EF FO =,⊥,45135EOF EOG ∴∠=∠=,,∴二面角E AC B --的大小为135.解法二:(Ⅰ)建立空间直角坐标系A xyz -,如图.y 设AC a PA b ==,,则有(000)(00)(00)(00)A B b C a P b ,,,,,,,,,,,,(00)(0)AC a PB b b ∴==-,,,,,,从而0=⋅PB AC ,AC PB ∴⊥.(Ⅱ)连接BD ,与AC 相交于O ,连接EO .由已知得(0)D a b -,,,002222ab b a E O ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,,, 022b b EO ⎛⎫∴=- ⎪⎝⎭,,,又(0)PB b b =-,,, 2PB EO ∴=,PB EO ∴∥,又PB ⊄平面AEC EO ,⊂平面AEC , PB ∴∥平面AEC .(Ⅲ)取BC 中点G .连接OG ,则点G 的坐标为000222a b b OG ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,,,,,, 又0(00)22b b OE AC a ⎛⎫=-= ⎪⎝⎭,,,,,,00=⋅=⋅∴AC OG AC OE ,.OE AC OG AC ∴,⊥⊥.EOG ∴∠是二面角E AC B --的平面角.22cos -=⋅<OGOE OG OE .135EOG ∴∠=. ∴二面角E AC B --的大小为135.。
空间角和空间距离
空间角和空间距离一、空间角:(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为 0;②当α⊥l 时, l 与α所成的角为 90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内; ③角的两边与棱都垂直.二面角的范围: .方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足/P 的确定),垂足/P 和斜足A 的连线即为斜线PA 在平面α上的射影,则/PAP ∠即为所求;(2)将/PAP ∠放到/PAP ∆或其它包含此角的三角形中去求. 说明:关于线线角和线面角,下面的结论经常用到:①“爪角定理”:如图9-4-1,已知,AB AO 分别是面α在面α内过斜足O 任意引一直线OC ,设12,AOB BOC θθ∠=∠=,AOC θ∠=,则:21cos cos cos θθθ⋅=;② 经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的②及下面的几个结论是找垂足的有力工具:(ⅰ)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心;②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(ⅱ)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;(ⅲ)三垂线定理及其逆定理.3、求二面角的平面角的一般方法:如何作出(或找出)二面角的平面角是解题的关键,常用以下方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,用定义法时应认真观察图形的特性;②三垂线法(比较常用):已知二面角其中一个面内一点P 到另一个面的垂线(垂足为/P ),则只需过P (或/P )作棱的垂线(垂足为O ),由三垂线定理或其逆定理知/POP ∠即为所求(关键是从题中找到适当的点P );③垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角(由此知,二面角的平面角所在的平面与棱垂直);④面积投影法:此法最大的优点在于不用作出平面角θ,常用于“无棱二面角”(即在图中没有画出棱);如果α上某一平面图形的面积为斜S ,它在β上的射影的面积为射S ,则射斜S S =θcos 。
压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-理)
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a ,b ,c ,外接球半径为R .则(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O的位置是△ABC的外心O1与△A1B1C1的外心O2的连线的中点,算出小圆O1的半径AO1=r,OO1=h2,所以R2=r2+h24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,在平面α内的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=x v1+y v2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A 202B .33C .103D .4033.