一元一次方程题型分类
一元一次方程应用题十大题型
有关“一元一次方程应用题”的十大题型有关“一元一次方程应用题”的十大题型如下:1.追及问题:这类问题通常涉及到两个物体或人在不同地点出发,以不同的速度移动,最终在某一点相遇。
求解这类问题需要建立一元一次方程来找出相遇的时间和地点。
2.相遇问题:与追及问题相反,相遇问题涉及到两个物体或人在同一地点出发,以不同的速度移动,最终在某一点相遇。
同样需要建立一元一次方程来找出相遇的时间和地点。
3.比例问题:这类问题涉及到比例关系,如两个量之间的增长或减少的比例。
求解这类问题需要建立一元一次方程来找出未知量。
4.利润与折扣问题:这类问题涉及到商业中的利润和折扣,需要建立一元一次方程来求解未知的利润或折扣。
5.工作与效率问题:这类问题涉及到工作量和效率之间的关系,通常需要建立一元一次方程来求解未知的工作量或效率。
6.行程问题:这类问题涉及到物体或人的运动路程、速度和时间之间的关系。
常见的问题有相遇和追及、环形跑道、过桥等。
需要建立一元一次方程来求解未知的速度或时间。
7.溶液与浓度问题:这类问题涉及到溶液和其中的溶质浓度,通常需要建立一元一次方程来求解未知的浓度或溶质质量。
8.工程与工作量问题:这类问题涉及到工程项目和工作量之间的关系,通常需要建立一元一次方程来求解未知的工作量或完成时间。
9.几何图形问题:这类问题涉及到几何图形的面积、周长、体积等,通常需要建立一元一次方程来求解未知的几何量。
10.生产与利润问题:这类问题涉及到企业的生产和利润之间的关系,通常需要建立一元一次方程来求解未知的生产成本、销售价格或利润。
一元一次方程应用专题十大题型(包括数轴上动点问题)
一元一次方程应用专题十大题型(包括数轴上动点问题)一元一次方程应用题十大类型一:配套问题配套问题1. 某车间有52名工人生产甲、乙两种零件,每人每小时平均能生产15个甲种零件或18个乙种零件,1个甲种零件配4个乙种零件,则分配多少名工人生产甲种零件,多少名工人生产乙种零件,恰好使每小时生产的甲、乙两种零件零件配套?2. 加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人生产大小齿轮,才能每天加工的大小齿轮刚好配套?二.利润问题1.某商场购进一批服装,每件服装的进价为200元,由于换季,商城决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是多少?2.某商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商场总的盈亏情况()A.亏损20元B.盈利30元C. 亏损50元D.不赢不亏三. 比赛积分问题1.小明参加竞赛活动,试卷由50道选择题组成,评分标准规定:选对一题得3分,不选得0分,选错一题倒扣1分.已知小明有5题没选,得103分,则他选错了_______道题.趣味应用题 '五羊杯'竞赛题2. 50名学生中,会讲英语的有36人,会讲日语的有20人,即不会讲英语也不会讲日语的有8人,即会讲英语又会讲日语的有_______人.四工程问题1. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲乙合作,需要几小时完成?2. 某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.五.行程问题1. 相遇问题例:A,B两地相距450km,甲乙两车分别从A,B两地同时出发,相向而行.已知甲车得速度为120km/h,乙车得速度为80km/h,经过t h两车相距50km,则t的值是____________.2.追及问题例:甲、乙两人练习跑步,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设 x s 后甲追上乙,则可列方程_________.3.小李骑自行车从甲地到乙地,出发40分钟后,小王骑自行车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度时小李骑自行车的速度的3倍.求甲乙两地的距离.4.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8点同时出发,到上午10点两人相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.5.甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依次顺时针方向环形,乙点依次逆时针环形,若乙的速度是甲的速度的4倍,则他们第2000次相遇在边()。
专题07 一元一次方程的应用题重难点题型分类(解析版)—七年级数学上册重难点题型分类必刷题(人教版)
专题07一元一次方程的应用题重难点题型分类(解析版)专题简介:本份资料包含一元一次方程这一章的常考应用题的全部题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:配套问题、古典应用题、利润问题、费用与方案选择问题、分层计费问题、工程问题、路程问题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一配套问题1.某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,则可列方程为()A .()22000120022x x ⨯=-B .()21200200022x x ⨯=-C .()12002200022x x =⨯-D .()20002120022x x =⨯-【详解】解:由题意可得,2×1200x=2000(22-x ),故选:B .2.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x =200(60-x ),解得x =20,答:安排20人加工汤料包.3.某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?【详解】解:(1)设可设分配x 名工人生产螺栓,(24)x -名工人生产螺母.由题意得:312218(24)x x ⨯=⨯-,解得:12x =,2412x -=(人).答:应该分配12名工人生产螺栓,12名工人生产螺母,才能使每天的产品刚好配套.4.某工厂车间有28个工人,每人每天可生产A 零件18个或B 零件12个(每人每天只能生产一种零件),一个A 零件配两个B 零件,且每天生产的A 零件和B 零件恰好配套.设该工厂有x 名工人生产A 零件:(1)求车间每天生产A 零件和B 零件各多少个?(用含x 的式子表示)(2)求该工厂有多少工人生产A 零件?【详解】解:(1)设该工厂有x 名工人生产A 零件,共生产A 零件18x 个,则有(28-x )名工人生产B 零件,共生产B 零件12(28-x )个;答:每天生产A 零件18x 个,生产B 零件12(28-x )个;(2)根据题意得2×18x =12(28-x ),解得x =7,答:该工厂有7名工人生产A 零件.题型二古典应用题5.我国明代数学读本《算法统宗》中有一道题,其题意为∶客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x 人,则可列方程为()A .7498x x +=-B .7498x x -=+C .4879x x +-=D .4879x x -+=【详解】解:设客人有x 人,根据题意,得7498x x +=-.