数学排列组合几种

合集下载

组合数学 第一章 排列组合6

组合数学 第一章 排列组合6

习题
5, 10 ,19 , 22
得.
nn
n k
n-k k
k=0
1.7若干等式及其组合意义
证2 在[1,n]的所有组合中,
含1的组合←→不含1的组合.有1—1对应
关系。在任一含1组合及与之对应的不含
1组合中,必有一奇数个元的组合与一偶
数个元的组合。将含奇数个元的组合做
成集,将含偶数阁元的组合做成另一集。
此二集的元数相等。
∑(
)i奇=∑ni(
证1(x+y) =∑( )x y ,令x=y=1,得(1.7.5)
组合证1 [m1,mm]mk的所k 有m-方k 案.每一子集都可 取k[1,m]或k不=0 取.这样有2m个方案.另可有
0-子集(空集),1-子集,…,m-子集.
组合证2 从(0,0)走m步有2m种走法,都落
在直线x+y=m上,而到(m,0),(m-1,1),(m-
1.8应用举例
通过基因将它的遗传信息传递给RNA,然 后再传给蛋白质来表现其功能。
(1)蛋白质分子中有20种氨基酸,在RNA 中以一定顺序相连的3个核苷酸决定1种 氨基酸,三联体遗传密码有43=64个排列 方式。它保证了20种氨基酸密码的需要。
(2)例如RNA链:CCGGUCCGAAAG 酶将它分解成为G片断(即利用G将
1.5.2字典序法
一般而言,设P是[1,n]的一个全排列。 P=P1P2…Pn=P1P2…Pj-1PjPj+1…Pk-1PkPk+1…Pn
I) j=max{i|Pi<Pi+1}, II) k=max{i|Pi>Pj} III) 对换Pj,Pk, IV) 将Pj+1…Pk-1PjPk+1…Pn翻转,

高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答

高中数学排列组合问题的类型及解答一、相邻问题捆绑法例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种A. 720B. 360 C. 240D. 120解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法。

由分步计数原理可知,共有=240种不同排法,选C。

评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素。

二、相离问题插空法例2 要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。

由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。

评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开。

此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法。

三、定序问题缩倍法例3 信号兵把红旗与白旗从上到下挂在旗杆上表示信号。

现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。

解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。

评法:在排列问题中限制某几个元素必须保持一定顺序称为定序问题。

这类问题用缩小倍数的方法求解比较方便快捷。

四、标号排位问题分步法例4同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种 B. 9种C. 11种D. 23种解:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。

数学排列组合常用方法与技巧精讲

数学排列组合常用方法与技巧精讲

比赛分组
在大型体育赛事中,如何将参赛选手或队伍分成若干小 组进行预赛是一个重要的排列组合问题。例如,在篮球 比赛中,将参赛队伍分成若干小组进行循环赛,需要考 虑队伍之间的实力对比和小组内比赛的公平性。
彩票中的排列组合问题
彩票选号
彩票选号是一个典型的排列组合问题。彩票号码由一 组数字组成,每个数字都有特定的范围和出现概率。 彩民需要从指定范围内选择一定数量的数字,并按照 一定的顺序排列,以获得中奖的机会。
不同元素问题
总结词
解决不同元素问题时,需要全面考虑 所有元素的排列或组合情况。
详细描述
在排列组合问题中,如果所有元素都 是不同的,需要全面考虑所有元素的 排列或组合情况。可以采用全排列或 全组合的方法进行计算。
插空法
总结词
插空法是一种解决排列组合问题的常用方法,通过在已排好的元素之间插入新元素来满足题目的要求 。
详细描述
特殊元素优先法是指在解决排列组合问题时,优先考虑特殊元素或特定位置的选取和排 列。这种方法的关键在于识别出问题中的特殊元素或特定位置,然后优先处理它们,从
而简化问题并提高解题效率。
分组法
总结词
将问题中的元素按照一定的规则进行分 组,然后对分组后的元素进行排列组合 ,可以解决一些复杂的问题。
答案
$A_{5}^{2} - 1 = 24$
解析
先从5个元素中取出2个元素进行排 列,再减去特定元素不在首位的排 列方式。
题目
在7个不同元素中取出4个元素进行 组合,其中某个特定元素必须包含在 内,有多少种不同的组合方式?
答案
$C_{6}^{2} = 15$
解析
先从7个元素中取出2个元素进行组 合,再减去特定元素不在首位的组 合方式。

高中数学排列组合几种常见题型及解法

高中数学排列组合几种常见题型及解法

高中数学排列组合几种常见题型及解法摘要:排列、组合问题是高中数学的重要知识之一,或单独命题,或与概率内容相结合,一般以较易题出现,但由于解这类问题时方法灵活,切入点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为学习的难点之一。

故在解题过程中通过分类、分步把复杂问题分解,运用化归思想、比较分类思想和模型化思维方法,将问题简单化、常规化。

关键词:分类计数原理、分步计数原理、特殊元素、特殊位置、捆绑法、插空法、隔板法排列组合的学习虽然注意发散思维、逆向思维能力的培养,但如果能够掌握一些常见题型及其解题策略,则会降低学习这部分知识的难度。

本文就排列组合的基本题型、基本思路做以简略介绍:一、排列组合的基本思路1、排列、组合的应用问题(1)无限制条件的简单排列、组合应用问题,可直接用公式求解。

(2)有限制条件的排列组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。

2、排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。

在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式:“在”与“不在”“相邻”与“不相邻”在解决问题时要掌握基本的解题思想和方法:①“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排特殊元素或特殊位置。

②“相邻”问题在解题时常用“捆绑法”,即可以把两个或两个以上的元素当做一个元素来看,这是处理相邻问题最常用的方法。

③“不相邻”问题在解题时最常用的是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中。

④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。

(2)限制条件的组合问题常见命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”。

(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复、不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列组合问题的最基本,也是最重要的思想方法。