已知一个三棱锥型玩具容器-P ABC 的外包装纸(包装纸厚度忽略不计,外包装纸面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C 为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .25034.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 5.已知,a b 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为23点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C D8.已知三棱锥-P ABC 的四个顶点都在球O 的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -E 到平面SAC 的距离.12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D 2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B C .1023D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B .43π9C .27D .275.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =且四棱锥O ABCD -的体积为O 的表面积为()A .76πB .112πC .3D .37.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A.4B .2+C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==,PC AB =Q为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A .211+B .222+C 11+D 22二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为1___.○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.2.如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面CDM ⊥平面PAB ;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD 所成角的正弦值为34,求三棱锥P MCD -的体积.3.如图所示,在三棱锥A BCD -中,满足BC CD ==,点M 在CD 上,且5DM MC =,ABD △为边长为6的等边三角形,E 为BD 的中点,F 为AE 的三等分点,且2AF FE =.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.4.已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.5.如图,AB 为圆O 的直径,点EF 在圆O 上,//AB EF ,矩形ABCD 所在平面和圆O 所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒6.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的菱形,AB BC ==点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.。
空间中的角与距离
空间中的角与距离
一.空间角:
1.线线角:异面直线所成的角:分别平行于两条异面直线的两相交直线,它们所成的锐角(或直角)就是异面直线所成的角
范围:(0°,90°]
2.线面角:平面外的一条斜线和它在平面上的射影所成的锐角或直角
范围:[ 0°,90°]
①直接法解直角三角形Rt△ABO 斜线
②利用公式sinθ=h/ι
③利用公式cosθ=cosθ1·cosθ2
注:AB=h OA=l
AB⊥α ,BC⊥OC
∠AOB为θ1
∠BOC为θ2
∠AOC为θ
3.二面角:从一条直线出发的两个半平面所组成的图形叫作二面角
范围:[0°,180°]
①定义法:在棱上取点,分别在两面内引两条射线与棱垂直,
这两条垂线所成的角的大小就是二面角的平面角
②三垂线法:辅助线:过在一个半平面上的点A作另一
个半平面的垂线,再过A作棱的垂线或过
垂足H作棱的垂线
③补棱法:二面角的两个半平面没有明确交线
二、空间距离:
1.点面距离:①作垂线直接求AH
②利用二面角的平面角或斜线与平面所成的角
AH=AB•sinθAH=BH•tanθ
③转化成其它点到面的距离(平行)
④等体积法
正方体边长为a,求A′到平面
A B′D′的距离A′H
解:
2.线面距离:平行直线到平面的距离P31例6
3.面面距离:平行平面间的距离。
空间角与空间距离
n
O
a
A
n
a
B
(3)二面角
(0, ]
设m、分别是平面 n a、b的法向量,二面角a l b的大 m n mn 小为,则cos = 或cos = . | m|| n| | m|| n|
