一元一次方程应用题归类_题型归纳

合集下载

一元一次方程实际问题归纳

一元一次方程实际问题归纳

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。

列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。

(3)解此类题常常借助画草图来分析,理解行程问题。

①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或 (快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

部编数学七年级上册专题09一元一次方程的应用题十二大题型(解析版)含答案

部编数学七年级上册专题09一元一次方程的应用题十二大题型(解析版)含答案

专题09 一元一次方程的应用题 十二大题型一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共进行方法总结与经典题型进行分类。

1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类汇集(含答案)

一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。

设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。

专题07 一元一次方程的应用题重难点题型分类(解析版)—七年级数学上册重难点题型分类必刷题(人教版)

专题07 一元一次方程的应用题重难点题型分类(解析版)—七年级数学上册重难点题型分类必刷题(人教版)

专题07一元一次方程的应用题重难点题型分类(解析版)专题简介:本份资料包含一元一次方程这一章的常考应用题的全部题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:配套问题、古典应用题、利润问题、费用与方案选择问题、分层计费问题、工程问题、路程问题。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一配套问题1.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,则可列方程为()A .()22000120022x x ⨯=-B .()21200200022x x ⨯=-C .()12002200022x x =⨯-D .()20002120022x x =⨯-【详解】解:由题意可得,2×1200x=2000(22-x ),故选:B .2.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x =200(60-x ),解得x =20,答:安排20人加工汤料包.3.某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?【详解】解:(1)设可设分配x 名工人生产螺栓,(24)x -名工人生产螺母.由题意得:312218(24)x x ⨯=⨯-,解得:12x =,2412x -=(人).答:应该分配12名工人生产螺栓,12名工人生产螺母,才能使每天的产品刚好配套.4.某工厂车间有28个工人,每人每天可生产A 零件18个或B 零件12个(每人每天只能生产一种零件),一个A 零件配两个B 零件,且每天生产的A 零件和B 零件恰好配套.设该工厂有x 名工人生产A 零件:(1)求车间每天生产A 零件和B 零件各多少个?(用含x 的式子表示)(2)求该工厂有多少工人生产A 零件?【详解】解:(1)设该工厂有x 名工人生产A 零件,共生产A 零件18x 个,则有(28-x )名工人生产B 零件,共生产B 零件12(28-x )个;答:每天生产A 零件18x 个,生产B 零件12(28-x )个;(2)根据题意得2×18x =12(28-x ),解得x =7,答:该工厂有7名工人生产A 零件.题型二古典应用题5.我国明代数学读本《算法统宗》中有一道题,其题意为∶客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x 人,则可列方程为()A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+=【详解】解:设客人有x 人,根据题意,得7498x x +=-.故选:A .6.我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大和尚有x 人,则根据题意可列方程为()A .()31001003x x +-=B .()31001003x x --=C .10031003x x --=D .10031003x x -+=【详解】解:设大和尚有x 人,小和尚(100)x -,由于大和尚1人分3个,小和尚3人分1个正好分完,故可列方程10031003x x -+=,故选:D .7.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x 斗,那么可列方程为()A .()103530x x +-=B .()310530x x +-=C .305103x x -+=D .305310x x -+=【详解】解:设清酒有x 斗,由题意得,()103530x x +-=,故选A .8.(西雅)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层逐层翻倍增加).根据此诗,可以得出塔的顶层有()A.3盏灯 B.4盏灯 C.5盏灯 D.6盏灯【详解】解:设顶层x 盏灯,可得方程:x+2x+4x+8x+16x+32x+64x =381,得:x =3,故选:A .9.(雅礼)我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是()A .3(x +4)=4(x +1)B .3x +4=4x +1C .x +4=x +1D .x ﹣4=x ﹣1【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),故3(x +4)=4(x +1).故选:A .题型三利润问题10.一件夹克衫先按成本价提高40%标价,再将标价打8折出售,结果获利56元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A .()0.810.456x x +=+B .()0.810.456x x +=-C .()0.810.456x x +=-D .()0.810.456x x +=+【详解】解:设这件夹克衫的成本价是x 元,由题意得,0.8(140%)56x x +-=,即()0.810.456x x +=+.故选:A .11.一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为元.【详解】解:设这件商品的成本价为x 元,由题意知,()130%0.812x x +⋅-=,得300x =,即这件商品的成本价为300元.12.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.【详解】设盈利50%的那件衣服的进价是x 元,根据进价与得润的和等于售价列得方程:50%120x x +=,解得:80x =,设另一件亏损衣服的进价为y 元,它的商品利润是()20%y -元,列方程:()20%120y y +-=,解得:150y =.那么这两件衣服的进价是230x y +=元,而两件衣服的售价为240元.则24023010-=(元).故卖这两件衣服的利润为10元.店买了一个道具,现此商店若按标价打八折销售该道具一件,则可获纯利润300元,其利润率为20%,现如果按同一标价打九折销售该道具一件,那么获得的纯利润为()A.525元B.337.5元C.500元 D.450元【解答】解:设商品的标价是x元,根据题意得80%x-1500=300,解得x=2250,2250×90%-1500=525.获得的纯利润为525元.故答案是:525.,故答案为:A.14.(雅礼)某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000,解得:x=400,购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.15.列方程解应用题:一商场经销的A、B两种商品,A种商品每件进价40元,售价60元;B种商品每件进价50元,利润率为60%.(1)A种商品每件利润为元,每件B种商品售价为元.(2)若该商场购进A、B两种商品共80件,恰好总进价为3400元,求购进A种商品多少件?【详解】(1)解:A种商品的利润为:60-40=20元;B种商品的利润为:50×60%=30元;∴B种商品的售价为:80元;(2)设购进A种商品x件,则购进B种商品(80-x)件,根据题意得:40x+50(80-x)=3400,解得:x=60,∴购进A种商品60件.16.2021年,平和堂的一家服装店因新冠疫情的再次出现,将某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?【详解】(1)解:(1)设每件服装的标价为x元,依题意有0.6x-80=0.5x+80,解得x=1600.答:每件服装的标价为1600元.(2)解:(2)设按7.5折出售的服装有y件,依题意有0.75×1600y+0.5×1600(80-y)-80×(0.5×1600+80)=5600,解得y=30.故按7.5折出售的服装有30件.17.某玩具厂出售一种玩具,其成本价每件28元,现有两种方式销售.方式1:直接由玩具厂的门市部销售,每件产品售价为40元,同时每月还要支出其他费用3600元;方式2:委托某一商场销售,出厂价定为每件35元.(1)若每个月销售x件,则方式1可获得利润为,方式2可获得利润为;(2)若每个月销售量达到2000件时,采用哪种销售方式获得利润较多?(3)请列一元一次方程求解:每个月销售多少件时,两种销售方式所得利润相等?【详解】(1)按方式1销售时的利润是:(40−28)x−3600即12x−3600;x ;7x按方式2销售时的时利润是(35−28)x即7x,故答案为:123600(2)当每月销售达2000件时,方式1出售的利润为:(40-28)×2000-3600=20400(元),方式2销售的利润为:(35-28)×2000=14000(元),∵20400>14000,采用方式1直接由厂家门市部出售的利润较多。

