离散数学模拟试题讲解
离散数学模拟试题讲解

三、填空题(本大题共 5 小题,每题 2 分,共 10 分) 1、P:您努力,Q:您失败。“除非您努力,否则您将失败”的翻译为(1)
~P→Q 或~Q→P ;“虽然您努力了,但还就是失败了”的翻译为(2)
P∧Q 。
2、设 A={2,3,4,5,6}上的二元关系 R { x, y | x y x是质数},则
1、设 A={1,2,3},则右图所示 A 上的关系具有( 2)4)5) )。
1
1)、自反性
2)、反自反性
3)、对称性
4)、反对称性
5)、传递性
2
3
2、下列语句就是命题的有( 1)3) )。
1)、 明年中秋节的晚上就是晴天;
2)、 x y 0 ;
3)、 xy 0 当且仅当 x 与 y 都大于 0; 4)、我正在说谎。
6.具有如下定义的代数系统 G , ,( D )不构成群。
A、G={1,10},*就是模 11 乘 ;
B、G={1,3,4,5,9},*就是模 11 乘 ;
C、G=Q(有理数集),*就是普通加法; D、G=Q(有理数集),*就是普通乘法。
7.设 G {2m 3n m , n I},*为普通乘法。则代数系统 G , 的幺元为( B)。
1 1 1 1 1
0 0 0 0 0
*a b
c
4
离散数学模拟试题讲解
3、设代数系统<A,*>,其中 A={a,b,c},
aa b
c
则幺元就是 (1)a ;就是否有幂等性
bb b
c
(2)F
。
cc c
b
4、设 A={1,2,3},则 A 上既不就是对称的又不就是反对称的关系
R= {<1,2>,<1,3>,<2,1>} ;A 上既就是对称的又就是反对称的关系
《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。
答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。
答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。
答案:2e4. 一个连通图至少有________个顶点。
答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。
答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。
()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。
()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。
()答案:错误4. 树是一种无向图。
()答案:正确5. 哈夫曼编码是一种贪心算法。
()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。
离散数学模拟题及答案

一、填空1.不能再分解的命题称为____________,至少包含一个联结词的命题称为____________。
2.一个命题公式A(P, Q, R)为真的所有真值指派是000, 001, 010, 100,则其主析取范式是__________________,其主合取范式是_________________。
3.设A={a,b,c},B={b,c,d,e},C={b,c},则( A ⋃ ⊕=____________。
4.幂集P(P(∅)) =________________。
5.设A为任意集合,请填入适当运算符,使式子A________A=∅;A________A’=∅成立。
6.设A={0,1,2,3,6},R={〈x,y〉|x≠y∧(x,y∈A)∧y≡x(mod 3)},则D(R)=____________,R(R)=____________。
7.称集合S是给定非空集合A的覆盖:若S={S1,S2,…,S n},其中S i⊆A,S i≠Ø,i=1,2,…,n,且______ _____;进一步若_____ _______,则S是集合A的划分。
8.两个重言式的析取是____ ____式,一个重言式和一个永假式的合取式是式。
9.公式┐(P∨Q) ←→(P∧Q)的主析取范式是。
10. 已知Π={{a}{b,c}}是A={a,b,c}的一个划分,由Π决定的A上的一个等价关系是。
二、证明及求解1.求命题公式(P→Q)→(Q∨P)的主析取范式。
2.推理证明题1)⌝P∨Q,⌝Q∨R,R→S⇒P→S。
2) (∀x)(P(x)→Q(y)∧R(x)),(∃x)P(x)⇒Q(y)∧(∃x)(P(x)∧R(x))x)},S={〈x,y〉|x,y∈A∧(x=y+2)}。
3.设A={0,1,2,3},R={〈x,y〉|x,y∈A∧(y=x+1∨y=2试求R S R。
4.证明:R是传递的⇔R*R⊆R。
5.设R是A上的二元关系,S={<a, b>| 存在c∈A,使<a, c>∈R,且<c, b>∈R}。
苏xi友离散数学模拟试题1(附参考答案)

