信号与系统总复习
《信号与系统》复习
物理意义:非周期信号可以分解为无数个频率为, 复振幅为[X(j)/2p]d 的虚指数信号ejw t的线性组合。
简述傅氏反变换公式的物理意义?
傅里叶变换性质
F 时移特性 x(t t 0 ) X( j) e jt
0
x(t)
X(j)
展缩特性
1 F x (at) X( j ) a a
(n = 1,2) (n = 1,2)
奇对称周期信号其傅里叶级数只含有正弦项。
周期信号的傅里叶级数 周期信号x(t) 如图 所示,其傅氏级数系数的特点是
偶对称周期信号其傅里叶级数只含有直流项与余弦项 周期信号f(t)如图所示,其直流分量等于_____
周期信号的频谱及特点
Cn是频率的函数,它反映了组成信号各次谐波 的幅度和相位随频率变化的规律,称频谱函数。
《信号与系统》复习
考核方式
平时成绩20% 实验成绩20% 期末成绩60%
题型: 选择题(每题3分,共30分) 填空题(每空2分,共20分) 简答题(每题4分,共20分)
计算题(每题10分,共30分)
第一章:信号与系统分析导论
周期信号平均功率计算 若电路中电阻R=1Ω,流过的电流为周期电流i(t)= 4cos(2πt)+2cos(3πt) A,其平均功率为( ) 系统的数学模型 连续时间系统:系统的输入激励与输出响应都必须为 连续时间信号,其数学模型是微分方程式。 离散时间系统: 系统的输入激励与输出响应都必须 为离散时间信号,其数学模型是差分方程式。
L[ yzs (t )] Yzs ( s) H ( s) L[ x(t )] X ( s)
写出系统函数H (s) 的定义式
简述拉氏变换求解微分方程的过程
信号与系统复习课件全
(2) (b)计算零状态响应:
yzs [k ]
n
x[n]h[k
n]
u[k
]
3(
1 2
)
k
2( 1 ) k 3
u[k
]
n
u[n]
3(
1 2
)kn
2( 1 ) k n 3
u[k
-
n]
k n0
3(
1 2
)k
n
2( 1 ) k n 3
k 3(1 )kn k 2(1)kn
n0 2
CLTI系统数学模型——线性常系数微分方程,冲
激响应h(t);系统函数H(s);频率响应特性H( jw)
H (s) Yzs (s) X (s)
LT
h(t) H(s)
H ( j) H (s) |s j (系统稳定)
FT
h(t) H(j )
26
DLTI系统数学模型——线性常系数差分方程;冲
激响应h(n);系统函数H(z);频率响应特性H(ejw).
则
yzi[k ]
C1
(
1 2
)k
C2
(
1 )k 3
,k
0
代入初始条件,有:
y[1] 2C1 3C2 0
y[2] 4C1 9C2 1 C1 1/ 2, C2 1/ 3
则
yzi[k ]
1 2
(1)k 2
1 3
( 1 ) k ,k 3
0
= ( 1 )k1 (1)k1,k 0
2
3
17
n0 3
[ 3 3(1)k (1)k ]u[k] 23
完全响应: y[k] yzi[k] yzs[k]
[ 1 7 (1)k 4 (1)k ]u[k]
信号与系统总复习要点
《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。
信号与系统期末考试复习题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统_复习知识总结
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
总复习(信号与线性系统必过知识点)
目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。
信号与系统复习资料
0, u[n] 1,
n0 n0
0, n 0 [ n] 1, n 0
0, t 0 (t ) t 0
掌握单位阶跃信号和单位冲激信号的关系,单位冲激信号的 采样性质和筛选性质。
st
假定积分收敛
e
h( )es d
证明思路:用卷积公式,写成 h(t)*x(t)的形式,注意积分公式里 边t是常量,把est提到积分公式外 面。
H ( s)e st
复指数信号是LTI系统的特征函数,对于某一给定 的复数z,常数H(z)就是与特征函数zn对应的系统的 特征值。 证明:
信号的采样与恢复
(采样信号的频谱,采样信号无失真恢复的条件)
LTI系统的特征函数与特征值
一个信号,若系统对该信号的响应仅是一个常数乘以输入, 则称该信号为系统的特征函数。而幅度因子(常数)称为 系统的特征值。 LTI系统的特征函数
x(t ) e
st
y (t ) H ( s)e st
LTI系统