故选:A .6.我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大和尚有x 人,则根据题意可列方程为()A .()31001003x x +-=B .()31001003x x --=C .10031003x x --=D .10031003x x -+=【详解】解:设大和尚有x 人,小和尚(100)x -,由于大和尚1人分3个,小和尚3人分1个正好分完,故可列方程10031003x x -+=,故选:D .7.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗,设清酒有x 斗,那么可列方程为()A .()103530x x +-=B .()310530x x +-=C .305103x x -+=D .305310x x -+=【详解】解:设清酒有x 斗,由题意得,()103530x x +-=,故选A .8.(西雅)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层逐层翻倍增加).根据此诗,可以得出塔的顶层有()A.3盏灯 B.4盏灯 C.5盏灯 D.6盏灯【详解】解:设顶层x 盏灯,可得方程:x+2x+4x+8x+16x+32x+64x =381,得:x =3,故选:A .9.(雅礼)我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是()A .3(x +4)=4(x +1)B .3x +4=4x +1C .x +4=x +1D .x ﹣4=x ﹣1【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),故3(x +4)=4(x +1).故选:A .题型三利润问题10.一件夹克衫先按成本价提高40%标价,再将标价打8折出售,结果获利56元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是()A .()0.810.456x x +=+B .()0.810.456x x +=-C .()0.810.456x x +=-D .()0.810.456x x +=+【详解】解:设这件夹克衫的成本价是x 元,由题意得,0.8(140%)56x x +-=,即()0.810.456x x +=+.故选:A .11.一家商店将某件服装按成本价提高30%后,又以8折优惠卖出,结果每件仍获利12元,那么这件商品的成本价为元.【详解】解:设这件商品的成本价为x 元,由题意知,()130%0.812x x +⋅-=,得300x =,即这件商品的成本价为300元.12.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.【详解】设盈利50%的那件衣服的进价是x 元,根据进价与得润的和等于售价列得方程:50%120x x +=,解得:80x =,设另一件亏损衣服的进价为y 元,它的商品利润是()20%y -元,列方程:()20%120y y +-=,解得:150y =.那么这两件衣服的进价是230x y +=元,而两件衣服的售价为240元.则24023010-=(元).故卖这两件衣服的利润为10元.店买了一个道具,现此商店若按标价打八折销售该道具一件,则可获纯利润300元,其利润率为20%,现如果按同一标价打九折销售该道具一件,那么获得的纯利润为()A.525元B.337.5元C.500元 D.450元【解答】解:设商品的标价是x元,根据题意得80%x-1500=300,解得x=2250,2250×90%-1500=525.获得的纯利润为525元.故答案是:525.,故答案为:A.14.(雅礼)某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000,解得:x=400,购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.15.列方程解应用题:一商场经销的A、B两种商品,A种商品每件进价40元,售价60元;B种商品每件进价50元,利润率为60%.(1)A种商品每件利润为元,每件B种商品售价为元.(2)若该商场购进A、B两种商品共80件,恰好总进价为3400元,求购进A种商品多少件?【详解】(1)解:A种商品的利润为:60-40=20元;B种商品的利润为:50×60%=30元;∴B种商品的售价为:80元;(2)设购进A种商品x件,则购进B种商品(80-x)件,根据题意得:40x+50(80-x)=3400,解得:x=60,∴购进A种商品60件.16.2021年,平和堂的一家服装店因新冠疫情的再次出现,将某种自创品牌的服装打折销售.如果每件服装按标价的6折出售,可盈利80元;若每件服装按标价的5折出售,则亏损80元.(1)每件服装的标价为多少元?(2)若这种服装一共库存80件.按着标价7.5折出售一部分后,将余下服装按标价的5折全部出售,结算时发现共获利5600元,求按7.5折出售的服装有多少件?【详解】(1)解:(1)设每件服装的标价为x元,依题意有0.6x-80=0.5x+80,解得x=1600.答:每件服装的标价为1600元.(2)解:(2)设按7.5折出售的服装有y件,依题意有0.75×1600y+0.5×1600(80-y)-80×(0.5×1600+80)=5600,解得y=30.故按7.5折出售的服装有30件.17.某玩具厂出售一种玩具,其成本价每件28元,现有两种方式销售.方式1:直接由玩具厂的门市部销售,每件产品售价为40元,同时每月还要支出其他费用3600元;方式2:委托某一商场销售,出厂价定为每件35元.(1)若每个月销售x件,则方式1可获得利润为,方式2可获得利润为;(2)若每个月销售量达到2000件时,采用哪种销售方式获得利润较多?(3)请列一元一次方程求解:每个月销售多少件时,两种销售方式所得利润相等?【详解】(1)按方式1销售时的利润是:(40−28)x−3600即12x−3600;x ;7x按方式2销售时的时利润是(35−28)x即7x,故答案为:123600(2)当每月销售达2000件时,方式1出售的利润为:(40-28)×2000-3600=20400(元),方式2销售的利润为:(35-28)×2000=14000(元),∵20400>14000,采用方式1直接由厂家门市部出售的利润较多。
一元一次方程应用题 类型归纳
一元一次方程应用题
一元一次方程是指只含有一个未知数的一次方程,可表示为ax+b=0,其中a和b为已知数,x为未知数。
一元一次方程应用题常见的类型包括:
1. 购买商品问题:如某商品的价格为x元,现有b元,求买几件商品后还剩a元。
2. 时间、速度、距离问题:如A车以每小时x公里的速度行驶,经过b小时后行驶了a公里,求A车的速度。
3. 水混合问题:如已知某种酒精溶液中酒精的浓度为x%,现加入b 升水后酒精的浓度为a%,求原溶液中酒精的浓度。
4. 利润问题:如一件商品的进价为b元,售价为x元,求多少件商品时能够获利a元。
这些应用题主要通过建立一元一次方程来求解,需要根据题目中给出的已知条件和未知量,写出方程并解出未知数的值。
复习必看 - 一元一次方程9大题型解析!