高中数学公式排列组合

高中数学公式排列组合

高中数学公式排列组合排列组合是组合学最基本的概念。

你都掌握排列组合的公式了吗?下面店铺给你分享高中数学公式排列组合,欢迎阅读。

高中数学公式排列组合高中数学排列组合习题1.(2010•山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A.40B.50C.60D.70[答案] B[解析] 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种C.72种D.96种[答案] C[解析] 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个C.18个D.36个[答案] C[解析] 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22×C23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人[答案] A[解析] 设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种C.28种D.25种[答案] C[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种C.38种D.108种[答案] B[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.组合数Crn(n>r≥1,n,r∈Z)恒等于( )A.r+1n+1Cr-1n-1B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1D.nrCr-1n-1[答案] D[解析] ∵Crn=n!r!×(n-r)!=n×(n-1)!r×(r-1)!×[(n-1)-(r-1)]!=nrCr-1n-1,故选D.8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33B.34C.35D.36[答案] A[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C12•A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12•A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.9.(2010•四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72B.96C.108D.144[答案] C[解析] 分两类:若1与3相邻,有A22•C13A22A23=72(个),若1与3不相邻有A33•A33=36(个)故共有72+36=108个.10.(2010•北京模拟)如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种B.60种C.120种D.210种[答案] C[解析] 先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16•A25=120种,故选C.。

高中数学排列组合计算技巧

高中数学排列组合计算技巧

高中数学排列组合计算技巧在高中数学中,排列组合是一个重要的概念,它涉及到很多实际问题的计算。

掌握排列组合的计算技巧对于解题非常有帮助。

本文将介绍一些常见的排列组合计算技巧,并通过具体的题目来说明其考点和解题方法。

一、排列计算技巧排列是指从一组元素中取出若干个元素按照一定的顺序进行排列的方式。

在排列计算中,有两种常见的情况:全排列和部分排列。

1. 全排列全排列是指从一组元素中取出所有的元素按照一定的顺序进行排列的方式。

在全排列中,元素的顺序非常重要,每个元素都会占据一个位置。

例如,有4个元素A、B、C、D,要求从中取出3个元素进行全排列。

根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,第三个位置可以有2种选择,因此总的全排列数为4×3×2=24。

在解决全排列问题时,可以使用乘法原理来计算。

即每个位置的选择数相乘即可得到总的全排列数。

2. 部分排列部分排列是指从一组元素中取出一部分元素按照一定的顺序进行排列的方式。

在部分排列中,元素的顺序同样重要,但不是每个元素都会占据一个位置。

例如,有4个元素A、B、C、D,要求从中取出2个元素进行部分排列。

根据排列的定义,第一个位置可以有4种选择,第二个位置可以有3种选择,因此总的部分排列数为4×3=12。

在解决部分排列问题时,可以使用乘法原理来计算。

即每个位置的选择数相乘即可得到总的部分排列数。

二、组合计算技巧组合是指从一组元素中取出若干个元素进行组合的方式。

在组合计算中,元素的顺序不重要,只关注元素的选择。

1. 组合的计算公式在组合计算中,有一个重要的公式可以用来计算组合数。

组合数表示从n个元素中取出r个元素进行组合的方式的总数,记作C(n, r)。

组合数的计算公式为:C(n, r) = n! / (r! × (n-r)!)其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

小学数学中的数字排列组合

小学数学中的数字排列组合

小学数学中的数字排列组合数字排列组合是小学数学中的一个重要概念。

它涉及到数字的排列和组合的情况,是数学中常见的一种问题类型。

通过数字排列组合的学习,小学生能够培养逻辑思维能力,提高解决问题的能力。

下面将对小学数学中的数字排列组合进行详细介绍。

一、排列排列是指从一组元素中按照一定的顺序选取若干元素的方式。

在排列中,元素的顺序是重要的。

1.1 重复排列重复排列是指从一组元素中选取若干元素,其中元素可以重复出现的情况。

例如,从数字1、2、3中选取两个数字进行重复排列,可以有以下情况:11、12、13、21、22、23、31、32、33。

1.2 不重复排列不重复排列是指从一组元素中选取若干元素,其中元素不能重复出现的情况。

例如,从数字1、2、3中选取两个数字进行不重复排列,可以有以下情况:12、13、21、23、31、32。

二、组合组合是指从一组元素中按照一定的顺序选取若干元素的方式,与排列不同的是,组合中元素的顺序不重要。

2.1 重复组合重复组合是指从一组元素中选取若干元素,其中元素可以重复出现的情况。

例如,从数字1、2、3中选取两个数字进行重复组合,可以有以下情况:11、12、13、22、23、33。

2.2 不重复组合不重复组合是指从一组元素中选取若干元素,其中元素不能重复出现的情况。

例如,从数字1、2、3中选取两个数字进行不重复组合,可以有以下情况:12、13、23。

三、应用场景数字排列组合在日常生活中有着广泛的应用。

例如,排列可以用来确定参加各种比赛的人员名单以及座位的安排;组合可以用来确定不同菜肴的搭配和选择。

三、归纳总结通过对小学数学中的数字排列组合的学习,我们可以培养小学生的逻辑思维能力和解决问题的能力。

在日常生活中,数字排列组合的应用也是无处不在的。

因此,对于小学生来说,深入理解和掌握数字排列组合的概念和应用是非常重要的。

以上是关于小学数学中的数字排列组合的简单介绍。

希望通过这篇文章能够帮助读者更好地理解和应用数字排列组合的知识。

高中数学排列组合几种基本方法

高中数学排列组合几种基本方法

例6 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、 C,所得的经过坐标原点的直线有_________条.
解:所有这样的直线共有
A 条, 3 7
210
其中不过原点的直线有
A61条,A62 180
∴所得的经过坐标原点的直线有210-180=30条.
甲乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有A55=120种排法
几个元素必须相邻时,先捆绑成一 个元素,再与其它的进行排列.
共有2 120=240种排法
2.插空法:
解决一些不相邻问题时,可以先排“一般”
元素然后插入“特殊”元素,使问题得以解决.
♀ ♀♀ ♀ ♀♀♀
↑↑


↑↑
例2 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?
A.6
B.12
C.72
D.144
C 3. 5个人排成一排,其中甲、乙相邻的排法种数是( )
A.72
B.42
C.48
D.56
34.. 12 名同学分别到三个不同的路口进行车流量的调 查,若每个路口 4 人,则不同的分配方案共有( A )
A.
C142
C84
C
4 4

B.3
C142 C 84
C
4 4

C.
C142
C
4 8
A33

D.
C142C84 A33
C44

直接法: 2
A 30 6
7.错位法:
编号为1至n的n个小球放入编号为1到 n的n个盒子里,每个盒子放一个小球.要 求小球与盒子的编号都不同,这种排列称为错位排列.