苏xi友离散数学模拟试题1(附参考答案)离散数学模拟试题1一、单项选择题(本大题共8小题,每小题2分,共16分)1.p:a是2的倍数,q:a是4的倍数。
命题“除非a是2的倍数,否则a不是4的倍数。
”符号化为();A.p→q B.q→pC.p→?q D.?p→q2.设解释Ⅰ如下:个体域D={a,b},F(a,a)= F(b,b)=0,F(a,b)=F(b,a)=1,在解释Ⅰ下,下列公式中真值为1的是();A. ?x?yF(x,y)B. ?x?yF(x,y)C. ?x?yF(x,y)D.??x?yF(x,y)3.设G为n阶m条边的无向简单连通图,下列命题为假的是A.G一定有生成树B.m一定大于等于nC.G不含平行边和环D.G的最大度?(G)≤n-14.设G为完全图K5,下面命题中为假的是()A. G为欧拉图B.G为哈密尔顿图C. G为平面图D.G为正则图5.对于任意集合X,Y,Z,则A. X∩Y=X∩Z?Y=ZB. X∪Y=X∪Z?Y=ZC. X-Y=X-Z?Y=ZD. X⊕Y=X⊕Z?Y=Z6.下面等式中唯一的恒等式是A.A∪B∪C-(A∪B)=CB. A⊕A=AC. A-(B×C)=(A-B)×( A-C )D.A×(B-C)=(A×B)-(A×C)7.设R为实数集,定义*运算如下:a*b=∣a+b-ab∣, 则*运算满足A.结合律B.交换律C.有幺元D.冥等律8.在有补格L中, 求补A. 是L中的一元运算B.一定有唯一的补元C.不一定是L中的一元运算D.可能没有补元.二、填空题(本大题共8小题,每空3分,共24分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.含n个命题变项的重言式的主合取范式为.2.设个体域为整数集合Z,命题?x?y(xy=1)的真值为.3.任何一棵非平凡树至少有片树叶.4.已知n阶无向简单图G有m条边, 则G的补图G有条边.5.设R={〈{1},1〉,〈1,{1}〉, 〈2,{3}〉, 〈{3},{2}〉},则domR⊕ranR= .6.设A={1,2}, B={1,2,3},则从A到B的不同函数有个.7.如果无向连通图G有n个顶点m条边,并且m≥n,则G中必含有.8.设R为实数集合,h是R上的函数,h(x)=2x,则h是从代数系统〈R,+,0〉到自身的.三、简答题(本大题共8小题,每小题5分,共40分)1.设p:2+2=4,q:3+3=7,r:4+4=8,求下列各复合命题的真值:(1)(p∧q)?r(2)(p?r)?(q?r)(3)(p∨┐q)→(q→r)(4) ┐q→(p?r)(5) (p∨q)→(┐p∧┐q∧r)2.求公式?x (┐?yF(x,y) →?zG(x,z))的前束范式.3.已知无向图G有12条边,1度顶点有2个,2度、3度、5度顶点各1个,其余顶点的度数均为4,求4度顶点的个数.4.已知连通的平面图G的阶数n=6,边数m=8,面数r=4.求G的对偶图G*的阶数n*,边数m*,面数r*.5.设A={{a,{b}},c,{c },{a,b}},B={{a,b},{b}},计算(1)A∩B(2)A⊕B(3)P(B)6.设函数f:N→N,f(n)=2n+1,这里N是自然数的集合,回答f 是否为单射的、满射的或双射的?并说明理由。
离散数学模拟考试卷和问题详解

离散数学模拟考试卷和问题详解. ..页脚语⾔⼤学⽹络教育学院《离散数学》模拟试卷⼀注意:1.试卷,考⽣不得将试卷带出考场或撕页,否则成绩作废。
请监考⽼师负责监督。
2.请各位考⽣注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
⼀、【单项选择题】(本⼤题共15⼩题,每⼩题3分,共45分)在每⼩题列出的四个选项中只有⼀个选项是符合题⽬要求的,请将正确选项前的字母填在答题卷相应题号处。
1、在由3个元素组成的集合上,可以有 ( ) 种不同的关系。
[A] 3[B] 8[C]9 [D]272、设{}{}1,2,3,5,8,1,2,5,7A B A B ==-=,则()。
[A] 3,8 [B]{}3 [C]{}8 [D]{}3,83、若X 是Y 的⼦集,则⼀定有()。
[A]X 不属于Y [B]X ∈Y [C]X 真包含于 Y [D]X ∩Y=X4、下列关系中是等价关系的是()。
[A]不等关系 [B]空关系 [C]全关系 [D]偏序关系5、对于⼀个从集合A到集合B的映射,下列表述中错误的是()。
[A]对A的每个元素都要有象[B] 对A的每个元素都只有⼀个象[C]对B的每个元素都有原象[D] 对B的元素可以有不⽌⼀个原象6、设p:⼩努⼒学习,q:⼩取得好成绩,命题“除⾮⼩努⼒学习,否则他不能取得好成绩”的符号化形式为()。
[A]p→q [B]q→p [C]┐q→┐p [D]┐p→q7、设A={a,b,c},则A到A的双射共有()。
[A]3个[B]6个[C]8个[D]9个8、⼀个连通图G具有以下何种条件时,能⼀笔画出:即从某结点出发,经过图中每边仅⼀次回到该结点()。
[A] G没有奇数度结点[B] G有1个奇数度结点[C] G有2个奇数度结点[D] G没有或有2个奇数度结点9、设〈G,*〉是群,且|G|>1,则下列命题不成⽴的是()。
离散数学习题讲解