初中数学鲁教版六年级上册一元一次方程应用题型归纳

初中数学鲁教版六年级上册一元一次方程应用题型归纳

一、什么是一元一次方程1.1 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。

1.2 一元一次方程的一般形式一元一次方程一般可以表示为ax+b=0的形式,其中a和b为已知数,x为未知数。

二、一元一次方程的解法2.1 移项法通过移项法,我们可以将方程中的未知数移到一边,常数移到另一边,从而求得方程的解。

2.2 直接法通过直接法,我们可以直接将方程中的未知数消去,从而求得方程的解。

三、一元一次方程的应用3.1 一元一次方程在现实生活中的应用一元一次方程可以用来解决很多实际问题,例如商场促销、商品打折、买卖问题等。

3.2 一元一次方程应用题型归纳3.2.1 一元一次方程的基础应用题型比如某数的五分之一等于8的问题,可以通过设未知数的方法来求解。

3.2.2 一元一次方程的复杂应用题型比如两个数和为30,它们的差为10的问题,需要通过列方程和解方程来求解。

四、初中数学鲁教版六年级上册一元一次方程应用题型归纳4.1 一元一次方程应用题型的难点4.1.1 难点一:题目的信息整理有些题目给出的信息比较复杂,需要学生能够准确地理清题目的信息。

4.1.2 难点二:列方程的能力学生需要具备将问题转化成方程的能力,这需要学生对问题的理解和抽象能力。

4.1.3 难点三:解方程的过程解方程的过程中需要学生运用到移项、合并同类项、化简等操作。

4.2 如何提高学生解一元一次方程应用题的能力4.2.1 培养学生分析问题的能力在教学过程中,可以通过练习引导学生分析问题,逐步提高他们的分析问题的能力。

4.2.2 注重基础知识的巩固学生解一元一次方程应用题的能力需要建立在扎实的基础知识上,教师需要注重基础知识的巩固。

4.2.3 多样化的教学方法教师可以采用多样化的教学方法,例如案例教学、游戏教学等,激发学生对一元一次方程的兴趣。

五、结语初中数学鲁教版六年级上册一元一次方程应用题型是数学中的重要内容,通过本文的归纳,我们可以看出一元一次方程的基本概念、解法及应用。

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集

一元一次方程应用题归类汇集:(一)行程问题:行程问题是指有关匀速运动的应用题.这类问题可分为:①基本行程问题;②相遇问题;③追及问题;④航行问题;⑤环行问题等等。