高中数学排列组合20种解题方法

高中数学排列组合20种解题方法

高中数学排列组合20种解题方法# 方法一:特殊元素优先法。

题目1:用0,1,2,3,4这五个数字,可以组成多少个没有重复数字且个位数字是2的五位数?解析:因为个位数字已经确定是2,所以只需要考虑其他四个位置。

_万位不能为0_,那么万位有3种选择(1,3,4)。

千位有3种选择(剩下的3个数字),百位有2种选择,十位有1种选择。

根据排列组合的乘法原理,可组成的五位数有3×3×2×1 = 18个。

# 方法二:特殊位置优先法。

题目2:从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,组成没有重复数字的五位数,其中偶数共有多少个?解析:先确定特殊位置个位,_个位必须是偶数_,从2,4,6,8中选一个放在个位,有C_4^1种方法。

然后从剩下的3个偶数中选1个,从5个奇数中选3个,有C_3^1×C_5^3种选法。

将选出的4个数字全排列放在其他四个位置,有A_4^4种排法。

所以偶数共有C_4^1×C_3^1×C_5^3×A_4^4 = 2880个。

# 方法三:捆绑法。

题目3:7人站成一排照相,甲、乙、丙三人必须相邻,有多少种不同的排法?解析:把甲、乙、丙三人看作一个整体(捆绑),与其余4人全排列,有A_5^5种排法,同时甲、乙、丙三人内部有A_3^3种排法。

根据乘法原理,共有A_5^5×A_3^3 = 720种不同的排法。

# 方法四:插空法。

题目4:4名男生和3名女生排成一排,若女生不能相邻,有多少种不同的排法?解析:先排4名男生,有A_4^4种排法,4名男生排好后产生5个空位,_将3名女生插入这5个空位中_,有A_5^3种排法。

所以共有A_4^4×A_5^3 = 1440种不同的排法。

# 方法五:定序问题缩倍法。

题目5:A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有多少种?解析:把A,B看作一个整体,与C,D,E全排列,有A_4^4种排法,因为B在A 的右边,所以A,B之间的顺序是固定的,_需要将全排列的结果除以A,B的排列数A_2^2_,即不同的排法有frac{A_4^4}{A_2^2}= 12种。

高中数学排列组合二十一种方法

高中数学排列组合二十一种方法

一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A = 二.相邻元素捆绑策例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!H FD C AAB C D E AB E GH G F练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。

高中数学排列组合及概率的基本公式,概念及应用

高中数学排列组合及概率的基本公式,概念及应用

在高中数学中,排列组合和概率是一个重要的概念。

排列是指从一组物品中取出若干个物品,按一定顺序排列起来的结果。

如,从A、B、C三个物品中取出两个物品,按顺序排列起来,则有3种排列方法:AB、AC、BC。

组合是指从一组物品中取出若干个物品,不考虑顺序的结果。

如,从A、B、C三个物品中取出两个物品,不考虑顺序,则有3种组合方法:AB、AC、BC。

关于排列组合的基本公式,通常有如下几条:
从n个物品中取出m(m≤n)个物品,按顺序排列起来的方法数为A_nm=n(n-1)(n-2)⋯(n-m+1),其中“⋯”表示乘积。

从n个物品中取出m(m≤n)个物品,不考虑顺序的方法数为C_nm=A_nm/m!=n!/(m!(n-m)!)
概率是一种用来度量某件事情发生的可能性的数字。

通常表示为P(A),其中A表示某件事情。

概率的取值范围是0到1之间的实数,0表示事情不可能发生,1表示事情必定发生。

高中数学-排列组合13种方法精讲

高中数学-排列组合13种方法精讲

排列组合1、分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有N=m+n种不同的方法。

2、分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法. 那么完成这件事共有N=m×n种不同的方法。

3、排列及排列数:(1)排列:排列数:从n个不同元素中取出m个(m≤n)个元素的所有排列的个数,(2)排列数公式()()1.nnA mn=m-⋅⋅⋅-1+n全排列:4、组合及组合数:(1)组合:组合数:(2)\计算公式:.5、组合数的性质:1、捆绑与插空法:例1.8位同学排成一队,问:⑴甲乙必须相邻,有多少种排法?⑵甲乙不相邻,有多少种排法?⑶甲乙必须相邻且与丙不相邻,有多少种排法?⑷甲乙必须相邻,丙丁必须相邻,有多少种排法?⑸甲乙不相邻,丙丁不相邻,有多少种排法?例2.某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?例3.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)2、定序问题缩倍法:例1.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。

现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)例2.A 、B 、C 、D 、E 五人并排站成一排,如果B 必须站在A 的右边(A,B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种例3.从1,2,3,4,5五个数字当中任选3个组成一个三位数,其中十位比个位数字大的三位数共有多少个?3、 标号排位问题分步法:例1.同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有( )A 、6种B 、9种C 、11种D 、23种例2.将标有1, 2,… 10的10个小球投入同样标有1, 2,… 10的圆筒中,每个圆筒都不空,且所投小球与圆筒标号均不相同的投法共有多少种?4、 有序分配问题逐分法:例1.有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )种A. 1260B. 2025C. 2520D. 5040例2.12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )种A 、4448412C C C B 、44484123C C C C 、3348412A C C D 、334448412A C C C例3.有6本不同的书,按照以下要求处理,各有几种分法?(1) 平均分给甲、乙、丙三人;(2) 甲得一本,乙得两本,丙得三本.5、 隔板法:例1.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?例2.求方程X+Y+Z=10的正整数解的个数例3.将10个相同的小球装入3个编号分别为1,2,3的盒子当中,每次将10个球装完,每个盒子里的球的个数都不小于盒子的编号数,则不同的装法共有多少种?6、多元问题分类法:例1.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A. 210个B. 300个C. 464个D. 600个例2.(1)从1,2,3,…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)共有多少种?7、至少问题间接法:例1.从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有()种A. 140B. 80C. 70D. 35例2.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