n
a
A
O
m
n
l
B
P
m
b
2.用空间向量求空间距离:
(1)点到直线的距离
P
b
d
N
M
a
l
d PM sin PMN | b | 1 cos 2 a, b
(2)点到平面的距离
P
d
a
n
H
Q
d PH PQ cos PQ, n
PQ n n
(3)异面直线间的距离
n
A1
D1
b
B1
C1
d
A
D
C
a
B
d AA1 AC1 cos AC1 , n
(1)异面直线所成的角 (0, ] 2
设a、分别是直线 b a、b的方向向量, 是直线a、b所成 ab 的角,则cos cos a, b . | a||b|
(2)直线与平面所成的角 [0, ] 2
设a是直线a的方向向量, n是平面a的法向量, 为直线 an a与平面a 所成的角,则sin cos a,n . | a|| n|
AC1 n |n|
《空间角、空间距离》
复相关的重要定理:
等角定理:如果一个角的两边和另一个角的两
边分别平行并且方向相同,那么这两个角相等. a Q c
a
空间角与空间距离
高三数学第二轮复习教学案第一课时 空间角与空间距离班级 学号 姓名【考纲解读】1.掌握两条直线所成的角、直线和平面所成的角及二面角的平面角的概念,并会求 这些角.2.掌握两条异面直线间的距离(只要求会计算已给出公垂线时的距离)直线和平面间的距离及两个平面间的距离的概念,并会求直线和平面间的距离,两个平面间的距离. 【教学目标】1.能够运用转化的思想化空间角为平面角;化线面间距离,面面间距离等为点到线或 线到面的距离.2.培养学生空间想象能力,并能把空间想象能力与运算能力,逻辑思维能力相结合. 【例题讲解】 例题1(1) 如图:⊥PA 平面ο90,=∠ACB ABC 且a BC AC PA ===, 则异面直线PB 与 AC 所成角的正切值等于________;(2) 下面是关于三棱锥的四个命题: ①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥; ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥; ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥,其中,真命题的编号是___________.(写出的所有真命题的编号). (3)四棱锥ABCD P -中,PD ⊥底面ABCD ABCD ,为正方形,且1==AB PD ,G 为ABC ∆的重心,则PG 与底面ABCD 所成的角为 ( )A43B 34172arccosC 232arctanD 33arcsin(4)已知球的表面积为20π,球面上有C B A ,,三点,如果32,2===BC AC AB ,则球心到平面ABC 的距离为 ( )A 1 B2C3D 2(5)DP 垂直于正六边形ABCDEF 所在平面,若正六边形边长为,a 且PD=,a 则点P 到BC 的距离为 ( ) Aa 3B a 2Ca 27D a 例2在棱长为a 的正方体1111D C B A ABCD -中,FE ,分别是BC ,11D A 的中点 (1)求证:四边形EDF B 1是菱形; (2)求直线C A 1与DE 所成的角; (3)求直线AD 与平面EDF B 1所成的角; (4)求面EDF B 1与面ABCD 所成的角.E C C 1A BD D 1A 1B 1F A BCP例3若斜三棱柱111C B A ABC -的侧面⊥11ACC A 底面,90,ο=∠ABC ABC32,2==AC BC ,且C A A A C A AA 1111,=⊥(1)求侧棱1BB 到侧面C C AA 11的距离; (2)求B A 1与平面ABC 所成的角; (3)求侧棱1CC 到侧面11ABB A 的距离;例4 在三棱锥ABC P -中,ABC ∆是正三角形,ο90=∠PCA ,D 为PA 的中点,二面角B AC P --为ο120,32,2==AB PC .(1)求证:;BD AC ⊥(2)求BD 与底面ABC 所成的角; (3)求三棱锥ABC P -的体积.A BC A 1B 1C 1ABCDP高三数学第二轮复习教学案第二课时 空间角与空间距离班级 学号 姓名【考纲解读】考查学生归纳、判断等各方面的能力,培养学生的创新意识. 【教学目标】1.能够运用归纳、猜想、分析、化归等方法探索出命题条件,然后给予证明;2.能够综合运用条件探索出要求的结论,或判断结论是否存在. 【例题讲解】 例题11.正方体1111D C B A ABCD -棱长为1,点M 在棱AB 上,且31=AM ,点P 是平面ABCD 上的动点,且点P 到直线11D A 的距离与点到点M 的距离的平方差为1,则点P 的轨迹是 ( )A 抛物线B 双曲线C 直线D 椭圆2.在侧棱长为a 的正四棱锥中,棱锥的体积最大时,底面边长为 ( )Aa 332Ba 3Ca 33Da3.在三棱柱111C B A ABC -中,P 为1AA 上一点,求c c BB p V 11-:111C B A ABC V -=( )A32B31 C 61 D 3 4.