但无论怎样变化,都离不开匀速运动基本关系式:,以及由此推导出来的:,.现将这几类应用题的解法,通过举例介绍如下:一基本行程问题.基本行程问题的特点是:同一人(或物体)在去时与回时的运动过程中,改变了路程、速度或时间;也可以是两人(或两物体)在同一路程行进中,由于速度不同而导致到达的时间不同.解这类问题时,要抓住总路程或总时间不变,直接运用路程、速度与时间三者之间的关系式.二、相遇问题.相遇问题的特点是:两个运动着的人(或物体)从两地沿同一路线相向而行,最终相遇.解这类问题时,要抓住甲、乙同时出发至相遇时的基本等量关系:(1)甲行的路程+乙行的路程=两地间的路程,即:甲与乙的速度和×相遇时间=两地间的路程;(2)同时出发到相遇甲与乙所用的时间相等.三、追及问题.追及问题的特点是:两人(或两物体)同时沿同一路线,同一方向运动,慢者在前,快者在后,快者追赶慢者.解这类问题要抓住基本等量关系:(1)快者行的路程-慢者行的路程=两者间的距离,即:两者的速度差×追及时间=两者间的距离;(2)从开始追赶到追及时,快者与慢者所用的时间相等.四、航行问题.航行问题是一种特殊的行程问题,它的特殊性在于要考虑水速对船速的影响,其基本等量关系是:(1)船顺流速度=船的速度+ 水流速度;(2)船逆流速度=船的速度-水流速度.五、环行问题.环行问题即封闭路线上的行程问题.如果同时从同一地点出发,到第一次相遇,有两种情况:同向环行类似追及问题,其基本等量关系是:快者走的路程-慢者走的路程=环形周长;反向环行类似相遇问题,其基本等量关系是:快者走的路程+慢者走的路程=环形周长.数学运算之行程问题专题行程问题的“三原色”路程、速度、时间。

问题千变万化,归根结底就是这三者之间的变化。

七年级一元一次方程应用题8种类型归类

七年级一元一次方程应用题8种类型归类

七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。

这类问题比较简单,适合入门阶段的学生练习。

第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。

这类问题往往需要学生较高的抽象思维能力来解决。

第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。

这类问题对学生的逻辑思维和数学应用能力有一定要求。

第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。

第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。

第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。

第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。

这类题目较为灵活,需要学生综合考虑多个变量间的关系。

第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。

这类题目旨在培养学生的实际应用能力和经济思维。

以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。

希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。

一元一次方程应用题归类

一元一次方程应用题归类

一元一次方程应用题归类
一元一次方程应用题可以归类为以下几种类型:
1. 买卖问题:涉及到购买和销售商品的成本和收入,需要求解方程来确定盈利或亏损的情况。

2. 行程问题:涉及速度、时间和距离的关系,需要求解方程来确定行程中的相关参数。

3. 混合物问题:涉及到将不同成分的物质混合以达到一定浓度或含量的问题,需要使用方程来确定混合物的成分和比例。

4. 比例问题:涉及到两个量的比例关系,需要使用方程来确定两个量的具体数值。

5. 水池问题:涉及到水的流入和流出速率,需要使用方程来确定水池中水的变化情况。

6. 年龄问题:涉及到人的年龄,特别是涉及到几个人的年龄之间的关系,需要使用方程来确定各个人的年龄。

这些是一元一次方程应用题的常见归类,实际上还有其他一些特殊情况的应用题,但它们大体上都可以归类到以上几种类型中。

一元一次方程应用题 类型归纳

一元一次方程应用题 类型归纳

一元一次方程应用题
一元一次方程是指只含有一个未知数的一次方程,可表示为ax+b=0,其中a和b为已知数,x为未知数。

一元一次方程应用题常见的类型包括:
1. 购买商品问题:如某商品的价格为x元,现有b元,求买几件商品后还剩a元。

2. 时间、速度、距离问题:如A车以每小时x公里的速度行驶,经过b小时后行驶了a公里,求A车的速度。

3. 水混合问题:如已知某种酒精溶液中酒精的浓度为x%,现加入b 升水后酒精的浓度为a%,求原溶液中酒精的浓度。

4. 利润问题:如一件商品的进价为b元,售价为x元,求多少件商品时能够获利a元。

这些应用题主要通过建立一元一次方程来求解,需要根据题目中给出的已知条件和未知量,写出方程并解出未知数的值。

七年级上册数学《一元一次方程》13种应用题

七年级上册数学《一元一次方程》13种应用题

一元一次方程应用考试题型大全1、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:2、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得x=37则45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x 最后的取值必须为正整数。