列举数字的不同排列组合方式

列举数字的不同排列组合方式

列举数字的不同排列组合方式数字的排列组合方式是一个常见的数学问题,它在数学、计算机科学以及其他领域都有广泛的应用。

在本文中,我们将探讨不同数字的排列组合方式,并举例说明这些方式在实际问题中的应用。

1. 顺序排列:顺序排列是最直观的排列方式,即将数字按照一定的顺序依次排列。

例如,数字1、2、3的顺序排列方式有123、132、213、231、312、321共计6种。

顺序排列在密码破解、编码等领域有重要应用。

2. 选择排列:选择排列是指从给定数字中选择若干个进行排列。

假设有4个数字:1、2、3、4,选择排列的方式有:12、13、14、21、23、24、31、32、34、41、42、43共计12种。

选择排列在组合数学、概率等领域有广泛应用。

3. 嵌套排列:嵌套排列是指将数字嵌套在另一个数字中并进行排列。

例如,将数字1、2嵌套在数字3中,可以得到313、323、333共计3种排列方式。

嵌套排列在密码学、图像处理等领域有实际应用。

4. 重复排列:重复排列是指数字可以重复出现在排列中。

例如,取自然数1、2、3的重复排列方式有111、112、113、121、122、123、131、132、133、211、212、213等多种排列方式。

重复排列在统计学、数据分析等领域有重要意义。

5. 循环排列:循环排列是指数字排列中的元素会循环出现。

例如,对于数字1、2、3的循环排列方式有123、231、312共计3种排列方式。

循环排列在旋律、节奏等领域有广泛应用。

在实际问题中,数字的排列组合方式有很多应用。

比如在密码学中,排列组合方式可以用于生成密码、破解密码等;在概率统计中,排列组合方式可以用于计算事件的概率;在组合优化问题中,排列组合方式可以用于求解最优解等。

综上所述,数字的排列组合方式涉及顺序排列、选择排列、嵌套排列、重复排列、循环排列等多种方式。

这些方式在数学和其他领域有广泛的应用,帮助我们解决实际问题,拓展了我们对数字的理解和运用。

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

第10讲排列组合公式-高思数学_4年级下第十讲排列组合公式

小高要想说对口诀还真不容易!大家学过乘法原理,口诀第一个字有6种说法,第二个字有5种说法,依次类推,口诀这六个字共有654321720×××××=(种)排法.我们也可以这样理解:只有把口诀这六个字按照正确的顺序排列好,才能练成高思神掌.把六个字排成一列,就是我们这一讲要学习的排列.排列公式:从m 个不同44的元素中取出n 个(n ≤m ),并按照一定的顺序排成一列,其方法数叫做从m 个不同元素中取出n 个的排列数,记作A n m,它的计算方法如下:A n m =比如,从1、2、3、4中挑两个数字组成一个两位数,十位上有1、2、3、4这4种选择,十位选定后,个位可以从剩下的三个数字中选,有3种选择.根据乘法原理可以知道,这样的两位数有4312×=(个).我们也可以这样理解,要组成两位数相当于从1、2、3、4中挑两个数字排成一行,有24A 4312=×=(种)排法,所以这样的两位数有12个.关于排列数的计算,再给大家举几个例子:45A 5432120=×××=(从5开始递减地连乘4个数);38A 876336=××=(从8开始递减地连乘3个数);1100A 100=(从100开始递减地连乘1个数). 分析 直接用公式计算,注意要从几开始乘,连乘几个数.练习1.计算:(1)25A ; (2)5277A A −.生活中的许多问题其实就是排列问题.例如,你回家后,发现桌上有牛奶糖、巧克力和水果糖各一颗,你会按照什么顺序来吃这三颗糖?先吃哪个再吃哪个,有多少种顺序呢?这其实就是一个排列问题.分析 本题要排成一行,顺序有没有影响?假设是红黄蓝绿白五种颜色的话,“黄红白”和“白红黄”表示的是一种信号还是两种信号呢?练习2.有4名同学,要选出3人从左往右排成一排,一共有多少种不同的排法?分析 本题要从五个数字中选出多少个数字排成一排?如何用排列进行计算?千位是多少的数肯定比4125小?练习3.从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?其中比6957大的有多少个? 拍聚会照 赵项和童学是好朋友.一天,童学的父母带着童学和赵项出去游玩.赵项酷爱摄影,提出要给童学拍全家福,童学一家以为只拍一张照片,就同意了.结果赵项要求童学一家在6个不同景点,按照“爸爸、童学、妈妈”、“妈妈、童学、爸爸”等6种排列方式全拍一遍,且每次拍照时每个人的动作都不一样.童学一家非常厌烦,但既然同意拍照了就只能硬着头皮拍完这6张照片.一个月之后,班里有十人左右的同学聚会.童学说:“咱们让赵项来拍聚会照吧!”同学们应声附和,赵项一听,撒腿就跑,心想:“还不得累死我啊!”一共可以表示出多少种不同的信号?字的四位数?将它们从小到大排列起来,例题3与排列问题类似,生活中也存在着许多组合问题.例如,你回家后,还是发现桌上有牛奶糖、巧克力和水果糖各一颗,但现在要选两颗装进口袋,有多少种方式呢?这其实就是一个组合问题.组合公式:从m 个不同元素中取出n 个(n ≤m )作为一组(不计顺序),可选择的方法数叫做从m 个不同元素中取出n 个不同的组合数,记作C n m ,它的计算方法如下:()C A A [1n n n m m n m m =÷=×−×�()1]A n n m n ×−+÷….比如,要从1、2、3、4中挑两个数,这时挑出1、2与挑出2、1都是一样的,挑出1、3与挑出3、1也是一样的.换句话说,能组成的两位数有24A 个,但每两个数字对应的22A 2=个两位数,在这里只算作同一种挑法.因此,只是从1、2、3、4中挑两个数而不考虑顺序,有2242A A 1226÷=÷=(种)方法.例如222552C A A 10=÷=,333553C A A 10=÷=;333883C A A 56=÷=,555885C A A 56=÷=.在刚才的四个算式中,2355C C =,3588C C =.其实这个关系是可以推广的.比如,5277C C =,4599C C =,1822020C C =……大家能从组合数定义的角度,说出为什么会有这样的等量关系吗?分析 直接用公式计算,注意公式里每个数字的含义.练习4.(1)27C ; (2)22863C 2C ×−×; (3)1213C . 分析 要想画出一条线段,需要选出几个点?要想画出一个三角形呢?四边形呢?为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?例题5练习5.在一个圆周上有7个点,以这些点为顶点,一共可以画出多少个五边形?在身高互不相同的如果可以随便站,那么一共有多少种排法?如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法?题本一、A n m:从m个不同的元素中取出n个(n≤m)排成一列的方法数.()()A11nmm m m n=×−××−+.二、C n m:从m个不同的元素中取出n个(n≤m)的方法数.()()()C A A1111n n nm m nm m m n n n=÷=×−××−+÷×−××.三、C Cn m nm m−=.(n≤m)作业1.计算:(1)34A;(2)3255A A−.2.海军舰艇之间经常用旗语来互相联络,方式是这样的:在旗杆上从上至下升起3面颜色不同的旗帜,每一种排列方式就代表一个常用信号,如果共有6种不同颜色的旗帜,那么可以组成多少种不同的信号?3.从3、4、5、6、7这五个数字中选出三个数字(不能重复)组成三位数,共能组成多少个不同的三位数?其中比635小的有多少个?4.(1)38C;(2)32752C C×−;(3)211C.5.在平面上有10个点,以这些点为端点,一共可以连出多少条线段?。