正四棱锥ABCD P -的底面ABCD 在球O 的大圆面上,顶点P 在球面上,已知球的体积为π332,则正四棱锥ABCD P -的体积的最大值为_______. 5.在直三棱柱111C B A ABC -中,点N M ,分别在11,BC AB 上,且λ==11BC BNAB AM ()10<<λ,那么以下四个结论中正确的有_________.(1)MN AA ⊥1 (2)MN AC // (3)//MN 平面ABC (4)MN 与AC 是异面直线6.在正三棱柱111C B A ABC -中,P 为B A 1上的点,当PBPA 1=______时,使得AB PC ⊥.例2正方形ABCD 的四边CB CD AD AB ,,,上分别取H G F E ,,,四点,便得2:1::::====HB CH GD CG FD AF EB AE ,把正方形沿对角线BD 折起,如图:(1)求证:EFGH 是矩形;(2)当二面角C BD A --为多大的,EFGH 为正方形.例3 在直三棱柱111C B A ABC -中,AC AB =,F 为棱BB 1上一点,1:2:1=FB BF ,a BC BF 2==,D 为BC 的中点.(1) 若E 为线段AD 上(不同于D A ,)的任意一点,求证:1FC EF ⊥.(2) 试问:若a AB 2=,在线段AD 上的点E 能否使EF 与平面1BB C C 1成ο60角?证明你的结论。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离
形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
空间向量与空间角、距离
向量的数乘的性质
数乘的定义
对于任意实数$k$,数乘 $koverrightarrow{a}$表示将向量 $overrightarrow{a}$的每一个分量都 乘以$k$。
数乘的性质
数乘满足分配律,即 $k(overrightarrow{a}+overrightarr ow{b})=koverrightarrow{a}+koverr ightarrow{b}$。
空间距离的应用实例
航空航天
飞机和卫星导航系统需要 精确计算两点之间的距离 和位置。
地理信息系统
地理信息系统使用空间距 离来计算两点之间的最短 路径、交通流量等。
建筑和城市规划
建筑师和城市规划师使用 空间距离来计算建筑物之 间的距离和角度,以确保 建筑物的安全和美观。
感谢观看
THANKS
05
空间距离的概念与性质
空间距离的定义与表示
空间距离的定义
空间中两点之间的最短距离。
空间距离的表示
通常使用三维坐标系来表示空间中点的位置, 两点之间的距离可以通过欧几里得距离公式 计算。
空间距离的性质与计算方法
要点一
空间距离的性质
要点二
空间距离的计算方法
非负性、对称性、三角不等式等。
使用三维坐标系中的距离公式,即欧几里得距离公式。
02
空间向量的运算性质
向量的模的性质
模的定义
向量$overrightarrow{a}$的模定义为$left|overrightarrow{a}right|=sqrt{sum_{i=1}^{n}a_i^2}$,其中$n$是 向量的维数。
模的性质
$left|overrightarrow{a}+overrightarrow{b}right|leqleft|overrightarrow{a}right|+left|overrightarrow{b}rig ht|$,即向量加法的模满足三角不等式。
空间角与距离的计算
由△PAD 为等腰直角三角形得 PN⊥AD. 由 DC⊥AD,BC∥AD,BC=12AD,N 是 AD 的中点得 BN⊥AD.所以 AD⊥平面 PBN. 由 BC∥AD 得 BC⊥平面 PBN, 则平面 PBC⊥平面 PBN. 过点 Q 作 PB 的垂线, 垂足为 H,连接 MH,易知 QH⊥平面 PBC, 所以 MH 是 MQ 在平面 PBC 上的射影, 所以∠QMH 是直线 CE 与平面 PBC 所成的角.
令 y=1,则 n=(0,1,-1),
BF=1,EPPF=2,所以 EP=233,设 D 到面 PEA 的距离为 d,
因为 VA-EDP=VD-AEP,即13·AD·S△EDP=13·d·S△AEP,所以 d=
AD·S△EDP= S△AEP
1×
3 3
=
33× 2
2 2.
【通法指导】 诚如上文所说,求点面距问题可以采用等积转换和向量 法求解,除此之外个别问题也可采用垂面法(利用面面垂直性 质定理)和等价转移法(利用线面平行)求解.当然,一些求几 何体体积问题,也是对点面距问题的相应考查.
因为A→P=-1,2
3
3,1,A→E=(-1,0,1)
,
所以xy==z0,, 令 z=1,则 n=(1,0,1). 因为D→A=(1,0,0),
所以
D
到面
APE
的距离为
d=|D→|An·|n|=
|1| = 2
2 2.
解法二:由(1)知,AD⊥平面 BFED,所以 AD⊥EP,
AD⊥ED.又因为 EP⊥ED,所以 EP⊥平面 ADE.BD= 3,
【题型分析】 如图,在梯形 ABCD 中,AB∥CD,AD=DC=CB=1, ∠BCD=120°,四边形 BFED 为矩形,平面 BFED⊥平面 ABCD,BF=1.