一元一次方程应用题汇总精选全文完整版

一元一次方程应用题汇总精选全文完整版

可编辑修改精选全文完整版一元一次方程应用题归类聚集:(一)行程问题:1.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,那么列方程为________________。

2.甲、乙两人在相距18千米的两地同时动身,相向而行,1小时48分相遇,若是甲比乙早动身40分钟,那么在乙动身1小时30分时两人相遇,求甲、乙两人的速度。

3. 某人从家里骑自行车到学校。

假设每小时行15千米,可比预定的时刻早到15分钟;假设每小时行9千米,可比预定的时刻晚到15分钟;求从家里到学校的路程有多少千米?800米跑道上有两人练中长路,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟.5.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相碰到两车尾相离通过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?6.与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6Km,骑自行车的人的速度是每小时10.8Km。

若是一列火车从他们背后开来,它通过行人的时刻是22秒,通过骑自行车人的时刻是26秒。

(1)行人的速度为每秒多少米;(2)求这列火车的身长是多少米。

7.休息日我和妈妈从家里动身一同去外婆家,咱们走了1小时后,爸爸发觉带给外婆的礼物忘在家里,便立刻带上礼物以每小时6千米的速度去追,若是我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上咱们吗?8.一次远足活动中,一部份人步行,另一部份乘一辆汽车,两部份人同地动身。

汽车速度60千米/小时,咱们的速度是5千米/小时,步行者比汽车提早1小时动身,这辆汽车抵达目的地后,再转头接步行这部份人。

动身地到目的地的距离是60千米。

问:步行者在动身后经多少时刻与转头接他们的汽车相遇(汽车掉头的时刻忽略不计)?时钟问题:10.在6点和7点间,时钟分针和时针重合?行船问题:12. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?13.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

七年级一元一次方程应用题题型有哪些

七年级一元一次方程应用题题型有哪些

七年级一元一次方程应用题题型有哪些
一、相遇问题
在这类题型中,通常会给出两个物体相遇的条件,例如两辆车从不同地方同时
出发相向而行,求它们相遇的时间。

利用一元一次方程可以很容易地解决这类问题。

二、零用钱问题
这类题型通常会描述一个人手中有一定数量的钱,先进行一系列购物后剩余的钱。

通过列方程的方式可以求解这些问题,帮助学生掌握方程在日常生活中的应用。

三、装订书籍问题
题目描述学校要为班级的学生装订几本数学书,每册装订费用若干元,需要求
解装订一定数量书籍需要的总费用。

这种类型的问题也可以用一元一次方程进行求解。

四、水果购买问题
问题描述某种水果的单价以及购买的重量,需要计算购买这些水果总共需要多
少钱。

同样,通过列方程可以快速解决这类问题。

五、人数问题
给定几组人员的总数及各组人数的关系,例如某场活动男女参与人数的比例等,需要通过方程求解各组的人数。

六、时间问题
描述物体的速度、时间和距离之间的关系,例如某物体以一定速度行驶一段距
离所需的时间等。

通过方程可以方便地解决这类实际问题。

结语
这些是七年级一元一次方程应用题常见的题型,通过解答这些问题,学生不仅
可以提升对方程的理解和运用能力,也能体会到数学在日常生活中的实际应用。

希望同学们多加练习,熟练掌握这些题型的解题方法。

一元一次方程应用题8种类型解法及典型例题

一元一次方程应用题8种类型解法及典型例题

一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。

2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。

3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。

4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。

5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。

6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。

7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。

8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。

七年级下册数学一元一次方程应用题归类集锦(经典)

七年级下册数学一元一次方程应用题归类集锦(经典)

七年级下册数学一元一次方程应用题归类集锦(经典)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)1.审题:仔细阅读题目,找出能够表示本题含义的相等关系。

2.设未知数:根据提问,设出未知数。

3.列方程:利用已找出的等量关系,列出方程。

4.解方程:解所列的方程,求出未知数的值。

5.检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案(注意带上单位)。

二、各类题型解法分析一元一次方程应用题归类汇集:1.和、差、倍、分问题:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率…”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

3.等积变形问题:以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

4.调配问题、分配问题、配套问题、增长率问题、数字问题、方案设计与成本分析、古典数学、浓度问题等。

一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。

例3.现有直径为3米的圆柱形钢坯30米,可足够锻造直径为1米,长为3米的圆柱形机轴多少根?练:将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到毫米,π≈3.14).练1:甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇。

(完整版)一元一次方程实际问题归纳

(完整版)一元一次方程实际问题归纳

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。

列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。

(3)解此类题常常借助画草图来分析,理解行程问题。

①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或(快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