1、求公式(p→q)→r对应的主析取范式和主合取范式。
解:1、真值表法:p q r p→q (p→q)→r 极小项:m1,m3,m4,m5,m70 0 0 1 0 极大项:M0,M2,M60 0 1 1 1 公式主析取范式为:0 1 0 1 0 (p∨q)→r⇔ m1∨m3∨m4∨m5∨m70 1 1 1 1 ⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨( p∧⌝q∧⌝r)1 0 0 0 1 ∨(p∧⌝q∧r)∨(p∧q∧r)1 0 1 0 1 公式的主合取范式为:1 1 0 1 0 (p∨q)→r⇔ M0∧M2∧M61 1 1 1 1 ⇔(p∨q∨r)∧(p∨⌝q∨r)∧(⌝p∨⌝q∨r)(2、等值演算法也可,略)2、在自然推理系统P中构造下面推理的证明:(要求有符号化、前提、结论、推理及理由)如果乙不参加篮球赛,那么甲就不参加;如果乙参加篮球赛,那么甲和丙就参加。
因此,如果甲参加篮球赛,那么丙就参加。
解:设:p:乙队参加比赛;q:甲队参加比赛;r:丙队参加比赛。
前提:⌝p→⌝q, p→(q∧r),结论:q→r证明①q 附加前提引入②⌝p→⌝q 前提引入③p ①②拒取式规则④p→(q∧r) 前提引入⑤q∧r ③④假言推理⑥r化简推理成立。
3、自然推理系统F中,证明下面推理:(要求有符号化、前提、结论、推理及理由)所有的舞蹈者都很有风度;李霞是个学生并且是个舞蹈者。
因此,有些学生很有风度。
解:设F(x) :x是舞蹈者;G(x):x是学生;H(x):x很有风度;a:李霞。
前提:∀x(F(x)→H(x)), G(a)∧F(a)结论:∃x(G(x)∧H(x))证明:①G(a)∧F(a) 前提引入②G(a) ①化简③F(a) ①化简④∀x(F(x)→H(x)) 前提引入⑤F(a)→H(a) ④UI规则⑥H(a) ③⑤假言推理⑦G(a)∧H(a) ②⑥合取引入⑧∃x(G(x)∧H(x)) ⑦EG规则所以推理成立。
离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。
答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。
答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。
答案:连通的4. 在命题逻辑中,一个命题的否定是________。
答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。
答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。
2. 描述一下什么是二元关系,并给出一个例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是数字集合上的一个二元关系。
3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。
四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。
答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。
离散数学模拟习题与解析 (12)

一、 填空 20% (每空 2分)1、 设集合A={1,2,3,4,5,6,7,8,9,10},定义A 上的二元关系“≤”为x ≤ y = x|y , 则y x ∨= 。
2、 设},2|{N n x x A n∈==,定义A 上的二元运算为普通乘法、除法和加法,则代数系统<A,*>中运算*关于 运算具有封闭性。
3、 设集合S={α,β,γ,δ,ζ},S 上的运算*定义为则代数系统<S ,*>中幺元是 ,β左逆元是 , 无左逆元的元素是 。
4、 在群坯、半群、独异点、群中 满足消去律。
5、 设<G ,*>是由元素G a ∈生成的循环群,且|G|=n ,则G = 。
6、 拉格朗日定理说明若<H , *>是群<G ,*>的子群,则可建立G 中的等价关系R= 。
若|G|=n, |H|=m 则m 和n 关系为 。
7、 设f 是由群<G ,☆>到群<G ',*>的同态映射,e '是G '中的幺元,则f 的同态核Ker(f )= 。
二、 选择 20% (每小题 2分)1、设f 是由群<G ,☆>到群<G ',*>的同态映射,则ker (f)是( )。
A 、G '的子群;B 、G 的子群 ;C 、包含G ';D 、包含G 。
2、设 <A ,+ ,·>是环,A b a ∈∀,,a ·b 的关于“+”的逆元是( )。
A 、(-a)·(-b);B 、(-a)·b ;C 、a ·(-b);D 、a ·b 。
3、设 <A ,+ ,·>是一代数系统且<A ,+ >是Abel 群,如果还满足( )<A ,+ ,·>是域。
A 、<A ,·>是独异点且·对+可分配;B 、<A-{θ} ,·>是独异点,无零因子且·对+可分配;C 、<A-{θ} ,·>是Abel 群且无零因子 ;D 、<A-{θ} ,·>是Abel 且·对+可分配。
离散数学模拟试题、课后习题(附解析)超强集合

,即
r
2e 。而 ver 2 故 k
2 ver ve
k (v 2) 。 (8 分) k 2 k (v 2) ②彼得森图为 k 5, e 15, v 10 ,这样 e 不成立, k 2 2e 即得 k e
所以彼得森图非平面图。 (3 分)
二、 逻辑推演 16% 1、 证明: ①A ② A B ③ A B C D ④C D ⑤D ⑥D E ⑦D E F ⑧F ⑨A F 2、证明 ① xP( x) ② P (c ) ③ x( P ( x) Q( x)) ④ P (c ) Q ( c ) P(附加前提) US① P US③
五、计算 18%
1、设集合 A={a,b,c,d}上的关系 R={<a , b > ,< b , a > ,< b, c > , < c , d >}用矩阵运算求出 R 的传递闭包 t (R)。 (9 分)
4
离散数学模拟习题与解析 (1).doc
2、如下图所示的赋权图表示某七个城市 v1 , v 2 , , v7 及预先算出它们之间的一些直接通信线 路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。 (9分)
R { a, b , c, d | a, b S S , c, d S S , a d b c} 则 由
S S 上一个划分共有(
则公式 xyP( y, x) 真值为
2、 设S={a 1 ,a 2 ,…,a 8 },B i 是S的子集,则由B 31 所表达的子集是 。 3、 设 A={2 , 3 , 4 , 5 , 6} 上 的 二 元 关 系 R { x, y | x y x是质数} , 则 R=
离散数学考试题目及答案