复习必看 | 一元一次方程9大题型解析!一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
一元一次方程应用题七种类型
一元一次方程的典型题型1. 和、差、倍、分问题:( 1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提. 常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:( 1)既有调入又有调出;( 2)只有调入没有调出,调入部分变化,其余不变;( 3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且K a< 9,0 < b< 9,0 < c< 9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率X工作时间6. 行程问题:(1)行程问题中的三个基本量及其关系:路程=速度X时间.( 2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7. 商品销售问题有关关系式:商品利润=商品售价一商品进价=商品标价X折扣率一商品进价商品利润率=商品利润/ 商品进价商品售价=商品标价X折扣率8. 储蓄问题⑴ 顾客存入银行的钱叫做本金, 银行付给顾客的酬金叫利息, 本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息的20%付利息税⑵利息=本金X利率X期数本息和=本金+利息利息税=利息X税率(20%【典型例题】【典型例题】一、一元一次方程的有关概念例1. 一个一元一次方程的解为2,请写出这个一元一次方程.1分析与解:这是一道开放性试题,答案不唯一•如2x=1, x-2=0等等.【点拨】解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成•二、一元一次方程的解例2.若关于x的一兀一次方程2x k x33k 1的解是x21,则k的值是( )A. 2 B . 1C 13D.0711分析:根据方程解的定义,一兀「次方程的解能使方程左、右两边的值相等,把x= -1代入原方程得到一个关于k的一兀一次方程,解这个方程即可得到k的值.■2-k ・1-3k解:把x=-1代入2x k X 3k[中得,^^- - =1,解得:k=1.答案为B.3 2 3 2【点拨】根据方程解的概念,直接把方程的解代入即可三、一元一次方程的解法例3.如果2005 200.5 x 20.05,那么x等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.心 2 3 1例4. 3{?[尹-1)-3卜3}=3分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生1解:去大括号,得[2(X-1)-3]-2=31去中括号,得2(X-1)-3-2=31 1去小括号,得?x-?-3-2=31 1移项,得歹石+3+2+31 17合并,得歹=亍系数化为1,得:x = 17四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1 )求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y )名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2 (1680-2y ) +y=2280解:(1 )设1个小餐厅可供y 名学生就餐,则1个大餐厅可供(1680-2y )名学生就餐, 根据题意,得2(1680-2y )+y=2280解得:y=360 (名) 所以 1680-2y=960 (名) 答:(略)•(2)因为 960 5 360 2 5520 5300,所以如果同时开放 7个餐厅,能够供全校的 5300名学生就餐. 【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可•例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等•该工艺品每件的进价、标 价分别是多少元?分析:根据利润=售价-进价与售价=标价X 折扣率这两个等量关系以及按标价的八五折 销售该工艺品8件与将标价降低 35元销售该工艺品12件所获利润相等,就可以列出一元一 次方程•解:设该工艺品每件的进价是X 元,标价是(45+x )元.依题意,得:8(45+x )X 0.85-8x= (45+X-35 ) X 12-12x解得:x=155 (元) 所以 45+x=200 (元) 答:(略)•【点拨】这是销售问题,在解答销售问题时把握下列关系即可: 商品售价=商品标价X 折扣率商品利润=商品售价一商品进价=商品标价X 折数一商品进价例7. (2006 •益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见•根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?分析:这是一道情景对话问题,具有一定的新颖性 •解答这类问题的关键是要从对话中捕捉等量关系•从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5 ) =95元•根据上述等量关系可以得到相应的方程•解:设笔记本每本 x 元,则钢笔每支为 (x+2)元,据题意得10 (x+2) +15x=100-5解得,x=3 (元) 所以x+2=5 (元)答:(略)•商品利润率商品利润 商品进价X 100%。
一元一次方程应用题题型与解题方法归类
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt (2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
人教版七年级数学上册第三章一元一次方程常见题型分类
一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t 1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。
一元一次方程的五种题型,七年级