MBA数学排列组合方法总结

MBA数学排列组合方法总结

排列组合方法总结一、知识点(一)加法原理如果完成一件事有n 类办法,只要选择其中一类办法中的任何一种方法,就可以完成这件事,若第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的办法,那么完成这件事共有12n N m m m =+++ 种不同的方法.(二)乘法原理如果完成一件事,必须依次连续地完成n 个步骤,这件事才能完成,若完成第一个步骤有1m 种不同的方法,完成第二个步骤有2m 种不同的方法,…,完成第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⋅⋅⋅ 种不同的方法-(三)排列 1.排列从n 个不同元素中,任意取出()m m n ≤个元素,按照一定顺序排成一列,称为从n 个不同元素中取出m 个元素的一个排列.2.排列数从n 个不同元素中取出()m m n ≤个元素的所有排列的种数,称为从n 个不同元素中取出m 个不同元素的排列数,记作mn P 或mn A .当m n =时,即从n 个不同元素中取出n 个元素的排列,叫作n 个元素的全排刿,也叫n 的阶乘,用符号!n 表示.3.排列数公式(1)规定101A =.(2)()()()()!121!m n n A n n n n m n m =---+=- .(3)()()12331!mn A n n n n =--⨯⨯= . (4)()m k m nn n n k A A A m k --=⋅≥.(四)组合1.组合从n 个不同元素中,任取()m m n ≤个元素组成一组(不考虑元素的顺序),叫作从n 个不同元素中任取m 个元素的一个组合.2.组合数从n 个不同元素中任取()m m n ≤个元素的所有组合的总数,叫作从n 个不同元素中任取m 个元素的组合数,用符号mn C 表示.3.组合数公式(1)规定01nn n C C ==;(2)()()()11!121mmn nn n n m A C m m m --+==-⨯ ,则m m mn n m A C A =⋅;(3)m n mn n C C -=.(五)二项式定理()01111nn n k n k k n n n n n n n n n a b C a C a C a b C ab C b ----+=++++++ ,其中第1k +项为1kn kk k n T C a b -+=称为通项.若令1a b ==,得0122nn n n n n C C C C ++++= ,01,,,nn n n C C C 称为展开式中的二项式系数,二项式系数具有以下性质: (1)02412n n n n n n C C C C -++++= (n 为偶数);(2)13512n n n n n n C C C C -++++= (n 为奇数);(3)n 为偶数时中项的系数最大,n 为奇数时中间两项的系数等值且最大. 二.常见问题及方法1.住店问题n 个不同人(不能重复使用元素),住进m 个店(可以重复使用元素),那么第一,第二,…,第n 个人都有m 种选择,则总共排列种数是n m 个.例1.有5人报名参加3项不同的培训,每人都只报一项,则不同的报法有().(A)243种 (B)125种 (C)81种(D)60种(E)以上选项均不正确解析:乘法原理,每个人都有3种选择,所以不同的报法有53243=(种).【答案】A练习:3个人争夺4项比赛的冠军,没有并列冠军,则不同的夺冠可能有()种.(A)34 (B)43 (C)4×3 (D)2×3 (E)以上选项均不正确解析:每个冠军都有3个人可选,故夺冠可能有种. 【答案】B2.简单排列组合问题明确排列与组合的区别:只要求每个组里的元素不同,是组合问题,用mn C ;若对顺序有要求,则是排列问题,用mn A . 注:解决这类问题的关键是准确分类与分步.例2(2012-1)某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列().(A)3000种(B)3003种(C)4000种(D)4003种(E)4300种【解析】只要求商品不同,是组合问题,故5151514131211300354321C ⨯⨯⨯⨯==⨯⨯⨯⨯(种)【答案】B练习: (2015-1)平面上有5条平行直线,与另一组条平行直线垂直,若两组平行线共构成280个矩形,则().(A)5(B)6(C)7(D)8(E)9【解析】组合问题从两组平行直线中任选两条则可构成一个矩形,于是225280n C C ⨯=,即()156n n -=,解得8n =.【答案】D3. 排队问题(1)特殊元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; (2)特殊位置优先法. 先考虑有限制条件的位置的要求,再考虑其他位置; (3)排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法. (4)相邻问题捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一14n243m +k个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列. (5)不相邻问题插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. (6)定序问题消序法.例3甲、乙、丙、丁、戊、己6人排队,则在以下各要求下,各有多少种不同的排队方法?(1)甲不在排头;(2)甲不在排头并且乙不在排尾; (3)甲乙两人相邻; (4)甲乙两人不相邻;(5)甲始终在乙的前面(可相邻也可不相邻). 【解析】假设6人一字排开,排入如下格子:(1)方法一:剔除法. 6个人任意排,有66A 种方法;甲在排头,其他人任意排,有55A 种方法;故甲不在排头的方法有6565600A A -=(种).