离散数学考试题目及答案1. 试述命题逻辑中的等价关系和蕴含关系。
答案:命题逻辑中的等价关系是指两个命题在所有可能的真值赋值下都具有相同的真值。
若命题P和Q等价,则记作P⇔Q。
蕴含关系是指如果命题P为真,则命题Q也为真,但Q为真时P不一定为真。
若命题P蕴含Q,则记作P→Q。
2. 证明:若集合A和B的交集非空,则它们的并集包含A和B。
答案:设x属于A∩B,即x同时属于A和B。
根据并集的定义,若元素属于A或B,则它属于A∪B。
因此,x属于A∪B。
由于x是任意属于A∩B的元素,所以A∩B≠∅意味着A∪B至少包含A∩B中的所有元素,即A∪B包含A和B。
3. 给定一个有向图G,如何判断G中是否存在环?答案:判断有向图G中是否存在环,可以采用深度优先搜索(DFS)算法。
在DFS过程中,记录每个顶点的访问状态,如果遇到一个已访问过的顶点,且该顶点不是当前路径的直接前驱,则表示存在环。
4. 描述有限自动机的组成部分及其功能。
答案:有限自动机由以下几部分组成:输入字母表、状态集合、转移函数、初始状态和接受状态集合。
输入字母表定义了自动机可以接收的符号集合;状态集合包含了自动机所有可能的状态;转移函数定义了在给定输入符号和当前状态的情况下,自动机如何转移到下一个状态;初始状态是自动机开始工作时的状态;接受状态集合包含了所有使自动机接受输入字符串的状态。
5. 什么是图的连通分量?如何确定一个无向图的连通分量?答案:图的连通分量是指图中最大的连通子图。
在一个无向图中,如果两个顶点之间存在路径,则称这两个顶点是连通的。
确定无向图的连通分量可以通过深度优先搜索(DFS)或广度优先搜索(BFS)算法。
从任一顶点开始搜索,搜索过程中访问的所有顶点构成一个连通分量。
重复此过程,直到所有顶点都被访问过,即可确定图中所有连通分量。
离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
《离散数学课程》模拟题附标准答案

《离散数学课程》模拟题附标准答案离散数学课程模拟题附标准答案一、选择题1、在下列命题中,正确的是:(D) A. 一条直线和一点确定一个平面 B. 两条相交直线确定一个平面 C. 三条直线可能确定一个平面D. 两条平行直线确定一个平面2、若空间有四个点,则下列命题正确的是:(B) A. 若四点不共面,则这四点中至少有一个点在其它三点确定的平面内 B. 若四点中三点共线,则这四点必共面 C. 若四点中任意三点不共线,则这四点必共面 D. 以上都不正确3、设A、B、C是三个集合,A中含有1、2、3三个元素,B中含有1、2、3、4四个元素,C中含有1、2、3、4、5五个元素,则集合A在B中的补集和集合B在C中的补集的交集有几个元素?(C) A. 0 B.1 C.2 D. 3二、填空题1、已知A={1,2,3},B={3,4},则A和B的交集为__________,A 和B的并集为__________。
答案:{3},{1,2,3,4}2、设空间有四个点A、B、C、D,其中任意三点不共线,则下列结论正确的是:(A) A. 必有一点在其它三点确定的平面内 B. 任意两点确定的直线与另外两点确定的直线异面 C. 都可以构成一个三角形D. 全部点都在同一个平面上3、若集合A和B都是C的子集,且A和B的交集为空集,则下列结论正确的是:(D) A. C一定是A和B的并集 B. A和B中没有公共元素 C. C中至少有一个元素不属于A也不属于B D. C中的元素个数大于或等于A和B中的元素个数之和三、解答题1、已知A={1,2,3},B={2,4},求A和B的交集、并集和补集。
解:A和B的交集为{2},并集为{1,2,3,4},补集为空集。
2、已知空间四个点A、B、C、D不在同一个平面上,求证:直线AB 与CD异面。
证明:∵ A、B、C、D不在同一个平面上,∴ AB和CD是异面直线。
∵ A、B、C、D共面时,AB和CD共面,与已知矛盾。
离散数学课程模拟题附标准答案