一元一次方程的五种题型,七年级全文共四篇示例,供读者参考第一篇示例:一元一次方程是初中数学的基础知识之一,也是数学学习的重要内容。
在七年级,学生开始接触一元一次方程,掌握解答各种类型的一元一次方程是十分重要的。
本文将介绍关于一元一次方程的五种题型,以帮助学生更好地理解和掌握这一知识点。
一元一次方程一般形式为ax+b=c,其中a,b,c为已知实数,x 为未知数。
解一元一次方程的基本原理是通过逆运算将未知数x解出来,使等式两边等值。
第一种题型:简单的一元一次方程2x+3=7,求解x的值。
解题步骤:将等式化为2x=7-3;得到2x=4;最终解得x=2。
第五种题型:实际问题中的一元一次方程小明买了一张CD,花了28元,比买两盘DVD少12元,求CD 和DVD的价格。
设CD的价格为x元,DVD价格为y元,根据题意可得:x=28;y=2x+12;解得CD价格为28元,DVD价格为44元。
通过以上五种题型的例题,希望能帮助同学们更好地掌握一元一次方程的解题方法,提高数学学习的效率和水平。
在解题过程中,同学们要注意细节,仔细分析题目,灵活运用逆运算,以确保正确解题。
继续努力,加油!第二篇示例:一元一次方程是初中阶段学习数学的重要内容之一,一元一次方程的题型多种多样,通过解题可以对学生的逻辑推理能力和数学思维能力进行有效的锻炼。
下面将介绍关于一元一次方程的五种常见题型,供七年级学生参考。
第一种题型是简单的一步方程。
这类题目一般是形如ax+b=c的方程,其中a、b、c均为整数,学生只需一步操作即可得出方程的解。
例如:2x+3=7,学生只需要将b移至等号右边,再将a除以系数即可得出x=2的解。
第二种题型是含有括号的方程。
这类题目一般是形如ax+(b-c)=d 的方程,学生需要先将括号内的式子进行运算,然后再进行解方程。
例如:3(x+2)=14,学生首先要将括号内的式子3(x+2)按照分配律进行展开,得到3x+6=14,然后按照第一种题型的方法解方程即可得到x=2的解。
新人教部编版七年级数学一元一次方程常见题型分类(无答案)
一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1。
一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2。
一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1。
某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7。
5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2。
一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3。
整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4。
某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5。
整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数? 行程问题行程问题中有三个基本量:路程、时间、速度。
一元一次方程各种题型
一元一次方程各种题型一元一次方程是数学中的基础概念,通常只含有一个未知数,且未知数的指数为1。
这里,我们将解析9种常见的一元一次方程题型,并提供详细的解答。
1、题型一:简单一元一次方程例题:2x + 3 = 9解析:移项得2x = 9 - 3,再除以2得x = 3。
2、题型二:含括号的一元一次方程例题:2(x - 2) - 3 = 5解析:去括号得2x - 4 - 3 = 5,移项合并得2x = 12,最后除以2得x = 6。
3、题型三:含分数的一元一次方程例题:(2x - 1)/3 = (x + 2)/4解析:去分母得4(2x - 1) = 3(x + 2),去括号得8x - 4 = 3x + 6,移项合并得5x = 10,最后除以5得x = 2。
4、题型四:含绝对值的一元一次方程例题:|2x - 3| = 5解析:分两种情况讨论,当2x - 3 ≥0时,2x - 3 = 5;当2x - 3 < 0时,-(2x - 3) = 5。
分别解得x = 4 和x = -1。
5、题型五:含参数的一元一次方程例题:ax + b = 0 (a ≠0)解析:移项得ax = -b,因为a不为0,所以两边同时除以a得x = -b/a。
6、题型六:一元一次不等式与方程结合例题:解不等式组{2x - 1 < 5, x + 3 ≥2(x - 1)} 并求整数解。
解析:分别解两个不等式得x < 3 和x ≤5,取交集得解集为x < 3,整数解为x = 1, 2。
7、题型七:一元一次方程应用题(行程问题)例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?解析:设两人相遇需要t 小时,根据题意列方程(6 + 4)t = 20,解得t = 2。
8、题型八:一元一次方程应用题(工程问题)例题:一项工程甲单独做需要10天完成,乙单独做需要15天完成。
解一元一次方程7种题型
xa
2x 1
x 1
把a=1代入
中得
,
1
1
5
2
5
2
去分母,得2(2x-1)+10=5(x+1),
去括号,得4x-2+10=5x+5,
移项、合并同类项,得-x=-3,
系数化为1,得x=3,
答:a的值为1,原方程正确的解为x=3.
2x a 2x 1
1
,去分母
3
6
变式.已知某同学解关于x的一元一次方程
移项得:
x7
合并同类项得:
系数化为1得x 7
考点4 一元一次方程中含字母参数问题
kx
2 2x
例题: 已知方程 2 3( x 1) 0 的解与关于x的方程
2
的解互为倒数,求k的值.
1
解:解方程 2 3( x 1) 0 得:x
,
3
∵方程 2 3( x 1) 0
2x 1 x 3
解方程1
, 解得:x 1
5
10
1
将x 1代入污染的方程得2 y 1,
2
1
解得:y
2
1
被污染的常数应是
2
考点7 规定新定义问题
b
b
例题:我们规定:若关于x的一元一次方程 ax b(a 0) 的解 x
满足 b a ,则
a
a
称该方程为“差解方程”,例如:2x 4 的解为 x 2 满足 2 4 2 ,所以方程 2x 4
4
.