七年级一元一次方程应用题归类汇集题目

七年级一元一次方程应用题归类汇集题目

七年级一元一次方程应用题归类汇集题目
一、购物题
1.小明花了三分之二的钱买了一本书,余下的钱买了一个水杯,如果书的价格是x元,水杯的价格是
2.5元,求小明一共有多少钱?
2.一家商店打折,原价为80元的书现在只卖60元,求打折力度。

二、几何题
3.一块矩形花园的长是宽的3倍,如果长是x米,宽是多少米?
4.一个矩形的周长是24米,长比宽多2米,求矩形的面积。

5.一个长方形的长是宽的4倍,如果长为3x米,面积是多少平方米?
三、时间题
6.某地有两座高楼相距500米,A地楼顶高出地面20米,B地楼顶高出
地面x米,请计算两座楼垂直高度差x是多少。

7.王老师上学的路程是学生小明的4倍,如果小明走路花了30分钟,王
老师花了多少时间从家到学校?
四、食物题
8.学校食堂一周用了5公斤蔬菜,每天用的蔬菜相等,求每天用的蔬菜
数量。

9.小明每天早餐要吃3个苹果和2x个香蕉,求x是多少个?
五、汽车题
10.一辆汽车以每小时60公里速度向东开,另一辆汽车以每小时80公里
速度向南开,如果两辆汽车从同一地点同时出发,3小时后两车相距多少公里?
11.A地到B地有300公里,小明以每小时40公里的速度骑自行车,小王以每小时60公里的速度骑电动车,小可能比小明早到B地几小时?
以上是关于七年级一元一次方程的应用题汇集,希望对你的学习有所帮助。