《离散数学》期末考试考点及模拟题答案一、考试题型及分值各种题型所占的比例:填空题10%,判断题10%,选择题20%,其它题型60%新出试卷按照如下各种题型所占的比例:填空题20%,判断题15%,选择题30%,其它题型35%二、考点1.命题逻辑熟练掌握命题及其表示;掌握常用联结词(「、八、V、f、)的使用;熟练掌握命题公式的符号化;熟练掌握使用真值表判别命题等价的方法;掌握使用等价公式判别命题等价的方法;掌握重言式与蕴含式的概念及其判别方法;了解其他联结词的使用;了解对偶的概念;掌握求命题范式的方法;熟练掌握命题演算推理的基本理论.2.谓词逻辑熟练掌握谓词的概念及其表示;熟练掌握量词的使用;掌握使用谓词公式翻译命题的方法;掌握变元的约束;掌握谓词演算中等价式与蕴含式的判别;了解前束范式的求法;熟练掌握谓词演算推理的基本理论.3.集合与关系熟练掌握集合的概念和表示法;掌握集合的基本运算;掌握序偶与笛卡尔积的概念;熟练掌握关系及其表示;掌握关系的基本性质;了解复合关系和逆关系的概念;掌握关系的闭包运算;了解集合的划分和覆盖;掌握等价关系与等价类的概念;了解相容关系的概念;掌握各种序关系的概念.4.函数熟练掌握函数的概念;掌握逆函数和复合函数的概念;了解基数的概念;了解可数集与不可数集;了解基数的比较.5.代数结构掌握代数系统的概念;掌握n元运算及其性质;掌握半群、群与子群的概念;了解阿贝尔群和循环群的概念;了解陪集与拉格朗日定理;了解同构与同态的概念;了解环与域的概念.6.图论掌握图的基本概念;掌握路与回路的概念;熟练掌握图的矩阵表示;掌握欧拉图和哈密顿图的概念;掌握平面图的概念;了解对偶图与着色;熟练掌握树与生成树的概念;了解根树及其应用.(一)参考教材与网上资料复习(二)随堂练习或作业题在在新出试卷里有较大比例提高三、模拟试卷附后(请参考学习资料,找到或者做出解答)一、考试对象计算机学科中计算机科学与技术、软件工程等专业本科生二、考试的性质、目的离散数学是随着计算机科学的发展而逐渐形成的一门学科,是近代数学的一个分支在计算机科学中,它主要应用于数据结构、操作系统、编译原理、数据库理论、形式语言与自动机、程序理论、编码理论、人工智能、数字系统逻辑设计等方面它是计算机科学各专业重要的专业基础课.本课程教学的目标是:①使学生掌握离散数学的基本理论和基本知识,为学习有关课程以及今后工作打好基础.②培养和提高学生的抽象思维与逻辑推理能力.四、考试方式及时间:考试方式:闭卷考试时间:120分钟五、课程综合评定办法1期末闭卷考试:占总成绩60%.2、平时成绩(作业、考勤情况等):占总成绩40%3、试题难易程度:基础试题:中等难度试题:较难试题:难度较大的试题 =4: 3: 2: 1六、考试教材《离散数学》左孝凌、李为^、刘永才编著,上海科学技术文献出版社附:模拟试卷华南理工大学网络教育学院2012 - 2013学年度第一学期期末考试《离散数学》试卷(模拟卷)教学中心:专业层次:学号:姓名:座号:注意事项:1.本试卷共五大题,满分100分,考试时间120分钟,闭卷;2.考前请将以上各项信息填写清楚;3.所有答案直接做在试卷上,做在草稿纸上无效;4.考试结束,试卷、草稿纸一并交回.一.判断题(每题2分,共10分)1、设A, B都是合式公式,则A A B F「B也是合式公式.(J)2. P f Q o「P v Q ,(v)3、对谓词公式(V x) (P (y) V Q (x,y)) △R (x,y)中的自由变元进行代入后得到公lllllll !lllll式(V x) (P (z) V Q (x,z)) △R (x,y) . (x)4.对任意集合 A、B、C,有(A—B) —C = (A—C) - (B—C). (j)5. 一个结点到另一个结点可达或相互可达. (X )二.单项选择题(每题2分,共20分)1.设:。
离散数学(A)卷讲解

离散数学(A)卷讲解⼀、单项选择题(本⼤题共15⼩题,每⼩题1分,共15分)在每⼩题列出的四个选项中只有⼀个选项是符合题⽬要求的,请将正确选项前的字母填在题后的括号内。
1.⼀个连通的⽆向图G,如果它的所有结点的度数都是偶数,那么它具有⼀条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平⾯图,G中有11个顶点5个⾯,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,?是复数乘法运算,则G=<{1,-1,i,-i},?>是群,下列是G的⼦群是( )A.<{1},?>B.〈{-1},?〉C.〈{i},?〉D.〈{-i},?〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,〉,Z是整数集,定义为∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上⼆元关系R的关系图如下:R具有的性质是D.反⾃反性8.设A={a,b,c},A上⼆元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪IAB.RC.R∪{〈c,a〉}D.R∩IA9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式⼦正确的是( )A. ∈∈11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):xA.( x)( y)( z)(A(x,y))→A(f(x,z),f(y,z))B.( x)A(f(a,x),a)C.( x)( y)(A(f(x,y),x))D.( x)( y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式( x)(A(x)→B)等价于( )A.( x)A(x)→BB.( x)A(x)→BC.A(x)→BD.( x)A(x)→( x)B13.谓词公式( x)(P(x,y))→( z)Q(x,z)∧( y)R(x,y)中变元x( )A.是⾃由变元但不是约束变元B.既不是⾃由变元⼜不是约束变元C.既是⾃由变元⼜是约束变元D.是约束变元但不是⾃由变元14.若P:他聪明;Q:他⽤功;则“他虽聪明,但不⽤功”,可符号化为( )D.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)⼆、填空题(每空1分,共20分)16.在⼀棵根树中,仅有⼀个结点的⼊度为______,称为树根,其余结点的⼊度均为______。
离散数学 复习和例题讲解共73页文档