变式1.已知两个整式 A x2 2 x ,B=
一元一次方程的五种题型,七年级
一元一次方程的五种题型,七年级
一元一次方程的五种题型如下:
1. 直接求解型:给定方程,通过移项、合并同类项和系数化为1,直接求出方程的解。
2. 方程组的求解:通过消元法或代入法求解含有两个未知数的一元一次方程组。
3. 含绝对值的方程:通过去绝对值符号,将方程转化为分段函数的形式,然后分别求解每个区间内的方程。
4. 含有字母系数的一元一次方程:通过将字母系数看作已知数,代入求解。
5. 应用题:通过分析题意,建立一元一次方程,然后求解。
希望对您有所帮助!。
七年级一元一次方程应用题题型有哪些
七年级一元一次方程应用题题型有哪些
一、相遇问题
在这类题型中,通常会给出两个物体相遇的条件,例如两辆车从不同地方同时
出发相向而行,求它们相遇的时间。
利用一元一次方程可以很容易地解决这类问题。
二、零用钱问题
这类题型通常会描述一个人手中有一定数量的钱,先进行一系列购物后剩余的钱。
通过列方程的方式可以求解这些问题,帮助学生掌握方程在日常生活中的应用。
三、装订书籍问题
题目描述学校要为班级的学生装订几本数学书,每册装订费用若干元,需要求
解装订一定数量书籍需要的总费用。
这种类型的问题也可以用一元一次方程进行求解。
四、水果购买问题
问题描述某种水果的单价以及购买的重量,需要计算购买这些水果总共需要多
少钱。
同样,通过列方程可以快速解决这类问题。
五、人数问题
给定几组人员的总数及各组人数的关系,例如某场活动男女参与人数的比例等,需要通过方程求解各组的人数。
六、时间问题
描述物体的速度、时间和距离之间的关系,例如某物体以一定速度行驶一段距
离所需的时间等。
通过方程可以方便地解决这类实际问题。
结语
这些是七年级一元一次方程应用题常见的题型,通过解答这些问题,学生不仅
可以提升对方程的理解和运用能力,也能体会到数学在日常生活中的实际应用。
希望同学们多加练习,熟练掌握这些题型的解题方法。
一元一次方程应用题8种类型解法及典型例题
一、概述1. 介绍一元一次方程的定义和基本形式2. 引出本文将要讨论的内容二、一元一次方程的八种类型1. 类型一:简单应用题1)例题:小明买了一些苹果,一共花了20元,每个苹果2元,问他买了多少个苹果?2)解法:设苹果的数量为x,根据题意可列出方程2x=20,解得x=10。
2. 类型二:两个未知数的应用题1)例题:甲乙两地相距180公里,相对而行,甲地的时速是每小时30公里,问几小时能相遇?2)解法:设相遇时间为t小时,甲地行驶的距离为30t,乙地行驶的距离为180-30t,根据题意可列出方程30t+30t=180,解得t=3。
3. 类型三:含有括号的应用题1)例题:一个数比8大,乘以3再减去2的结果是20,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程3(x-8)-2=20,解得x=18。
4. 类型四:含有分数的应用题1)例题:某数的1/3等于它的2/5减去3,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程1/3=2/5-3,解得x=-9。
5. 类型五:含有小数的应用题1)例题:一块钢铁的重量是另一块的3/5,如果重量相差5.2公斤,问两块钢铁的重量各是多少?2)解法:设较重的钢铁重量为x,根据题意可列出方程x-x*3/5=5.2,解得x=13。
6. 类型六:含有分母的应用题1)例题:一个数加上15的4/5等于这个数的3/4,问这个数是多少?2)解法:设这个数为x,根据题意可列出方程x+15=3x/4,解得x=60。
7. 类型七:字母表示未知数的应用题1)例题:甲乙两个数的和是50,甲是乙的2倍,问甲乙两个数各是多少?2)解法:设甲的数为x,乙的数为y,根据题意可列出方程x+y=50和x=2y,解得x=40,y=10。
8. 类型八:几何问题转化为一元一次方程1)例题:一个三角形的底边长度是两腿长度的和的2倍,底边长8米,腿长是多少?2)解法:设腿长为x,根据题意可列出方程2x+x=8,解得x=4。
一元一次方程解应用题的几种常见题型
一元一次方程解应用题的几种常见题型一元一次方程解应用题的几种常见题型列一元一次方程解应用题是七年级数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
因此将列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住,确定标准量与比校量,并注意每个词的细微差别。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化,常见题型有:①既有调入又有调出;②只有调入没有调出,调入部分变化,其余不变;③只有调程为一个成长③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
(6)溶液配制问题。
其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(7)利润率问题。
其数量关系是:商品的利润=商品售价-商品的进价;商品利润率=商品利润/商品进价×100%,注意打几折销售就是按原价的百分之几出售。
一元一次方程9大题型
一元一次方程9大题型一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)(2)因为960×5+360×2=5520>5300 ,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85-8x=(45+x-35)×12-12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
七年级初一下册数学一元一次方程必须掌握的9种重要题型
七年级初一下册数学一元一次方程必须掌握的9种重要题型方程的有关概念1.方程:含有未知数的等式就叫做方程。
2.一元一次方程: 只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
例如: 1700+50x=1800, 2 (x+1.5x) =5等都是一元一次方程。
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。
注:(1)方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。
(2)方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。
等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a+c=b+c/a-c=b-c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么a/c=b/c移项法则把等式一边的某项变号后移到另一边,叫做移项。
去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。
解方程的一般步骤:1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另-边,移项要变号)4.合并(把方程化成ax = b (a≠0)形式)5.系数化为1 (在方程两边都除以未知数的系数a,得到方程的解x=)列一元一次方程解应用题的一般步骤1.列方程解应用题的基本步骤注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上。