一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类

一元一次方程方程应用题总结归类列方程解应用题,是初中数学的重要内容之一;许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.一行程问题:基本量、基本数量关系:路程=速度×时间,顺水速=静水速+水速,逆水速=静水速-水速,寻找相等关系的方法:抓住两码头之间的距离不变,水流速度,船在静水中的速度不变的特点来考虑;1相向问题,寻找相等关系的方法:甲走的路程+乙走的路程=两地距离2追击问题:寻找相等关系的方法:第一,同地不同时出发:前者走的路程=追者走的路程;第二,同时不同地出发:前者走的路程+两地距离=追者所走的路程3航行问题:4飞行问题:1、火车提速后由天津到上海的时间缩短了,若天津到上海的路程为1326km,提速前火车的平均速度为xkm/h,提速后火车的平均速度为ykm/h,x、y应满足的关系式为:2、甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇.甲比乙每小时多骑千米,求乙的时速各是多少3、一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是5∶3,问两车每秒各行驶多少米4、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;1求无风时飞机的飞行速度2求两城之间的距离;5、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.1甲、乙两人同时同地反向出发,问多少分钟后他们再相遇2甲、乙两人同时同地同向出发,问多少分钟后他们再相遇6、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里;1慢车先开出1小时,快车再开;两车相向而行;问快车开出多少小时后两车相遇2两车同时开出,相背而行多少小时后两车相距600公里3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车1、一列火车长150米,每秒钟行19米;全车通过长800米的大桥,需要多少时间2、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒3、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟;求这列火车的速度是每秒多少米车长多少米4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过6、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车上桥到车尾离要多少分钟7、一座铁路桥全长1200米,一列火车开过大桥需花费75秒;火车开过路旁电杆,只要花费15秒,那么火车全长是多少米8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米9、已知快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向而行,当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是多少秒10、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟11、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲;半分钟之后汽车遇到迎面跑来的乙;又过了2秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇12、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米;两车在距中点32千米处相遇;东西两地相距多少千米13、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米14、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米;当摩托车行到两地中点处,与汽车相距75千米;甲乙两地相距多少千米15、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程;16、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地17、学校运来一批树苗,五1班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵;如果这批树苗平均分给五1班的同学去植,平均每人植多少棵18、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米;中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙;求东西两村相距多少千米19、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米;甲到达B地后立即返回A地,在离B地千米处相遇;A、B两地之间相距多少千米20、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米;30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红;小红每分钟走多少米21、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米;上午11时到达B地后立即返回,在距离B地24千米处相遇;求A、B两地相距多少千米22、甲乙两队学生从相距18千米的两地同时出发,相向而行;一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络;甲队每小时行5千米,乙队每小时行4千米;两队相遇时,骑自行车的同学共行多少千米23、长100米的列车,以每秒20米的速度通过了一条座长500米的桥;列车通过这座桥要用多少秒24、一列货车要通过一条1800米长的大桥;已知从货车车头上桥到车尾离开桥共用120秒,货车完全在桥上的时间为80秒,这列货车长多少米25、两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时;这艘船在静水中的速度是多少千米这条河水流速度是多少千米26、甲、乙两个码头相距336千米;一艘船从乙码头逆水而上,行了14小时到达甲码头;已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时27、在400米的环形跑道上,甲乙两人同时起跑,如果同向跑3分20秒相遇,如果背向跑25秒相遇,已知甲比乙跑得快,求甲乙两人的速度各是多少28、一列客车车身上190米,每秒运行24米;在这列客车前面有一列长230米的货车,每秒运行18米,两列车在并行的两条轨道上运行;客车从后面追上并完全超过货车要用多少秒29、甲乙两人去同一地点办事,甲每小时走5千米,乙每小时走6千米,甲有急事先出发1小时后,乙才出发,经过几小时后能追上甲二工程问题:基本量、基本数量关系:把总工作量看作单位“1”工作量=工作效率×工作时间;相等关系:各部分工作量之和等于11.一件工程,甲独做10天完工,乙独做15天完工,二人合做几天完工2.一批零件,王师傅单独做要15小时完成,李师傅单独做要20小时完成,两人合做,几小时能加工完这批零件的错误!3.4.一项工作,甲单独做要10天完成,乙单独做要15天完成;甲、乙合做几天可以完成这项工作的80%5.一项工程,甲独做要12天完成,乙独做要18天完成,二人合做多少天可以完成这件工程的2/36.一项工程,甲独做要18天,乙独做要15天,二人合做6天后,其余的由乙独做,还要几天做完7.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天8.一项工程,甲单独做16天可以完成,乙单独做12天可以完成;现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程9.一项工程,甲独做要12天,乙独做要16天,丙独做要20天,如果甲先做了3天,丙又做了5天,其余的由乙去做,还要几天10. 一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完;用小卡车单独运,要几小时运完11. 小王和小张同时打一份稿件,5小时打了这份这稿件的65;如果由小王单独打,10小时可以打完;求如果由小张单独打,几小时可以打完;12. 一项工程,甲队独做15天完成,乙队独做12天完成;现在甲、乙合作4天后,剩下的工程由丙队8天完成;如果这项工程由丙队独做,需几天完成13. 甲和乙两队合修一条公路,完成任务时,甲队修了这条公路的158;如果乙队单独完成要24天,甲队单独做几天完成14. 一项工程,甲独做要10天,乙独做要15天,丙独做要20天;三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假15. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完16. 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成浙江江山市17. 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成18. 一项工程,由甲工程队修建,需要20天完成;由乙工程队修建,需要的天数是甲工程队的倍才能完成;两队合修共需要多少天完成19.20. 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作21. 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61;现由两队合做,多少天可以完成22.23.24. 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完25.26.27. 一件工作,甲队独做每天能完成这件工作的201,乙队单独完成这件工作需要12天,如果两面三刀队合作完成这件工作的201,需要多少天 28.29. 一件工作,甲单独做需要12天,乙的工作效率是甲的43,两个合做,几天能完成这件工作的54 30. 31. 一套家具,由一个老工人做40天完成,由一个徒工做80天完成;现由2个老工人和4个徒工同时合做,几天可以完成32. 一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满;现先开甲管,2小时后把乙管也打开,再过几小时池内蓄有3/4的水33.原是空池34.25、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程26、要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工4小时,完成了任务.已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件.三.