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
离散数学 复习和例题讲解
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
Байду номын сангаас
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
离散数学考试试题及答案

离散数学考试试题及答案离散数学考试试题及答案离散数学是计算机科学和数学中的一门重要学科,它研究的是离散的结构和对象。
离散数学的理论和方法在计算机科学、信息科学、通信工程等领域具有广泛的应用。
下面将为大家提供一些离散数学考试试题及答案,希望对大家的学习和复习有所帮助。
1. 集合论题目(1) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。
答案:A∪B={1,2,3,4,5,6,7}(2) 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。
答案:A∩B={3,4,5}(3) 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。
答案:A-B={1,2}2. 图论题目(1) 给定一个无向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(A,C),(B,D),(C,D),(D,E)},求该图的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集为V={A,B,C,D,E},边集为E={(A,B),(B,C),(C,D),(D,E),(E,A)},求该图的邻接表。
答案:邻接表为:A ->B ->C ->D ->E -> AB -> CC -> DD -> EE -> A3. 命题逻辑题目(1) 判断以下命题是否为永真式:(p∨q)∧(¬p∨r)∧(¬q∨¬r)。
答案:是永真式。
(2) 给定命题p:如果天晴,那么我去游泳;命题q:我没有去游泳。
请判断以下命题的真假:(¬p∨q)∧(p∨¬q)。
答案:是真命题。
4. 关系代数题目(1) 给定关系R(A,B,C)和S(B,C,D),求R⋈S的结果。
(完整word版)离散数学模拟试题讲解

1离散数学模拟试题Ⅰ一、单项选择题(本大题共15小题,每题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分1.设}16{2<=x x x A 是整数且,下面哪个命题为假( A )。
A 、A ⊆}4,2,1,0{;B 、A ⊆---}1,2,3{;C 、A ⊆Φ;D 、A x x x ⊆<}4{是整数且。
2.设}}{,{,ΦΦ=Φ=B A ,则B -A 是( C )。
A 、}}{{Φ;B 、}{Φ;C 、}}{,{ΦΦ;D 、Φ。
3.右图描述的偏序集中,子集},,{f e b 的上界为 ( B )。
A 、b ,c ; B 、a ,b ; C 、b ; D 、a ,b ,c 。
4.设f 和g 都是X 上的双射函数,则1)(-g f 为( C )。
A 、11--g f ; B 、1)(-f g ; C 、11--f g ; D 、1-f g 。
5.下面集合( B )关于减法运算是封闭的。
A 、N ;B 、}2{I x x ∈;C 、}12{I x x ∈+;D 、}{是质数x x 。
6.具有如下定义的代数系统>*<,G ,( D )不构成群。
f2A 、G={1,10},*是模11乘 ;B 、G={1,3,4,5,9},*是模11乘 ;C 、G=Q (有理数集),*是普通加法;D 、G=Q (有理数集),*是普通乘法。
7.设},32{I n m G n m ∈⨯=,*为普通乘法。
则代数系统>*<,G 的幺元为( B )。
A 、不存在 ;B 、0032⨯=e ;C 、32⨯=e ;D 、1132--⨯=e 。
8.下面集合( C )关于整除关系构成格。
A 、{2,3,6,12,24,36} ;B 、{1,2,3,4,6,8,12} ;C 、{1,2,3,5,6,15,30} ;D 、{3,6,9,12}。
离散数学试题及答案解析

离散数学试题及答案解析一、单项选择题(每题2分,共10分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B等于:A. {1,2,3}B. {2,3}C. {1,4}D. {3,4}答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 有些天鹅不是白色的。
C. 所有天鹅都不是白色的。
D. 没有天鹅是白色的。
答案:B3. 函数f: A→B的定义域是A,值域是B,那么f是:A. 单射B. 满射C. 双射D. 既不是单射也不是满射答案:D4. 逻辑表达式(p∧q)→r的逆否命题是:A. ¬r→¬(p∧q)B. ¬r→¬p∨¬qC. r→(p∧q)D. ¬r∧¬p∨¬q答案:B5. 有限集合A={a, b, c}的子集个数为:A. 3B. 4C. 7D. 8答案:D二、填空题(每题3分,共15分)1. 如果一个关系R在集合A上是自反的,那么对于A中的每一个元素a,都有___________。
答案:(a, a)∈R2. 命题逻辑中,合取(AND)的逻辑运算符用___________表示。
答案:∧3. 在图论中,一个连通图是指图中任意两个顶点之间都存在___________。
答案:路径4. 集合{1, 2, 3}的幂集包含___________个元素。
答案:85. 如果一个函数f是单射,那么对于任意的x1, x2∈A,如果f(x1)=f(x2),则x1___________x2。
答案:=三、解答题(每题10分,共20分)1. 证明:若p是q的充分条件,q是r的充分条件,则p是r的充分条件。
证明:假设p成立,由于p是q的充分条件,所以q成立。
又因为q是r的充分条件,所以r成立。
因此,p成立可以推出r成立,即p是r的充分条件。
2. 给定一个有向图,其中包含顶点A、B、C、D,边为(A, B),(B, C),(C, D),(D, A),(A, C)。
(完整版)《离散数学》试题及答案解析,推荐文档