连续时间系统:ax1 (t ) bx2 (t ) ay1 (t ) by2 (t ) 离散时间系统:ax1[n] bx2 [n] ay1[n] by2 [n]
因果性 一个系统,在任何时刻的输出只决定于现在以及过去的输入, 则称该系统为因果系统 LTI系统满足因果性的充要条件是:
1 ak N
n N
x[n]e
jk0 n
1 N
n N
x[n]e
jk 2N n
连续时间非周期信号的傅立叶变换关系
X ( j ) x(t )e jt dt
(学生版)信号与系统总复习
3、冲激响应和阶跃响应 (1)冲激响应
定义:LTI在零状态条件下,由δ(t)作用所产生的零状态响 应为单位冲激响应(冲激响应),h(t)。
(2)阶跃响应 定义:LTI在零状态条件下,由ε(t)引起的响应称为单位阶跃 响应(阶跃响应),g(t)。
h(t)与g(t)之间的关系为微、积分关系。
(2)复合系统的单位序列
f (k)
h1(k ) h2(k)
+ ∑ y(k) +
f (k) h1(k) f (k) h2(k)
y(k) h2(k)
y(k) h1(k)
h(k)=h1(k) + h2(k) h(k)=h1(k) * h2(k)= h2(k) * h1(k)
(3)f(k)*δ(k)
=
f(k)
信号,此时P=0。
若信号f(t)的功率有界,即P<∞ ,则称为功率有限信
号,此时E=∞。
时限信号(仅在有限时间区间不为零的信号)为能量 信号; 周期信号属于功率信号,而非周期信号可能是能 量信号,也可能是功率信号。
3
二、信号的基本运算与波形变换
重点:反转、平移、尺寸变换
三、单位阶跃信号与单位冲激信号(性质、两者间的关系)
ft Fnejn0t, n, n
Fn
1 T
T
2 T
2
f
t ejn0tdt
20
3 、f(t)为偶函数——对称纵坐标,f(t)=f(-t)
bn =0,展开为余弦级数。
4 、f(t)为奇函数——对称于原点,f(t)=-f(-t)
an =0,展开为正弦级数。
5 、f(t)为奇谐函数——f(t) = –f(t±T/2)
【信号与系统】复习总结笔记
【信号与系统】复习总结笔记学习笔记(信号与系统)来源:⽹络第⼀章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来⾃外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进⾏加⼯、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
2、系统(system):是指若⼲相互关联的事物组合⽽成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号 ——可以⽤确定时间函数表⽰的信号;随机信号——若信号不能⽤确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在⼀些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和⾮周期信号周期信号——是指⼀个每隔⼀定时间T,按相同规律重复变化的信号;⾮周期信号——不具有周期性的信号称为⾮周期信号。
4)能量信号与功率信号能量信号——信号总能量为有限值⽽信号平均功率为零;功率信号——平均功率为有限值⽽信号总能量为⽆限⼤。
5)⼀维信号与多维信号信号可以表⽰为⼀个或多个变量的函数,称为⼀维或多维函数。
6)因果信号若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;⾮因果信号指的是在时间零点之前有⾮零值。
4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同⼀时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
信号与系统复习题(答案全)
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
信号与系统复习资料
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
信号与系统复习总结
左边序列 :
信号的三大变换
五
(三)z变换
3、典型序列的z变换
单位样值序列
单位阶跃序列
斜变序列
指数序列
信号的三大变换
五
(三)z变换
4、性质
线性
ROC为公共部分
位移性
(1)单边Z变换
信号的三大变换
五
(三)z变换
4、性质
(2)双边Z变换
位移性