专题03 一元一次方程重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版
专题03 高分必刷题-一元一次方程重难点题型分类(解析版)专题简介:本份资料包含《一元一次方程》这一章除应用题之外的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含七类题型:等式的性质、一元一次方程的定义、已知一元一次方程的解求参数、解一元一次方程、 同解或错解方程、含参方程解的个数问题、定义新运算类压轴题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。
题型一 等式的性质1.(青竹湖)运用等式的性质,下列等式变形错误的是( ) A .若x ﹣1=2,则x =3 B .若,则x ﹣1=2xC .若x ﹣3=y ﹣3,则x =yD .若3x =2x +4,则3x ﹣2x =4【解答】解:A 、若x ﹣1=2,根据等式的性质1,等式两边都加1,可得x =3,原变形正确,故这个选项不符合题意;B 、若x ﹣1=x ,根据等式的性质2,两边都乘以2,可得x ﹣2=2x ,原变形错误,故这个选项符合题意;C 、两边都加上3,可得:x =y ,原变形正确,故这个选项不符合题意;D 、两边都减去﹣2x ,可得:3x ﹣2x =4,原变形正确,故这个选项不符合题意; 故选:B .2.(师大)下列变形后的等式不一定成立的是( )A .若x y =,则x y +5=+5B .若x y =,则()x ya a a=≠0 C .若x y -3=-3,则x y = D .若mx my =,则x y = 【解答】解:A 、在等式x =y 的两边同时加上5,等式仍成立,即x +5=y +5,故本选项正确;B 、在等式x y =的两边同时除以以a (0≠a ),等式仍成立,即()x ya a a=≠0,故本选项正确;C 、在等式﹣3x =﹣3y 的两边同时除以﹣3,等式仍成立,即x =y ,故本选项正确;D 、若m =0时,x =y 不一定成立.故本选项错误; 故选:D .3.(广益)ma mb =,那么下列等式不一定成立的是( ) A.a b = B.66ma mb -=- C.118822ma mb -+=-+D.22ma mb +=+【解答】解:A、当m≠0时,由ma=mb两边除以m,得:a=b,不一定成立;B、由ma=mb,两边减去6,得:ma﹣6=mb﹣6,成立;C、由ma=mb,两边乘以﹣,再同时加上8,得:﹣ma+8=﹣mb+8,成立,D、由ma=mb,两边加上2,得:ma+2=mb+2,成立;故选:A.题型二一元一次方程的定义4.(青竹湖)已知下列方程,属于一元一次方程的有()①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.A.5个B.4个C.3个D.2个【解答】解:一元一次方程有0.5x=1,=8x﹣1,x=0,共3个,故选:C.5.(一中)已知关于x的方程(m﹣2)x|m﹣1|﹣3=0是一元一次方程,则m的值是()A.2B.0C.1D.0 或2【解答】解:由题意,得|m﹣1|=1,且m﹣2≠0,解得m=0,故选:B.6.(广益)关于x的方程(m﹣2)x|m|﹣1﹣2=0是一元一次方程,则m=.【解答】解:由题意,知|m|﹣1=1,且m﹣2≠0.解得m=﹣2.故答案是:﹣2.题型三已知一元一次方程的解去求参数7.(长郡)已知2-=的解,则a=________.x=是方程102x ax【解答】解:∵x=2是关于x的方程10﹣2x=ax的解,∴10﹣2×2=2a,解得a=3.故答案是:3.8.(西雅)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.9.(长梅)如果y=3是方程2+(m﹣y)=2y的解,那么关于x的方程2mx=(m+1)(3x﹣5)的解是多少?【解答】解:当y =3时,2+m ﹣3=6,解得:m =7, 将m =7代入方程2mx =(m +1)(3x ﹣5)得:14x =8(3x ﹣5),即14x =24x ﹣40,解得:x =4.题型四 解一元一次方程10.(西雅)下列变形中:①将方程34x =-的系数化为1,得34x =-;②将方程52x =-移项得52x =-; ③将方程()()221331x x ---=去括号得42391x x ---=; ④将方程213132x x --=+去分母得()()221133x x -=--. 其中正确的变形有( ) A.0个B.1个C.2个D.3个【解答】解:①将方程3x =﹣4的系数化为1,得x =﹣,错误; ②将方程5=2﹣x 移项得x =2﹣5,错误;③将方程2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x +9=1,错误; ④将方程=1+去分母得2(2x ﹣1)=6+3(x ﹣3),错误;故选:A .11.(青竹湖)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1 C .方程,系数化为1得,t =1D .方程,去分母得,5( x ﹣1)﹣2x =1【解答】解:A 、方程3x ﹣2=2x+1,移项得:3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号得:3﹣x =2﹣5x+5,不符合题意; C 、方程t =,系数化为1得:t =,不符合题意; D 、方程﹣=1,去分母得:5(x ﹣1)﹣2x =1,符合题意,故选:D . 12.(长郡)将方程212134x x -+=-去分母,得( ) A.()()421132x x -=-+B.()()421122x x -=-+C.()()21632x x -=-+D.()()4211232x x -=-+【解答】解:去分母得:4(2x ﹣1)=12﹣3(x +2),故选:D . 13.(一中)方程1134x x +-=去分母后,正确的是( ) A.4133x x -=- B.4133x x -=+ C.41233x x -=-D.41233x x -=+【解答】解:方程两边乘以12得:4x ﹣12=3(x +1),即4x ﹣12=3x +3, 故选:D .14.(长郡)解方程: (1)()331x x -=+(2)223246x x +--= 【解答】解:(1)去括号,得3x ﹣9=x +1,移项,得3x ﹣x =9+1,合并,得2x =10, 系数化为1,得x =5;(2)去分母,得3(x +2)﹣2(2x ﹣3)=24,去括号,得3x +6﹣4x +6=24, 移项,得3x ﹣4x =24﹣6﹣6,合并,得﹣x =12,系数化为1,得x =﹣12. 15.(青竹湖)解方程:(1) 1071453x x x +=-- (2)25123x x +-=-【解答】解:(1)10x +7=14x ﹣5﹣3x ,10x +3x ﹣14x =﹣5﹣7,﹣x =﹣12,x =12;(2)=1﹣,3(x +2)=6﹣2(x ﹣5),3x +6=6﹣2x +10,3x +2x =6+10﹣6,5x =10,x =2.16.(一中)解下列方程: (1)()()2441x x x --=-(2)2113322x x x --+=-【解答】解:(1)去括号得:x ﹣2x +8=4﹣4x ,移项合并得:3x =﹣4,解得:x =﹣; (2)去分母得:6x +2x ﹣1=6﹣x +1,移项合并得:9x =8,解得:x =.17.