则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).
(A)(1,2,2,3,4,5) (B)(1,2,3,4,5,5) (C)(1,1,1,2,3) (D)(2,3,3,4,5,6). 7. 设 G、H 是一阶逻辑公式,P 是一个谓词,G=xP(x), H=xP(x),则一阶逻辑公式
(A)下界 (B)上界 (C)最小上界
(D)以上答案都不对
6
4 下列语句中,( )是命题。
5
(A)请把门关上 (B)地球外的星球上也有人 (C)x + 5 > 6 (D)下午有会吗?
3
4
2
5 设 I 是如下一个解释:D={a,b}, P(a, a) P(a, b) P(b, a) P(b, b)
1
1010
AB=_________________________;A-B= _____________________ . 7. 设 R 是集合 A 上的等价关系,则 R 所具有的关系的三个特性是______________________,
________________________, _______________________________. 8. 设命题公式 G=(P(QR)),则使公式 G 为真的解释有
(1)
1
4
2
3
1 0 0 0
(2)
MR
1 1
1 1
0 1
0 0
1 1 1 1
3. (1)•=((x))=(x)+3=2x+3=2x+3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1离散数学模拟试题Ⅰ一、单项选择题(本大题共15小题,每题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分 1.设,下面哪个命题为假( A )。
A 、;B 、;C 、;D 、。
2.设,则B -A 是(C )。
A 、;B 、;C 、;D 、。
3.右图描述的偏序集中,子集的上界为 (B )。
A 、b ,c ;B 、a ,b ;C 、b ;D 、a ,b ,c 。
4.设和都是X 上的双射函数,则为( C )。
A 、;B 、;C 、;D 、。
5.下面集合( B )关于减法运算是封闭的。
A 、N ; B 、; C 、; D 、。
6.具有如下定义的代数系统,(D )不构成群。
A 、G={1,10},*是模11乘 ;B 、G={1,3,4,5,9},*是模11乘 ;C 、G=Q (有理数集),*是普通加法;D 、G=Q (有理数集),*是普通乘法。
7.设,*为普通乘法。
则代数系统的幺元为( B )。
}16{2<=x x x A 是整数且A ⊆}4,2,1,0{A ⊆---}1,2,3{A ⊆ΦAx x x ⊆<}4{是整数且}}{,{,ΦΦ=Φ=B A }}{{Φ}{Φ}}{,{ΦΦΦ},,{f e b f g 1)(-g f 11--g f1)(-f g 11--fg 1-fg }2{I x x ∈}12{I x x ∈+}{是质数x x >*<,G },32{I n m G n m ∈⨯=>*<,G f2A 、不存在 ;B 、;C 、;D 、。
8.下面集合( C )关于整除关系构成格。
A 、{2,3,6,12,24,36} ;B 、{1,2,3,4,6,8,12} ;C 、{1,2,3,5,6,15,30} ;D 、{3,6,9,12}。
9.设,,则有向图 是(C )。
A 、强连通的 ;B 、单向连通的 ;C 、弱连通的 ;D 、不连通的。
10.下面那一个图是欧拉图(A )。
11.在任何图中必定有偶数个(C )。
A 、度数为偶数的结点 ;B 、入度为奇数的结点 ;C 、度数为奇数的结点 ;D 、出度为奇数的结点 。
12.含有3个命题变元的具有不同真值的命题公式的个数为(C )。
A 、;B 、;C 、;D 、。
13.下列集合中哪个是最小联结词集( A )。
A 、;B 、;C 、;D 、。
0032⨯=e 32⨯=e 1132--⨯=e },,,,,{f e d c b a V =},,,,,,,,,,,{><><><><><><=e f e d d a a c c b b a E >=<E V G,3223322232},{→⌝},{↔⌝},{↔→},,{∨∧⌝14.下面哪个命题公式是重言式( B )。
A 、;B 、;C 、;D 、。
15.在谓词演算中,下列各式哪个是正确的( A )。
A 、;B 、;C 、;D 、。
二、多项选择题(本大题共5小题,每题2分,共10分 )在每小题列出的五个备选项中有二个至五个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选、少选或未选均无分。
1、设A ={1,2,3},则右图所示A 上的关系具有( 2)4)5) )。
1).自反性 2).反自反性 3).对称性4).反对称性5).传递性2、下列语句是命题的有( 1)3) )。
1). 明年中秋节的晚上是晴天; 2).; 3). 当且仅当x 和y 都大于0; 4).我正在说谎。
3、A ,B 为二合式公式,且,则( 1)2)3)4)5) )。
1).为重言式; 2).;3).;4).; 5).为重言式。
4、右图所示的图一定不是( 1)2)3)5) )。
)()(R Q Q P →∧→P Q P →∧)()()(Q P Q P ⌝∧⌝∧∨⌝P Q P ∧∨⌝)(),(),(y x xA y y x yA x ∃∃⇔∃∃),(),(y x xA y y x yA x ∀∀⇔∃∃),(),(y x xA y y x yA x ∃∀⇐∀∃)()(x xA a A ∀⇒0>+y x 0>xy B A ⇔B A →**B A ⇒B A ⇒**B A ⇔B A ↔41).平面图 2).二部图 3).欧拉图4).哈密而顿图5).树5、设R 和S 是集合A 上的任意关系,下列命题不成立( 2)3)4) )。