方法二:特殊元素优先法.第一步:甲有特殊要求,故让甲先排,甲除了排头外有5个格子可以选,即15C ;第二步:余下的5个人,还有5个位置可以选,没有任何要求,故可任意排,即55A .故不同的排队方法有1555600C A =(种).方法三:特殊位置优先法.第一步:排头有特殊要求,先让排头选人,除了甲以外都可以选,故有15C ; 第二步:余下的5个位置,还有5个人可以选,没有任何要求,故可任意排55A ,故不同的排队方法有1555600C A =(种).【注意】①虽然以上两种方法在这一道题列出式子来是一样的,但是两种方法的含义不同.②在并非所有元素都参与排列时(如“6个人选4个人排队,甲不在排头”),特殊位置优先法与特殊元素优先法列出的式子并不一样,特殊位置优先法会更简单.(2)方法一:特殊元素优先法.有两个特殊元素:甲和乙.如果我们先让甲挑位置,甲不能在排头,故甲可以选排尾和中间的4个位置.这时,如果甲占了排尾,则乙就变成了没有要求的元素;如果甲占了中间4个位置中的一个,则乙还有特殊要求:不能坐排尾;故按照甲的位置分为两类:第一类:甲在排尾,其他人没有任何要求,即55A ;第二类:甲从中间4个位置中选1个位置,即14C ;再让乙选,不能在排尾,不能在甲占的位置,故还有4个位置可选,即14C ;余下的4个人任意排,即44A ;故应为114444C C A .加法原理,不同排队方法有51145444504A C C A +=(种).方法二:剔除法.6个人任意排66A ,减去甲在排头的55A ,再减去乙在排尾的55A ; 甲既在排头乙又在排尾的减了2次,故需要加上1次,即44A ;所以,不同排队方法有65546554504A A A A --+=(种).(3)相邻问题用捆绑法.第一步:甲乙两人必须相邻,故我们将甲乙两人用绳子捆起来,当作一个元素来处理,则此时有5个元素,可以任意排,即55A ;第二步:甲乙两人排一下序,即22A ;根据乘法原理,不同排队方法有5252240A A =(种).(4)不相邻问题用插空法.第一步:除甲乙外的4个人排队,即44A ;第二步:4个人中间形成了5个空,挑两个空让甲乙两人排进去,两人必不相邻,即25A ;根据乘法原理,不同排队方法有4245480A A=(种).(5)定序问题用消序法.第一步:6个人任意排,即66A;第二步:因为甲始终在乙的前面,所以单看甲乙两人时,两人只有一种顺序,但是6个人任意排时,甲乙两人有22A种排序,故需要消掉两人的顺序,用乘法原理的逆运算,即用除法,则有6622AA.故不同排队方法有6622360AA=种).【注意】若3人定序则除以33A,以此类推.练习:(2012-1)在两队进行的羽毛球对抗赛中,每队派出3男2女共5名运动员进行5局单打比赛.如果女子比赛安排在第二和第四局进行,则每队队员的不同出场顺序有().(A)12种(B)10种(C)8种(D)6种(E)4种【解析】要求“每队”队员的不同出场顺序,只需要考虑一队即可.所以,2个女队员排在第二和第四局,即22A;3个男队员排在另外三局,即33A;根据乘法原理,不同的出场顺序为232312A A=(种).【答案】A4.万能元素问题万能元素是指一个元素同时具备多种属性,一般按照选与不选万能元素来分类.例 (2011-10)在8名志愿者中,只能做英语翻译的有4人,只能做法语翻译的有3人,既能做英语翻译又能做法语翻译的有1人.现从这些志愿者中选取3人做翻译工作,确保英语和法语都有翻译的不同选法共有()种.(A)12 (B)18 (C)21 (D)30 (E)51【解析】分为两类:第一类:有人既懂英语又懂法语121721C C=;第二类:没有人既懂英语又懂法语1211434330C C C C+=.根据加法原理,不同的选法有51种.练习:从1、2、3、4、5、6中任取3个数字,其中6能当9用,则能组成无重复数字的3位数的个数是()个.(A)108 (B)120 (C)160 (D)180 (E)200【解析】分为三类:第一类:无6和9,则其余5个数选3个任意排,即35A;第二类:有6,则1、2、3、4、5中选2个,再与6-起任意排,即2353C A;第三类:有9,则1、2、3、4、5中选2个,再与9一起任意排,即2353C A;故总个数为3232355353180A C A C A++=(种).【答案】D5.均匀与不均匀分组问题(1)均匀分组与不均匀分组.如果组与组之间的元素个数相同,称为均匀分组;否则,称为不均匀分组.(2)小组有名称与小组无名称.只是分组即可,则小组无名称;如分为A组、B组、C组,或种子队、非种子队.等等,则小组有名称.(3)如果均匀分组,并且小组无名称,需要消序(若有m组元素个数相等,就要除以mmA);其佘情况均不需要消序.例:从10个人中选一些人,分成三组,在以下要求下,分别有多少种不同的方法?(1)每组人数分别为2、3、4;(2)每组人数分别为2、2、3;(3)分成A组2人,B组3人,C组4人;(4)分成A组2人,B组2人,C组3人;(5)每组人数分别为2、3、4,:去参加不同的劳动;(6)每组人数分别为2、2、3,去参加不同的劳动.【解析】(1)不均匀分组,不需要考虑消序,即2341085C C C.(2)均匀并且小组无名字,要消序,即234 108522C C CA.(3)小组有名字,不管均匀不均匀,不需要消序,即2341085C C C . (4)小组有名字,不管均匀不均匀,不需要消序,即2231086C C C .(5)第一步,不均匀分组,即第二步,安排劳动,即33A ;故有234310853C C C A(6)第一步,均匀且小组无名称分组,即223108622C C C A .;第二步,安排劳动,即33A ;故有22331086322C C C A A . 6.不同元素的分配问题不同元素的分配问题,采用先分组,再分配(排列)的原则.