z域微分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
尺度变换特性
时域压缩——频域展宽
时移特性
频移特性
为常数
微分特性
信号的三大变换
积分特性
(一)傅立叶变换
五
3、非周期信号的傅立叶变换
(3)傅立叶变换的性质
频域微分定理
时域卷积定理
频域卷积定理
信号的三大变换
五
(二)拉普拉斯变换
1、单边定义式
大连轻工业学院信息学院
信号与系统
CLICK HERE TO ADD A TITLE
复习总结
演讲人姓名
信 号 信号与系统 系 统
信号的基本运算
信号
典型信号
信号的定义及分类
信号的三大变换
章节一
信号的特性
CHAPTER ONE
信号的定义及分类
一
1、信号的定义:随时间变化的物理量。
2、信号的分类:
确定性信号
同时域法
等效激励源法
等效激励源法
电感L:
电容C:
系统稳定性的判别
3、s域分析法
连续时间系统
(一)
信号与系统复习资料及答案
信号与系统复习资料及答案2.设系统零状态响应与激励的关系是:"s (r )=∣∕α)∣,则以下表述不对的是(.A )。
B.系统是时不变的C.系统是因果的D.系统是稳定的4 .设一个矩形脉冲的面积为S,则矩形脉冲的FT (傅氏变换)在原点处的函数值等)o5 .信号(£(t )-£(t-2))的拉氏变换的收敛域为(C )。
6 .已知连续系统二阶微分方程的零输入响应κ,⑺的形式为A/+8",则其2个7 .函数£⑺是(8 .周期矩形脉冲序列的频谱的谱线包络线为()09 .能量信号其(B )010 .在工程上,从抽样信号恢复原始信号时需要通过的滤波器是(B )0A.高通滤波器C.带通滤波器D.带阻滤波器 二、填空题L 系统的激励是e(“,响应为若满足也乜,则该系统为线性、时不dt 变、因果。
一、选择题L 线性系统具有 D)o A.分解特性 B.零状态线性C.零输入线性D.ABC A.系统是线性的 3.零输入响应是( )0A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差A.S/2B.S/3C.S/4D.SA.Re[s]>OB.Re[s]>2C.全S 平面D.不存在特征根为(AA. -1,-2)o B. -1,2 C. 1,-2 D. 1,2 A.奇函数B.偶函数C.非奇非偶函数D.奇谐函数 A. δ函数B. Sa 函数C. £函数D.无法给出 A.能量E=OB.功率P=OC.能量E=8D.功率P=OOB.低通滤波器2.求积分Jjr2+∖)δ(t-2)dt的值为o3.当信号是脉冲信号/⑺时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号/⑺的最高频率是2kHz,则"2。
的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为相频特性为o6.系统阶跃响应的上升时间和系统的截止频率成反比。
信号与系统复习总结
由时不变性: δ(t -τ)
h(t -τ)
由齐次性: f (τ)δ(t -τ)
f (τ) h(t -τ)
由叠加性:
f
()(t
)
d
f
()h(t
)d
‖
‖
f (t)
yf(t)
yf (t)
f()h(t)d卷积积分,要理解
第2-16页
■
连续时间信号与系统的频域分析
信号与系统 电子教案
4.4 傅里叶变换
非周期信号的频谱—傅里叶变换
一、傅里叶变换
非周期信号f(t)可看成是周期T→∞时的周期信号。 前已指出当周期T趋近于无穷大时,谱线间隔趋 近于无穷小,从而信号的频谱变为连续频谱。各频率 分量的幅度也趋近于无穷小,不过,这些无穷小量之 间仍有差别。 为了描述非周期信号的频谱特性,引入频谱密度的 概念。令
第4-33页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 • 幅度调制的例子
第4-34页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
4.5 傅里叶变换的性质
四.能量定理(帕斯瓦尔关系)
(Parseval’s Relation for Aperiodic Signals)
F(j)T l i m 1F /T n T l i m FnT (单位频率上的频谱)
称F(jω)为频谱密度函数。
第4-22页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
• 对密度的理解例子 • 设粉笔的质量为M,均匀地分布在体积V上,将体
积V分成许多体积为ΔV的小单元,每个小单元质 量为ΔM,当ΔV→0时,ΔM→0.于是定义密度