1).若R 和S 是自反的,则R ∘S 也是自反的。
2).若R 和S 是反自反的,则R ∘S 也是反自反的。
3).若R 和S 是对称的,则R ∘S 也是对称的。
4).若R 和S 是传递的,则R ∘S 也是传递的 三、填空题(本大题共5小题,每题2分,共10分)1、P :你努力,Q :你失败。
“除非你努力,否则你将失败”的翻译为(1)~P →Q 或~Q →P ;“虽然你努力了,但还是失败了”的翻译为(2) P ∧Q 。
2、设A={2,3,4,5,6}上的二元关系,则R={<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,2>,<3,3>,<3,4>,<3,5>,<3,6>,<4,5>, <4,6>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>}(枚举法)。
R 的关系矩阵M R =}|,{是质数x y x y x R ∨<><=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛000001111111000111111111153、设代数系统<A ,*>,其中A={a ,b ,c}, 则幺元是 (1)a ;是否有幂等性 (2)F 。
4、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= {<1,2>,<1,3>,<2,1>} ;A 上既是对称的又是反对称的关系 R= {<1,1>,<2,2>,<3,3>} 。
5、n 个结点的无向完全图K n 的边数为 (1)n(n -1)/2 ,欧拉图的充要条件是图中无奇度结点且连通 。
四、演算题(本大题共5小题,每题7分,共35分 )1、设A={1,2},A 上所有函数的集合记为A A , 是函数的复合运算,试给出A A 上运算的运算表,并指出A A 中是否有幺元,哪些元素有逆元。
解:A A ={f |f:A ⟶A },f 1(x ):(1,1),(2,1);f 2(x ):(1,2),(2,2) f 3(x ):(1,1),(2,2);f 4(x ):(1,2),(2,1)6幺元为f 3,f 3、f 4有逆元2、设是布尔代数上的一个布尔表达式,试写出其主析取范式和主合取范式。
解:函数表为:主析取范式:主合取范式:)()()(),,(313221321x x x x x x x x x E ∧∨∧∨∧=>∧∨<,,},1,0{)()()()()()(),,(321321321321321321321x x x x x x x x x x x x x x x x x x x x x E ∧∧∨∧∧∨∧∧∨∧∧∨∧∧∨∧∧=)()(),,(321321321x x x x x x x x x E ∨∨∧∨∨=73、如右图所示的赋权图表示某七个城市及预先算出它们之间的一些直接通信线路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。
解: 用克鲁斯克尔(Kruskal )算法求产生的最优树。
算法为:结果如图:树权C(T)=23+1+4+9+3+17=57(万元)即为总造价。
4、已知有如右图的偏序关系,求出其子集A={b,c,d,e}的 极大元、极小元、最大元、最小元、最小上界和最大下界。
解:极大元:e721,,,v v vfgec dba61615454434337337272277117123),(17),(3),(9),(4),(1),(v v e v v w v v e v v w v v e v v w v v e v v w v v e v v w v v e v v w ============选选选选选选8极小元:b,d 最大元:e 最小元:无 最小上界:e 最大下界:a5、设,A 上的关系 ,求出。
解:,,,五、证明题(本大题共3小题,每题10分,共30分 ) 1、证明:(P →(Q →S))∧(⌝ R ∨P)∧Q ⇒R →S证:(1)R 附加前提(2)⌝R ∨P P(3)P T(1)(2),I (4)P →(Q →S) P(5)Q →S T(3)(4),I},,{c b a A =},,,,,,,{><><><><=b c c b b a a a ρ)()(,)(ρρρt s r 和},,,,,,,,,,,{)(><><><><><><=c c b b b c c b b a a a r ρ},,,,,,,,,{)(><><><><><=a b b c c b b a a a s ρ},,,,,,,,,{2><><><><><==c c b b c a b a a a ρρρ },,,,,,,,,,,{23><><><><><><==b c c b b a c a b a a a ρρρ },,,,,,,,,,,,,{)(2><><><><><><><=⋃=∴b c c b c c b b c a b a a a t ρρρ9(6)Q P(7)S T(5)(6),I (8)R →S CP2、如果集合A 上的关系R 和S 是自反的、对称的和传递的, 证明:是A 上的等价关系。
证明:(1) 自反。
(2),若,则由R ,S 对称,所以,,所以 对称。
(3),若则 由R ,S 传递性知,从而 所以,传递。
综上所述,是A 上的等价关系。
3、若无向图G 中只有两个奇数度结点,则这两个结点一定连通。