(广益)解下列方程:(1)2(21)(34)2x x +--= (2)3157146y y ---=【解答】解:(1)去括号得:4x +2﹣3x +4=2,移项合并得:x =﹣4;(2)去分母得:3(3y ﹣1)﹣12=2(5y ﹣7),去括号得:9y ﹣3﹣12=10y ﹣14, 移项合并得:﹣y =1,解得:y =﹣1.题型五 同解、错解方程18.(青竹湖)已知关于x 的方程325+=x m .若该方程的解与方程2158-=+x x 的解相同,则m 的值是( ) A.7B.-2C.1D.3【解答】解:2x ﹣1=5x +8,移项,得2x ﹣5x =8+1,合并同类项,得﹣3x =9,解得 x =﹣3. 把x =﹣3代入3x +2m =5,得3×(﹣3)+2m =5.移项,得2m =5+9.合并同类项,得2m =14,系数化为1,得m =7. 故选:A .19.(长郡)已知方程7236x x +=-与1x k -=的解相同,则231k -的值为( ) A .18B .20C .26D .26-【解答】解:由7x +2=3x ﹣6,得x =﹣2,由7x +2=3x ﹣6与x ﹣1=k 的解相同,得﹣2﹣1=k ,解得k =﹣3.则3k 2﹣1=3×(﹣3)2﹣1=27﹣1=26, 故选:C .20.(雅礼)一元一次方程解答题已知关于x 的方程23x m mx -=-与()1221x x -=-的解互为倒数,求m 的值.【解答】解:方程x ﹣1=2(2x ﹣1),去括号得:x ﹣1=4x ﹣2,解得:x =, 将x =3代入方程得,=3﹣,去分母得:9﹣3m =18﹣2m ,解得:m =﹣9.21.(青竹湖)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程; (1)若关于x 的两个方程24x =与1mx m =+是同解方程,求m 的值;(2)若关于x 的两个方程21x a =+与32x a -=-是同解方程,求a 的值;(3)若关于x 的两个方程()34513x m mn ++=与()19213x mn m -=-+是同解方程,求此时符合要求的正整数m ,n 的值.【解答】解:(1)解方程2x =4得x =2,把x =2代入mx =m +1得2m =m +1,解得m =1; (2)关于x 的两个方程2x =a +1与3x ﹣a =﹣2得x =,x =,∵关于x 的两个方程2x =a +1与3x ﹣a =﹣2是同解方程,∴=,解得a =﹣7;(3)解关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)得x =,x =,∵关于x 的两个方程5x +(m +1)=mn 与2x ﹣mn =﹣(m +1)是同解方程, ∴=,∴mn ﹣3m ﹣3=0,mn =3(m +1),∵m ,n 是正整数,∴m =3,n =4或m =1,n =6.22.(青竹湖)我们把解相同的两个方程称为同解方程.例如:方程:26x =与方程412x =的解都为3x =,所以它们为同解方程.(1)若方程2311x -=与关于x 的方程453x k +=是同解方程,求k 的值;(2)若关于x 的方程3[2()]43k x x x --=和3151128x k x+--=是同解方程,求k 的值;(3)若关于x 的方程223x a b -=和243x a b ++=是同解方程,求22214686a ab a b +++的值.【解答】解:(1)∵方程2x ﹣3=11与关于x 的方程4x +5=3k 是同解方程,∴2x ﹣3=11,解得x =7,把x =7代入方程4x +5=3k ,解得k =11,所以k 的值为11; (2)∵方程3[x ﹣2(x ﹣)]=4x 和﹣=1是同解方程,∴3[x ﹣2(x ﹣)]=4x 解得,x =,﹣=1解得,x =(27﹣2k ),∴=(27﹣2k ),解得k =;所以k 的值为;(3)∵方程2x ﹣3a =b 2和4x +a +b 2=3是同解方程,∴2x ﹣3a =b 2即4x ﹣6a =2b 2,∴4x =6a +2b 2,∵4x +a +b 2=3,∴6a +2b 2+a +b 2=3,即7a +3b 2=3,∴14a 2+6ab 2+8a +6b 2=2a (7a +3b 2)+7a +3b 2+a +3b 2=6a +3+a +3b 2=7a +3b 2+3=3+3=6. 所以14a 2+6ab 2+8a +6b 2的值为6.题型六 含参方程解的个数问题23.问当a 、b 满足什么条件时,方程bx a x -=-+152:(1)有唯一解;(2)有无数解;(3)无解。
一元一次方程的应用常见题型
一元一次方程的应用常见题型题型1:和差倍分问题基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
例题:1.一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?2.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元3.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人题型2:等积变形问题基本方法:掌握常见几何图形的面积、体积公式,建立等量关系;以形状改变而体积不变为前提。
例题:1.把内径为200m,高为500m的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm的空木桶装满水后,铁桶内水位下降了多少?2.要锻造一个直径为8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm?题型3:相遇问题(相向而行)基本方法:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程例题:1.甲、乙两站相距600千米,慢车从甲地出发,每小时行40千米,快车从乙地出发,每小时行60千米,若慢车先行50分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?2.A、B两地相距75千米,一辆汽车以50千米/时的速度从A地出发,另一辆汽车以40千米/时速度从B 地出发,两车同时出发,相向而行,经过几小时两车相距30千米?题型4:追及问题(同向而行)基本方法:①同时不同地:快者的时间=慢者的时间,快者走的路程一慢者走的路程=原来相距的路程例题:1.甲车在乙车前500千米,同时出发,速度分别是40千米/小时和60千米/小时,请问多少小时后,乙车可以追上甲车?基本方法:②同地不同时:先走者的时间=慢走者的时间+时间差;先走者的路程-慢走者的路程2.一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑白行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?题型5:环形跑道上的相遇和追及问题基本方法:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程题型整理
★ 基本题型
一、方程的解的定义 例1 已知2是关于x 的方程
022
3
=-a x 的解,则12-a 的值是( ) A .4 B .3 C .2 D .1
分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a 的一元一次方程,从而可求出a 的值,然后将其代入求值式即可得到答案.