分配问题:这类问题要搞清人数的变化,常见题型有:1既有调入又有调出;2只有调入没有调出,调入部分变化,其余不变;3只有调出没有调入,调出部分变化,其余不变;1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套2、、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母3、、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人4、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母某水利工地派 48 人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走5、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数6、某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利500元,制成酸奶销售,每吨可获利1200元,制成奶片销售,每吨可获利2000元;该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温限制,这批牛奶必须在4天内全部销售或加工完毕,为此,该厂设计出了两种可行方案:方案一:尽可能多的制成奶片,其余的直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; 你认为那种方式获利最多为什么四、浓度问题以盐水为例,像盐这样能溶于水或其他液体中的纯净物质叫做溶质;像水这样能溶解物质的纯净液体叫做溶剂;溶质与溶剂的混合物叫做溶液,溶质在溶液中所占的百分比叫做浓度,又叫做百分比浓度;浓度问题常见的数量关系式有:溶液的重量=溶质的重量+溶剂的重量浓度=溶质重量÷溶液重量×100%溶液的重量=溶质重量÷浓度溶质重量=溶液重量×浓度1、含盐6%的盐水900克,要使其含盐量加大到10%,需要加盐多少克2、把浓度为25%的盐水30千克,加水冲淡为15%的盐水,问需要加水多少千克3、有浓度为%的盐水210克,为了制成浓度为%的盐水,从中要蒸发掉多少克水4、5、一瓶100克的酒精溶液加入80克水后,稀释成浓度为40%的新溶液,原溶液的浓度是多少5、甲、乙两种酒精浓度分别为70%和55%,现在要配制浓度为65%的酒精3000克,应当从这两种酒精中各取多少克6、一杯纯牛奶,喝去25%再加满水,又喝去25%,再加满水后,牛奶的浓度是多少7、三个容积相同的瓶子里装满了酒精溶液,酒精与水的比分别为2:1,3:1,4:1,当把三种酒精溶液混合后,酒精与水的比是多少1:甲、乙、丙三人到银行存款,甲存入的款数比乙多错误!,乙存入的款数比丙多错误!,问甲存入的款数比丙多几分之几2:小明从甲地到乙地需要2天,第一天走了全程地错误!多72千米,第二天所走的路程等于第一天所走路程地错误!,求甲乙两地的距离;3:兄弟四人合修一条路,结果老大修了另外三人的一半,老二修了另外三人的错误!,老三修了另外三人总数的错误!,老四修了91米,问:这条路长多少米4:一本书,已经看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的错误!,这本书共有多少页5:书店售一种挂历,每售出一种棵获利18元,售出一部分后每本降价10元出售,全部售完已知减价出售的本数是原价出售挂历本数的错误!,书店售完这种挂历共获利2870元,问:书店共售出这种挂历多少本6:甲乙两个水杯,甲杯有水1千克,乙杯是空的,第一次将甲杯水的错误!倒入乙杯,第二次将乙杯水的水的错误!倒回甲杯里,第三次将甲杯里的水的错误!倒回乙杯里,第四次将乙杯里水的错误!倒回甲杯,照这样来回倒下去,一直倒了1999次以后,甲杯里还剩下水多少克7:哥哥有250张邮票,弟弟有200张邮票,哥哥的邮票比弟弟的邮票多几分之几弟弟邮票比哥哥少几分之几2.一瓶容器盛满药液10升,第一次倒出若干升,用水加满,第二次倒出同样的升数,这时容器剩下药液升那么第一次倒出升数多少;五、利息问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率;利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率20%1、某同学把250元钱存入银行,整存整取,存期为半年;半年后共得本息和元,求银行半年期的年利率是多少不计利息税2.李叔叔于2000年1月1日在银行存了活期储蓄1000元,如果每月的利率是%,存款三个月时,可得到利息多少元本金和利息一共多少元3、叔叔今年存入银行10万元,定期二年,年利率% ,二年后到期,扣除利息税5% ,得到的利息能买一台6000元的电脑吗4、小华妈妈是一名光荣的中国共产党员,按党章规定,工资收入在400-600元的,每月党费应缴纳工资总额的%,在600-800元的应缴纳1%,在800-1000元的,应缴纳%,在1000以上的应缴纳2%,小华妈妈的工资为2400元,她这一年应缴纳党费多少元5、银行定期壹年存款的年利率为%,某人存入一年后本息元,问存入银行的本金是多少元六. 利润问题1销售问题中常出现的量有:进价、售价、标价、利润等2有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少2、某商品的进价是500元,标价是750元,商店要求以利润低于5%的售价打折出售,售货员最低可以打折出售此商品3、某书店出售一种优惠卡,花100元买这种卡后,可打6折,不买卡可打8折,你怎样选择购物方式;4、某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%;则进价为每件多少元5、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少6、某种商品的进价是1000元,售价为1500元, 由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品;7、某商品的进价是150元,售价是180元;求此商品的利润率8、商店对某种商品作调价,按原价的八五折出售,此时商品的利润率是9%, 此商品的进价为500元;求商品的原价9、某商品的进价为200元,标价为300元,折价销售时的利润率为5%,此商品是按几折销售的10、某商品标价是1955元,按此标价的九折出售,利润率为15%;求此商品的进价是多少七、数字问题1要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9则这个三位数表示为:100a+10b+c;2数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示;1、一个两位数,十位上的数字比个位上的数字大1,十位与个位上的数字和是这个两位数的1/6,这两个数是多少2、一个两位数字之和为11,如果原数加45,得的数恰是原两位数字交换后的两位数,求原来这个两位数;3、一个两位数,十位上的数字比个位上的数字的2倍大3,把这两位数的位置对调后组成的两位数比原数小45,求原来这个两位数;4、一个三位数,基个位上的数字相加之和为9,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字小1,求这个三位数;5、三个连续自然数,它们的和为108,求这三个数;6、有一个两位数,十位上的数字比个位上的数字大2,若把这个两位数的十位与个位对调,所得的两位数比原数小18,求原来的两位数;7、一个两位数,十位数字比个位数字少3,两个数字之和等于这两位数的1/4;求这个两位数;8、一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个位上的数字是十位上的数字的3倍,求这个三位数;9、一个两位数的个位与十位数字的和为15,如果把十位数字与个位数字对调,则所得新数比原数小27,则原来的两位数是多少10、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;11、一个三位数,三个数位上的数字和为13,百位上的数字比十位上的数少3,个位上的数字是十位上的数字的2倍,求这三位数;12、有一个两位数,十位上的数比个位上的数大2,若把这个两位数的十位与个位对调所得的两位数比原数小18,求原来的两位数;13、三个连续偶数的和比其中最小的一个大14,求这三个连续偶数的积;14、一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的1/5,求这个两位数;15、甲、乙、丙三辆汽车所运货物的吨数比是6:5:4,已知三辆汽车共运货物120吨,求这三丙汽车各运多少吨货物16、甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮数之比是1:2;乙、丙两仓存粮数这比是1:,求甲、乙、丙三仓各存粮多少吨17、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资额度比例是5:2:3,问他们各应提交多少元18、三个连续整数之和是81,这三个整数分别是:_______ 、_______、_______连续三个偶数之和是276,这三个数分别是:_______、_______、_______ 三个数之比是5:6:7,他们的和是198,则这三个数分别是:_______、_______、_______19、已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数;20、一个两位数,个位数字比十位数字的2倍大3,如果把个位数字与十位数字对调,则所得两位数比原两位数大45;求这个两位数;21、甲、乙、丙三辆汽车所运货物的吨数是6:5:4,已知三辆汽车共运货物120吨,求这三辆汽车各运货物多少吨22、要拌制一种建筑用的沙桨,生石灰、水泥、黄沙的质量比为2:1:4,现在要拌制这种沙桨1400千克,需生石灰、水泥、黄沙各多少23、一个两位数,十位数字比个位数字少3,两个数字之和等于这个两位数的1/4,求这个两位数;24、有一个三位数,其各数位的数字之和是16,十位数字是个位数字与百位数字的和,若把百位数字与个位数字对调,那么新数比原数大594,求原数;25、一个四位数,千位数字是1,若把1移到个位上去,则所得的新四位数字是原来的5倍少14,求这个四位数;26、一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数27、一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数;八、和倍问题:基本相等关系:增长量=原有量×增长率,现有量=原有量+增长量或现有量=原有量-降低量寻找相等关系的方法:抓住关键性词语:共、多、少、倍、几分之几以及原有量、先有量之间的关系推导出相等关系;1、根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了%,1990年6月底每10万人中约有多少人具有小学文化程度2、某商场甲、乙两个柜组十二月份营业额共64万元;一月份甲增长了20%,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程应用题归类_题型归纳
小编导语:小编整理了关于一元一次方程应用题归类,包括一元一次方程应用题分类和一元一次方程应用题归类练习题及答案,希望对于同学们学好一元一次方程有所帮助!祝同学们学习进步,数学成绩步步高升!
一元一次方程应用题分类:数字问题、行程问题(直线上的相遇和追击、环形跑道上的相遇和追击)、分配问题、配套问题、年龄问题、调配问题、利润问题、行船问题、方案设计问题、日历问题、鸡兔同笼问题、和差倍分问题、工程问题
一元一次方程应用题集:
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。