例:4个不同的小球放人甲、乙、丙、丁4个盒中,恰有一个空盒的放法有(). (A)1244C C(B)3343C A(C)144C A(D)2344C A(E)3143A C【解析】先取两个球作为一组是24C ,余下2球自然成为2组,把3组球放入4个盒子的三个里,即34A ,所以,不同的放法有2344C A 种.【答案】D练习 (2010-1)某大学派出5名志愿者到西部4所中学支教,若每所中学至少有一名志愿者,则不同的分配方案共有().(A)240种(B)144种(C)120种(D)60种(E)24种【解析】其中一所学校分配2人,其余3所学校各分配一人,分两步: 第一步:从5名志愿者任选2人作为一组,另外三人各成一组,即25C ; 第二步:将4组志愿者任意分配给4所学校,即44A .故不同的分配方案有:2454240C A =.【答案】A7. 相同元素的分配问题(1)挡板法将n 个“相同的”m 个对象,每个对象“至少分一个”的分法如下: 把这n 个元素排成一排,中间有1n -个空,挑出1m -个空放上挡板,自然就分成了m 组,所以分法一共有11m n C --种,这种方法称为挡板法.要使用挡板法需要满足以下条件: ①所要分的元素必须完全相同. ②所要分的元素必须完全分完. ③每个对象至少分到1个元素.(2)如果不满足第三个条件,则需要创造条件使用挡板法.①每个对象至少分到0个元素(如可以有空盒子),则采用增加元素法,增加m 个元素(m 为对象的个数,如盒子的个数),此时一共有n m +个元素,中间形成1n m +-个空,选出1m -个空放上挡板即可,共有11m n m C -+-种方法,②每个对象可以分到多个元素,则用减少元素法,使题目满足条件③例 (2009-10)若将10只相同的球随机放人编号为1、2、3、4的四个盒子中,则每个盒子不空的投放方法有()种.(A)72(B)84(C)96(D)108(E)120【解析】挡板法.10个球排成一列,中间形成9个空,任选3个空放上挡板,自然分为4组,每组放入一个盒子,故不同的分法有3998784321C ⨯⨯==⨯⨯(种).【答案】B练习: 若将15只相同的球随机放人编号为1、2、3、4的四个盒子中,每个盒子中小球的数目,不少于盒子的编号,则不同的投放方法有()种.(A)56(B)84(C)96(D)108(E)120【解析】减少元素法.相同元素的分配问题,但是不满足使用挡板法的第三个条件(每个盒子至少放一个小球),则需要创造出第三个条件.第一步:先将1、2、3、4四个盒子分别放0、1、2、3个球.因为球是相同的球,故只有一种放法.第二步:余下的9个球放入四个盒子,则每个盒子至少放一个,就满足了题干的要求,也满足挡板法的要求,故3887656321C ⨯⨯==⨯⨯(种).8.不能对号入座问题——错排问题出题方式为:编号为1,2,3,…,n 的小球,放人编号为1,2,3,…,n 的盒子,每个盒子放一个,要求小球与盒子不同号.此类问题不需要自己去做,直接记住下述结论即可:①2n=时,有1种方法.②3n=时,有2种方法.③4n=时,有9种方法.④5n=时,有44种方法.例:(2014-1)某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮换到4个部门中的其他部门任职,则不同的方案有().(A)3种(B)6种(C)8种(D)9种(E)10种【解析】4球不对号入座问题,9种.【答案】D练习:有5位老师,分别是5个班的班主任,期末考试时,每个老师监考一个班,且不能监考自己任班主任的班级,则不同的监考方法有().(A)6种(B)9种(C)24种(D)36种(E)44种【解析】不能对号入座问题,根据上述结论,直接选44.【答案】E9.成双成对问题出题方式为:从鞋子、手套、夫妻中选出几个,要求成对或者不成对.解题技巧:无论是不是要求成对,第一步都先按成对的来选.若要求不成对,再从不同的几对里面各选一个即可.例:从6双不同的鞋子中任取4只,则其中没有成双鞋子的取法有()种.(A)96 (B)120 (C)240 (D)480 (E)560【解析】第一步,从6双中选出4双鞋子,有46C;第二步,从4双鞋子中各选1只,有11112222C C C C;故不同的取法有4111162222240C C C C C=.10.涂色问题涂色问题分为以下三种:(1)直线涂色:简单的乘法原理.(2)环形涂色公式.把一个环形区域分为k 块,用s 种颜色去涂,要求相邻两块颜色不同,则不同的涂色方法有()()()111k k N s s =-+--,其中,s 为颜色数(记忆方法:se 色),k 为环形被分成的块数(记忆方法:kuai 块).例: (2000-1)用五种不同的颜色涂在图中的四个区域,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则不同的涂法共有().(A)120种 (B)140种(C)160种 (D)180种【解析】A ,B ,C ,D 四个区域分别有5C ,4C ,3C ,3C 种涂法,根据乘法原理,得11115433180C C C C =(种). 【答案】D练习: 如图7-7所示,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )种.(A)96 (B)84 (C)60 (D)48 (E)36【解析】环形涂色问题.方法一:分为两类:第一类,A,D 种相同的花14C ;C 不能和A ,D 相同,故有3种选择;B 不能和A,D 相同,故有3种选择;据乘法原理,得143336C ⨯⨯=(种).第二类,A,D 种不同的花24A ;C 不能和A,D 相同,故有2种选择;B 不能和A ,D 相同,故有2种选择;据乘法原理,得242248A ⨯⨯=(种). 据加法原理,得36+48=84(种).方法二:公式法.()()()()()()41114141184k k k N s s =-+--=-+--=(种). 【答案】B。