(整理)空间角与距离和空间向量
空间角与距离和空间向量直线和平面所成的角,二面角,都化归为平面几何中两条相交直线所成的角。
异面直线所成的角:通过平移的变换手段化归,具体途径有:中位线、补形法等。
直线和平面所成的角:通过作直线射影的作图法得到。
化归为平面角的度量,化归途径有:定义法,三垂线定理法,棱的垂面法及面积射影法。
距离:异面直线的距离,点面距离,线面距离及面面距离。
异面直线的距离:除求公垂线段长度外,通常化归为线面距离和面面距离。
ABC所成的角的距离为()2,AB PA ==所成的锐二面角θ的大小;在空间,具有大小和方向的量叫做向量.长度相等且方向相同的有向线段表示同一空间向量的加法、减法与向量数乘运算是平面向量运算的推广. ()a b a b λλλ+=+.共线向量与共面向量:如果表示向量的有向线段所在的直线互相平行或重合,则这些向量叫共线向量或平行向量平行于同一平面的向量叫做共面的向量.任意两个向量总是共面的.,满足等式OPOA ta =+.其中向量的方向向量.p 与向量,a b 共面的充要条件是存在实数对件是存在有yMB 或对空间任一定点O ,有OP OM =唯一的有序实数组x 、y zc .,,a b c 都叫做基向量.是不共面的四点,则对空间任一点、y 、z , 使 OP zOC (这里隐含x +)3c 用A AM M =+Q Q 即证.4.两个向量的数量积(1)向量,a b 的数量积cos ;b a b a b =(2)向量的数量积的性质①cos a e a a e =(是单位向量);②a b ⊥⇔22aa=.(3)向量的数量积满足如下运算律:①交换律:a b b ⋅=⋅②与实数相乘的结合律(a λ⋅()a b ⋅=()a b λ⋅; ③分配律:()a b c a c ⋅++⋅. 注:向量的数量积不满足结合律即()()a b c a b c ⋅⋅≠⋅⋅5.如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,和一个单位正交基底,如图,以点O 为原点,分别以的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴,这时我们说建立了一个空间直角坐标系,,有序实数.对于空间任一点A ,对应一个向量OA xi y j z =++k ,即点A .空间向量的直角坐标运算12(,,b b ①112(,a b a b a +=±a ∥()b a b R λλ⇔=∈2a a a a=⋅=+a a a a⇒=⋅)2322212322bbbaa++⋅+(AB AB AB x=⋅=所在直线垂直于平面α,则称这个向量垂直于平面①利用法向量可求点到平面的距离定理:如图,设|||AB nn⋅.②利用法向量可求二面角的平面角定理:设,m n分别是二面角lαβ--中平面则,m n所成的角就是所求二面角的平面角或其补角大小.||||m n或cos||||m narcm nπ⋅-(m,n为平面sin||||AB marcAB m⋅(m为平面α的法向量||n(12,l l的公垂向量为n实质是CD在公垂向量方向上的投影的绝对值,b=(2,0,m)137((D)1362. 如图,已知空间四边形)6(D)3OA=a,OB=b,OC三点共线的条件是()锐角三角形(D)不确定、=0,n b⋅=0是n为平面α 的例66. 设a b法向量的(充分条件(B)充要条件(D)既非充分又非必要条件B C D这四个点是否共面__________.(1,0,1),(4,4,6),(2,2,3),(10,14,17)例70. 如图直角梯形,O A=AB=1,SO⊥平轴建立直角坐标系O-xyz.满足(1,,),=⊥n p q n满足且k=⊥⊥k r s k SC k OB(1,,)(注:⑶只要求写出答案)数学基础知识与典型例题(第九章直线、平面、简单的几何体)答案2(3)300例51. A 例52.B 例53B例54.B例55.C 例56.A例57. (1)450(2)2例58. 75 0或1650 例59. 作点A 关于αβ、的对称点A 1,A 2,A 1A 2的长度即为所求最短距离.例60. 