信号与系统 (奥本海默) 总结 复习
第一章:Singnals and System(信号与系统)1-1:continuous-time and discrete-time signals(连续时间与离散时间信号)信号:信息的载体。
在信号与系统分析中,信号的表达式为函数(functions)P3:Signals are represented mathematically as functions of one or more independent variables (独立自变量)。
例如:关于某导线电流强度对应不同时间的函数I(t);等比数列的某一个数对应其序号的函数a[n]=b^n自变量的定义域为连续的时间段(有限或无限)的信号(函数)称为连续时间信号x(t)自变量的定义域为间断的时间点(一般地,归一为整数点…-1,0,1,2…)的信号称为离散时间信号x[n]又叫序列(sequences)。
两者有相似处,离散时间函数(又称为离散时间序列)可以看作连续时间函数对整数点时间进行抽样得到,但两者计算上有很大区别。
信号(函数)对应某一自变量值的信号函数值大小称为信号的幅度(phenomenon)。
例如x(t)=2t,在t=3时x(t)=x(3)=6就是此刻的幅度。
Signal energy and power(信号的能量与功率)把信号看作电流,该电流在某一段时间内流过1欧姆的电阻产生的能量和平均功率(average power)便是信号在该段时间的能量与功率。
因此可得在t1~~t2内信号x(t)的能量为:E=∫(t1~t2)(|x(t)|^2)dt,而相应这段时间的功率则为P=E/(t2-t1)信号在整个定义域的能量E∞=(limT→∞)∫(-T~T)(|x(t)|^2)dt信号在整个定义域的平均功率P∞=(limT→∞)(1/2T)∫(-T~T)(|x(t)|^2)dt相应的,对于离散时间信号则有P6-7(1,7)(1,9)(这个东西要输入太困难了,呵呵)显然,对于一个信号在无穷区间的能量与平均功率有三种可能:平均功率无穷大,总能量无穷大(2)平均功率有限,总能量无穷大(3)总能量有限,平均功率无穷小(也是有限)1-2:Transformations of the independent variable(自变量的变换)自变量的变换就是对信号x(t)或x[n]的自变量t或n进行相应变换,由此会影响信号。
《信号与系统复习题(有答案)》
信号与系统复习题说明: 以下给出了绝大多数题目的答案, 答案是我个人做的,不保证正确性,仅供参考.请务必把复习题弄明白并结合复习题看书.请务必转发给每个同学!!!补充要点(务必搞明白):1 教材p.185例6-12 已知离散时间LTI 系统的单位冲激响应为h(n)=…,又已知输入信号x(n)=…,则系统此时的零状态响应为h(n)和x(n)的卷积.3 已知连续时间LTI 系统在输入信号为f(t)时的零状态响应为y(t),则输入信号为f(t)的导函数时对应的零状态响应为y(t)的导函数(即输入求导,对应的零状态响应也求导)4 教材p.138倒数第3行到139页上半页,请理解并记忆,必考.一、单项选择题1.信号5sin 410cos3t t ππ+为 ( A )A.周期、功率信号B.周期、能量信号C.非周期、功率信号D.非周期、能量信号2.某连续系统的输入-输出关系为2()()y t f t =,此系统为 ( C )A.线性、时不变系统B.线性、时变系统C.非线性、时不变系统D.非线性、时变系统3.某离散系统的输入-输出关系为()()2(1)y n f n f n =+-,此系统为 ( A )A.线性、时不变、因果系统B.线性、时变、因果系统C.非线性、时不变、因果系统D.非线性、时变、非因果系统4.积分(t t dt t--⎰20)()δ等于( B )A.-2δ()tB.2()u t -C.(2)u t -D.22δ()t - 5. 积分(3)t e t dt δ∞--∞-⎰等于( C )(此类题目务必做对)A.t e -B.(3)t e t δ--C. 3e -D.06.下列各式中正确的是 ( B )A.12()(2)2t t δδ=B.1(2)()2t t δδ= C. (2)()t t δδ= D. (2)2()t t δδ= 7.信号)(),(21t f t f 波形如图所示,设12()()*()f t f t f t =,则(1)f 为( D )A .1B .2C .3D .48.已知f(t)的波形如图所示,则f(5-2t)的波形为( C )9. 描述某线性时不变连续系统的微分方程为()3()()y t y t x t '+=。
信号与系统_复习知识总结
重难点1。