(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。

3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。

解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。

(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
一元一次方程应用题答案:
1.设答对x题,则不答或答错(25-x)题,根据题意,得
第一问:4x - (25-x)=90 解得x=23
第二问:4x - (25-x)=60 解得x=17
2. 第一问:设单租45座客车为x辆,根据题意,得
45x=60*(x-1)-15 解得x=5
则参加春游的师生总人数为:45X5=225(人)
第二问:250X5=1250(元) 300X4=1200(元) 因为1250元大于1200元
所以单租60座客车省钱。

第三问:租一辆45座,3辆60座的最省钱。

3.设x立方米木料做桌面,则(5-x)立方米的木料做桌腿,根据题意,得:
4*50x=300*(5-x) 解得x=3
配成桌子数:3X50=150(张)
4.根据题意得十位数字为8。

设百位上的数字为x ,则个位上的数字为(8-x)
100x+80+8-x+594=100*(8-x)+80+x 解得x=1
则原数是187
5.设第一个数为x ,则第二个数为(x+4),第三个数为1/2(x+2) ,第四个数为2*(x+2),根据题意,得x+(x+4)+1/2(x+2)+2*(x+2)=99
解得:x=20
则拆得的这四个数分别为:20 ,24 ,11 ,44
注:一元一次方程应用题归类问题,仅供参考,更多的一元一次方程问题需要同学们积极主动的的去探寻和思考!
初一数学一元一次方程相关链接》》》》
二元一次方程组教案一元一次方程教案一元一次方程的概念
一元一次方程练习题一元一次方程练习题及答案。

相关文档
最新文档