解:以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系(1)设E 是BD 的中点, P —ABCD 是正四棱锥,∴ABCD PE ⊥又2,AB PA = ∴2=PE ∴)4,1,1(P ∴ 11(2,2,0),(1,1,2)B D AP =-=∴ 110B D AP ⋅=即11PA B D ⊥ (2)设平面PAD 的法向量是(,,)mx y z =,(0,2,0),(1,1,2)AD AP ==∴02,0=+=z x y , 取1=z 得(2,0,1)m =-,又平面11BDD B 的法向量是(1,1,0)n =,∴10cos ,m n m n m n⋅<>==-∴θ=3)1(2,0,2)B A =-, ∴1B 到平面PAD 的距离16B A m d m⋅==例61.B 例62.A 例63.B 例64.D 例65.C 例66.C 例67.163或-11 例68.10 例69. 是例70. 解:⑴如图所示:C (2,0,0),S (0,0,1),O (0,0,0),B (1,1,0)(2,0,1),(1,1,0)cos ,52SC OB SC OB α∴=-=∴<>===⋅⑵①(1,1,1),(1,1,0)SBCB n SBC =-=-⊥,,1010,:1,2,(1,1,2)n SB n CB n SB p q n CB p p q n ∴⊥⊥∴⋅=+-=∴⋅=-+===∴=解得②SOE BC E BC OE O 面则于作过⊥⊥,,SAB SOE ⊥∴,,,,2,SE O OH SE H OH SBC OA CB F OF FH OFH ⊥⊥=∠又两面交于过作于则延长与交于则连则为所求,3sin 2SO OE OE SE OH SE ββ⋅=∴===又③k 的坐标为()1,1,2-;36=OH。
向量法求解空间距离与空间角
向量法求解空间距离与空间角要求能掌握用向量法解决空间距离与空间角问题。
一、 空间向量与空间距离由向量的数量积||||cos AB b AB b θ⋅=⋅可知,向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是||cos ||AB b AB b θ⋅=,也就是说向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是线段AB 在直线l 上射影线段的长。
1、 点面距离公式:平面α的法向量为n ,P 是平面α外一点,点M 为平面α内任一点,则P 到平面α的距离d 就是MP在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
2、 线面距离公式: 平面α∥直线l ,平面α的法向量为n ,P ∈直线l ,点M 为平面α内一点,则直线l 与平面α的距离d 就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
3、 面面距离公式:平面α∥平面β,平面α的法向量为n,点M 为平面α内一点,点P 为β平面β内一点,则平面α与平面β的距离d就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
4、向量法求解距离问题的步骤: ① 建立适当的空间直角坐标系;② 将相应线段及平面的法线等用向量或坐标表示出来; ③ 利用向量的相应距离公式求解。
5、典例评析: 例1、(03广东)已知四棱柱ABCD -A 1B 1C 1D 1中,AB=1,AA 1=2,点E 是CC 1的中点,F 是BD 1中点。
(1)证明:EF 是BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离。
二、 空间向量与空间的角 1、 异面直线所成的角:异面直线a 、b 的方向向量分别为m 、n,其向量的夹角为θ,直线a 、b 的所成的角为α,(0,]2πα∈,则||cos |cos |||||m n m n αθ⋅== ,即||cos ||||m n arc m n α⋅=。
高中数学中的立体几何空间角与空间距离计算方法
高中数学中的立体几何空间角与空间距离计算方法立体几何是数学中的一个分支,其重点研究的是三维空间中点、线、面和体之间的关系。
在立体几何中,空间角和空间距离是非常关键的概念。
本文将详细探讨高中数学中的立体几何空间角与空间距离计算方法。
一、空间角的概念与计算方法1. 空间角的概念空间角指的是由两个非共面向量所张成的角度,在立体几何中具有重要的意义。
空间角的大小是依据两个向量的夹角计算得来的。
2. 空间角的计算方法在计算空间角时,我们首先需要求出两个向量的点积。
设向量a=(a1,a2,a3)和向量b=(b1,b2,b3),则它们的点积为a*b=a1b1+a2b2+a3b3。
接下来,我们可以利用余弦定理来计算角度,即cosθ=(a*b)/(|a||b|),其中|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b之间的夹角。