信号的概念与分类按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数.①连续正弦信号一定是周期信号。
②两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或的非周期信号就是能量信号,当,的非周期信号是功率信号。
1.典型信号①指数信号:,②正弦信号:③复指数信号:,④抽样信号:奇异信号(1)单位阶跃信号是的跳变点。
(2)单位冲激信号(当时)单位冲激信号的性质:(1)取样性相乘性质:(2)是偶函数(3)比例性(4)微积分性质;(5)冲激偶;;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激.重难点2.信号的时域运算①移位:,为常数当>0时,相当于波形在轴上左移;当〈0时, 相当于波形在轴上右移。
②反褶:的波形相当于将以=0为轴反褶。
③尺度变换:,为常数当〉1时,的波形时将的波形在时间轴上压缩为原来的;当0<〈1时,的波形在时间轴上扩展为原来的。
④微分运算:信号经微分运算后会突出其变化部分。
2.系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统;重难点3。
系统的特性(1)线性性若同时满足叠加性与均匀性,则称满足线性性。
当激励为(、分别为常数时),系统的响应为.线性系统具有分解特性:零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数。
(2)时不变性 :对于时不变系统,当激励为时,响应为。
(3)因果性线性非时变系统具有微分特性、积分特性。
重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散时间信号:在时间上是离散的,只在某些不 连续的规定瞬时给出函数值,其他时间没有定义。 用n表示离散时间变量。
X
第
信号的移位
将信号f t 沿 t 轴平移 即得时移信号 f t , 为常数 > 0,右移(滞后) < 0,左移(超前)
f (t ) f (t )
★右边序列的ROC为 的圆外;
页
★左边序列的ROC为
★双边序列的ROC为
的圆内;
的圆环。
X
第 42
逆z变换
•围线积分法——留数法
页
•幂级数展开法
•部分分式展开法
线性 位移性
z变换的基本性质
序列线性加权 序列指数加权
初值定理
终值定理 时域卷积定理
X
第 43 页
z变换与拉普拉斯变换的关系 用z变换解差分方程 离散系统的系统函数 序列的傅里叶变换(DTFT)
F ( ) t e
j t
页
dt 1
1 u( t ) π j
傅里叶变换的基本性质
对称性质 奇偶虚实性
线性性质
尺度变换性质 频移特性 时域积分性质
X
时移特性
微分性质
第 22 页
卷积定理 周期信号的傅里叶变换
X
第 23
例
求f(2t-5)的傅里叶变换
页
解:
X
第
第四章 拉普拉斯变换、连续时间 系统的S域分析
教学要求:
24 页
●理解拉普拉斯变换的定义和收敛域的概念; ●掌握拉普拉斯变换的性质和应用; ●能根据时域电路模型画出其S域模型,并求其响应; ●能根据系统零极点分布情况,判断其时域和频域特性; ●掌握判断系统稳定性的方法。
X
第
拉氏变换对
25 页
4. z变换法反变换y(n)
X
第
零输入响应+零状态响应
1.零输入响应:输入为零,差分方程为齐次
齐次解: C由初始状态定(相当于0-的条件)
37 页
2.零状态响应:初始状态为0,即
求解方法
经典法:齐次解+特解 卷积法
X
第
因果性、稳定性
38 页
对于线性时不变系统是因果系统的充要条件:
稳定性的充要条件:
拉氏变换的收敛域
lim f ( t ) e σ t 0
t
σ σ 0
X
一些常用函数的拉氏变换
1.阶跃函数
1 st 1 e 0 s s
第 26 页
2.指数函数
3.单位冲激信号
1 αs
全s域平面收敛
X
拉普拉斯变换的基本性质
线性 原函数积分 s域平移 初值 卷积 对s域积分 原函数微分 延时(时域平移) 尺度变换 终值 对s域微分
X
求待定系数
第 16 页
代入(1)得
代入h(t),得
h0 1 , h' 0 2
h( t )
1
e
t
e 3t u( t )
X
第
第三章ห้องสมุดไป่ตู้傅里叶变换
教学要求:
17 页
●理解非周期信号频谱密度函数的概念,周期信号与非周期
信号的频谱特点和区别。 ●理解信号时域特性与频域特性之间的关系。 ●掌握傅里叶变换及基本性质。 ●理解抽样信号频谱特点和抽样定理。
X
第 44 页
X
X
第 9 页