解:把2=x 代入方程,得
02223=-⨯a ,故23=a .故212
3
212=-⨯=-a ,选C. 点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把
它叫做“有解就代入”.
二、一元一次方程的定义
例2 若关于x 的的方程0115)12(3
2=-++-n x
x m 是一元一次方程,求关于x 的方程1=+n mx 的解. 分析:根据“一元一次方程”的定义可知,012=+m 且13=-n ,由此可求n m 、的值,然后将其代入1=+n mx 中可解出x .
解:由题意,得012=+m 且13=-n ,故21-
=m ,4=n ,于是有142
1
=+-x ,故6=x . 点评:本题主要考查一元一次方程和解方程的定义.解这类问题时要抓住一元一次方程定义中的条件——
只含有一个未知数且未知数的次数是1.
三、一元一次方程的基本变形及其解法
例3 解方程
13
23594=+-+y
y . 分析:本题可按解一元一次方程的一般步骤来解.去分母时要先找到各分母的最小公倍数,同时要注意不
要漏乘不含分母的项,去括号时要注意括号里各项是否要变号等问题.
解:去分母,得15)23(5)94(3=+-+y y , 去括号,得1510152712=--+y y , 移项,合并同类项,得32=y , 系数化为1,得2
3=
y . 点评:解一元一次方程一般要经历五个步骤:去分母、去括号、移项、合并同类项、系数化为1.事实上,与一元一次方程有关的问题的解决最终几乎都要落实在解一元一次方程上,所以能正确而熟练地解一元一次方程是学习本章最基本的要求.
例4 解方程{
91(5
1[71432
++x ]6)+1}8=+.
分析:方程含有多层括号,各分母的最小公倍数又是个很大的数,用常规去分母或去括号的方法来解,都
较为繁琐,所以必须另辟蹊径,才能巧妙求解.我们可采用从大到小逐层去括号的方法来解.
解:方程两边同乘以9,得(
51[7143
2
++x ]6)+98=+,
移项,合并,得[71(
5143
2
++x ]6)+=1, 方程两边同乘以7,得(5
1432
++x 6)+=7, 移项,合并,得(5
1)
432
++x =1,
方程两边同乘以5,得43
2
++x =5, 移项,合并,得
3
2
+x =1,故32=+x ,故1=x . 点评:本题的解法启示我们:解一元一次方程时,其五个变形步骤未必都要用到,也未必要按照自上而下的顺序进行,要根据方程的结构特征灵活安排解题步骤,这样既能避繁就简,化难为易,又能减少直至避免一些常见错误.
四、构造一元一次方程解决有关问题
例5 已知|2-a |+0)5(2
=+b ,那么b a +的值是________.
分析:因为绝对值和平方的结果都是非负数,而两个非负数的和等于0,则每个非负数都应等于0,据此可构造两个一元一次方程,求出b a ,后即可求b a +的值.
解:由题意,得02=-a ,05=+b ,故2=a ,5-=b ,故b a +=2+(-5) =-3. 点评:概念也是解题的重要依据之一.解决这类问题,关键是要掌握相关概念的含义.
★ 创新题型
一、图文信息型
例6 根据下图给出的信息,可得到的正确的方程是( )
A .2
2
86()()(5)2
2
x x ππ⨯=⨯⨯+ B .2
2
86()()(5)2
2
x x ππ⨯=⨯⨯-
C .2
2
86(5)x x ππ⨯=⨯⨯+ D .22
865x ππ⨯=⨯⨯
分析:这是一道图表型信息题,所有的信息都以漫画形式给出.要解答此题,首先要读懂图中两个乌鸦的对话并从中找到相等关系.显然相等关系是:两个量筒中水的体积相等.故选A.
解:A.
点评:象这样的图表型信息题是近几年中考的热点之一,解这类问题的关键是认真观察图表,获取有效信息,找到相等关系,然后建立方程进行求解.
二、新定义型
例7 d c b a ,,,为有理数,先规定一种运算新的运算: =bc ad -, 那么 =18时,=x ______.
分析:根据规定,符号“| |”实质上表示的是一种积差运算——对角乘积的差,故由此可得到一个一元一次方程,进而可求x 的值.
解:由题意,得 10-4(1-x ),即10-4(1-x )=18,故=x 3.
点评:本题通过定义一种新运算,巧妙地将解一元一次方程与新定义的运算结合在一 起,情景新颖,设计巧妙.解这类问题的关键是把陌生的符号转化为熟悉的四则运算.
小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!
x ㎝
5㎝
6㎝
8㎝
老乌鸦,我喝不到大量筒中的水!
x ㎝
5)1(4
2x -=5
)1(4
2x -d
c
b
a
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。