二、空间距离的概念与计算方法1. 空间距离的概念空间距离指的是三维空间中两个点之间的距离,也是立体几何中经常涉及到的一个概念。
2. 空间距离的计算方法我们可以借助勾股定理来计算空间距离。
设点A(x1,y1,z1)和点B(x2,y2,z2)是三维空间中的两个点,它们之间的距离为d,则d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)。
三、空间角和空间距离的应用空间角和空间距离在立体几何中的应用非常广泛,例如在计算棱台的侧面积、计算四面体内切圆半径、求解圆锥截面面积等问题中,我们都需要用到空间角和空间距离的知识。
比如,在计算棱台的侧面积时,我们需要首先求出两条棱所在的平面之间的空间角,然后根据棱长和计算出的角度,就可以快速计算出棱台的侧面积。
在计算四面体内切圆半径时,我们需要先计算出四面体各面的法线向量,然后根据法线向量计算面上的角度,最后用勾股定理求出四面体内切圆的半径。
在求解圆锥截面面积时,我们需要用到空间角和空间距离的知识,以找出圆锥截面的边界和计算截面的面积。
高考数学专题—立体几何(空间向量求空间角与空间距离)
高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。
直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。
注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。
平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。
二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。
一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。
9.5 空间距离和空间的角 doc
8.5 空间的角与空间距离一、空间距离两点间的距离 点到直线的距离 点到平面的距离空间距离 两条平行线的距离→点到直线的距离 两条异面直线的距离直线到与其平行的平面的距离→点到平面的距离 平行平面间的距离→点到平面的距离 1、点到平面的距离(1)定义:过已知点做平面的垂线,这个点与垂足之间的线段的长度。
PA BD C(2)求法:&、直接法,即直接由点作垂线,求垂线段的长&、转移法,转化成求另一点到该平面的距离&、体积法 PAB D PAD B PBD A ABD P V V V V ----===&、向量法 2、异面直线的距离(1)定义:两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线的距离。
(2)求法:&、定义法,即求公垂线段的长&、转化成求直线与平面的距离&、函数极值法,依据是两条异面直线的距离是分别在两条异面直线上两 点间距离中最小的&、向量法(3)例题:空间四边形ABCD 的边长均为a ,连对角线AC 、BD ,且AC =BD =a ,E 、F 分别为AB 、CD 的中点。
M(1)证明:EF 是异面直线AB 、CD 的公垂线; (2)求异面直线AB 与CD 的距离.【分析】:(1)EF 与AB 、CD 都相交,证明EF 是AB 、CD 的公垂线证明EF ⊥AB 、EF ⊥CD只要证△ECD 是等腰三角形,即EC=EDEC 、ED 分别是△CAB 、△DAB 的中线,只要证△CAB ≌△DAB这两个三角形都是边长为a 的正三角形全等.同理可证EF ⊥AB .(2)求异面直线AB 与CD 的距离就是求异面直线AB 与CD 的公垂线段的长度,我们刚才已经证明了EF 是异面直线AB 与CD 的公垂线,所以求异面直线AB 与CD 的距离,就是求——EF 的长度.【解法】(1)证明:连结CE 、DE .由题设知△CAB ≌△DAB , 又E 是AB 的中点,∴CE =DE . 在等腰△ECD 中,∵F 是CD 的中点 ∴EF 是CD 上的中线 ∴EF ⊥CD . 同理可证EF ⊥AB . 又EF 与AB 、CD 都相交∴EF 是异面直线AB 、CD 的公垂线.(2)解:由(1)可知EF 的长即为异面直线AB 、CD 的距离. 在Rt △EFC 中,∵CF =12 a CE 2=AC 2-AE 2=34a 2∴EF 2=CE 2-CF 2=12 a 2 因此异面直线AB 、CD 的距离为a 22 . 3、用向量法求距离的公式: ⑴异面直线,a b 之间的距离:||AB n d n ⋅= ,其中,,,n a n b A a B b ⊥⊥∈∈。