分析系统的方法:列写方程,求解方程。
求解方程时域经典法就是:齐次解+特解。
X
第
经典法
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。 解:齐次解+特解,由初始条件定出齐次解 。
4 页
反褶
信号的尺度变换
f t f at b f at b a 设a, b 0
先展缩:a>1,压缩a倍; a<1,扩展1/a倍 后平移: +,左移b/a单位;-,右移b/a单位 加上倒置:f at b f at b a
X
单位阶跃信号
单位冲激信号
第 5 页
例:
X
第
线性系统
时不变系统
因果系统
6 页
若 H C1 f1 t C2 f 2 t C1 H f1 t C2 H f 2 t 则系统 H 是线性系统,否则是非线性系统。 若 H f t yt 则系统 H 是非时变系统,否则是时变系统。
第 1 页
总复习
X
第
第一章 绪论
教学要求
2 页
●了解信号与系统的基本概念和分类;
●掌握典型信号的定义; ●掌握信号的时域运算和线性/时不变性和因果性; ●掌握冲击信号的性质及与阶跃信号的关系。
X
第 3 页
连续时间信号:信号存在的时间范围内,任意时刻 都有定义(即都可以给出确定的函数值,可以有有 限个间断点)。 用t表示连续时间变量。
X
第 18 页
•三角函数形式的傅氏级数 • 指数函数形式的傅氏级数
典型周期信号的傅里叶级数和傅里叶变换
脉宽
频带宽度
X
第 19
傅里叶变换对
页
简写
f t F
X
傅里叶变换存在的条件
第 20 页
即f t 绝对可积
所有能量信号均满足此条件。
X
第 21
冲激函数和阶跃函数的傅里叶变换
第 27 页
X
第
求拉氏逆变换的过程(部分分式法)
28 页
系统函数(网络函数)H(s)
系统函数:系统零状态响应的拉氏变换与 激励的拉氏变换之比
X
求H(s)的方法
第 29 页
微分方程两端取拉氏变换→ 利用网络的s域元件模型图,列s域方程→
求系统的响应
X
第 30
稳定的因果系统
时域: 频域:H(s)的全部极点落在s左半平面。
页
全通函数与最小相移函数的零、极点分布 拉普拉斯变换与傅里叶变换的关系
自由响应 强迫响应 瞬态响应 稳态响应
X
第 31 页
X
第 32 页
X
第
第五章 傅里叶变换应用于通信系统
——滤波、调制与抽样
教学要求: ● 掌握利用系统函数求系统响应的方法;
33 页
● 理解无失真传输和低通滤波的基本概念;
● 掌握系统可物理实现的条件; ● 了解抽样信号恢复连续时间信号的条件。
10 页
全
X
第
卷积的计算
或时域卷积频域相乘
11 页
总结求解系统响应的方法
时域经典法: 完全解=齐次解 + 特解 双零法:
零输入响应:解齐次方程,用初(起)始条件求系数;
零状态响应:
X
第 12
例: 解:
求零输入响应
页
X
第
例2-3
13 页
系统的特征方程为 特征根
因而对应的齐次解为
X
第 14
例: 利用冲激函数匹配法确定初始条件
X
第 34 页
系统的无失真传输条件
X
第 35
第七章 离散时间系统的时域分析
了解离散信号的运算
•单位样值信号 •单位阶跃序列 •矩形序列 •斜变序列 •指数序列 •正弦序列 •复指数序列
页
常用离散信号
正弦序列的周期
X
第
常系数线性差分方程的求解
1.迭代法
36 页
2.时域经典法:齐次解+特解 3.零输入响应+零状态响应 利用卷积求系统的零状态响应
X
第 39
卷积计算
页
零状态响应 xn hn
X
第
第八章 z变换、离散时间系统 的z域分析
z变换的定义
单边z变换 双边z变换 X ( z ) x ( n) z n
n 0
40 页
X ( z)
n -
n x ( n ) z
典型序列的z变换
X
第 41
z变换的收敛域
d 由方程 r t 3r t 3 t 可知 dt
页
设
则 代入方程
得出
所以得
即
即
X
第
例
求系统
的冲激响应。 将e(t)→(t), r ( t) → h ( t)
(1)
15 页
解:
求特征根
冲激响应
h(t ) ( A1e A2e )u(t )
t
3 t
带 u ( t)
因果系统是指当且仅当输入信号激励系统时,才会出现 输出(响应)的系统。
输出不超前于输入
X
例:
解: 线性性
第
判断其线性性、时移性、因果性
7 页
(1)
(2)
时移性
(3)
(4)
因果性
X
第二章 连续时间系统的时域分析
教学要求
第 8 页
●理解系统0-和0+时刻系统状态的含义;
●理解冲激响应和阶跃响应的意义,掌握其求解方法; ●掌握系统全响应的两种求解方式; ●重点掌握卷积积分的定义、运算和主要性质; ●会使用卷积积分求线性时不变系统的零状态响应。