高中数学同步讲义(新教材):排列组合18种常考考法归类 (教师版)

高中数学同步讲义(新教材):排列组合18种常考考法归类 (教师版)
置。一般地,n 个不同的元素没有限制地安排在 m 个位置上的排列数为 mn 。
环排问题 围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形
线排法
多排问题 单排法 小集团题 先整体后 局部法 两类元素 的排列, 组合选位 法 分组与分 配问题
展成直线,一般地,n 个不同元素圆形排列,共有(n 1)!种排法。如果从 n 个不同元素中取出 m
个元素进行圆形排列,共有问题,可归结为一排考虑,再分段处理。
解小集团排列问题,先整体后局部,再结合其他策略进行处理。
将 m 个元素 a,n 个元素 b 进行全排列,我们可以从 m+n 个位置中选择 m 个位置安置元素 a,
剩下的
n
个位置安排元素
b,其方法数有
优先法和元素优先法是解决排列组合问题最常用也是最基本的方法之一。若以元素分析为主, 需先安排特殊元素,再处理其他元素;若以位置分析为主,需先满足特殊位置的要求,再处理 其他位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其他条件。 捆绑法指将联系密切或必须排在一起的元素“捆绑”成一个整体,再与其他元素进行排列,同 时要注意合并后内部元素也必须排列.(注意捆绑元素是同元还是不同元),“捆绑”将特殊元 素特殊对待,能大大降低分析问题的难度.采用捆绑法分析排列组合问题,剩余元素的处理应考虑 其是排列问题还是组合问题,对于组合问题需将“顺序”带来的影响消除掉. 插空法在分析元素不相邻问题时较为常用,即先将无特殊要求的元素排列好,而后看其产生多 个满足题意的空,再将不能相邻的元素插入,使其满足题目的相关要求.部分习题创设的情境较 为复杂,还需采用捆绑法等其他一些方法.总之,无论采用何种方法,应清楚形成的空的数量. 部分不同元素在排列前后的顺序固定不变(不一定相邻)的排列问题,称之为定序(排列)问 题.定序问题可以用倍缩法(消序法),还可用空位法。①消序法:将 m+n 个元素排成一列,

数学中的排列组合

数学中的排列组合
1.黄、黑 2.黑、黄
1.红、黑 2.黑、红
1.绿、黑 2.黑、绿
计算公式
组合
• 从n个不同元素中,任取m(m≤n)个元素并 成一组,叫做从n个不同元素中取出m个元 素的一个组合; • 从n个不同元素中取出m(m≤n)个元素的所 有组合的个数,叫做从n个不同元素中取出 m个元素的组合数。用符号 C(n,m) 表示。
组合
• 如:从4种不同的颜色中取出4种颜色,有 几种取法? 红、黄、绿、黑 • 如:从4种不同的颜色中取出2种颜色,有 几种取法?
红、黄
黄、绿
红、绿
红、黑
绿、黑
黄、黑
计算公式
练习
• 在11名工人中,有5人只能当钳工,4人只 能当车工,另外2人能当钳工也能车工。 现从11人中选出4人当钳工,4人当车工, 问共有多少种不同的选法?
• 如:4种颜色按不同颜色,进行排列,有多 少种排列方法?(全排列) • 如:从4种不同的颜色中选2种颜色进行排 列,一共有几种排列方法?(选择排列)
红、黄、绿、黑
1.红、黄、绿、黑 2.红、黄、黑、绿 3.红、绿、黄、黑 4.红、绿、黑、黄 5.红、黑、黄、绿 6.红、黑、绿、黄 1.黄、红、绿、黑 2.黄、红、黑、绿 3.黄、绿、红、黑 4.黄、绿、黑、红 5.黄、黑、绿、红 6.黄、黑、红、绿
数学中的排列组合
排列
• 从n个不同元素中,任取m(m≤n,m与n均为 自然数,下同)个元素按照一定的顺序排成 一列,叫做从n个不同元素中取出m个元素 的一个排列; • 从n个不同元素中取出m(m≤n)个元素的所 有排列的个数,叫做从n个不同元素中取出 m个元素的排列数,用符号 A(n,m)表示。
排列
1.绿、红、黄、黑 2.绿、红、黑、黄 3.绿、黄、红、黑 4.绿、黄、黑、红 5.绿、黑、黄、红 6.绿、黑、红、黄

小学数学排列组合知识

小学数学排列组合知识

小学数学排列组合知识在小学数学中,排列组合是一个重要的知识点,它不仅在数学中有着广泛的应用,而且也对学生的逻辑思维能力和问题解决能力有着很大的促进作用。

本文将从排列和组合的基本概念、性质和应用等方面进行介绍,希望能够帮助学生更好地理解和掌握这一部分的知识。

首先,我们来看一下排列和组合的基本概念。

排列是指从给定的元素中取出一部分,按照一定的顺序进行排列,而组合则是从给定的元素中取出一部分,不考虑顺序。

以小学生喜欢的颜色为例,假设有红、黄、蓝三种颜色,如果要求取出两种颜色进行排列,那么可能的排列方式有红黄、红蓝、黄红、黄蓝、蓝红、蓝黄,共计6种;而如果是组合,那么可能的组合方式有红黄、红蓝、黄蓝,共计3种。

通过这个简单的例子,我们可以初步了解排列和组合的概念。

其次,排列和组合有一些基本的性质。

在排列中,如果有n个元素进行排列,那么可能的排列方式为n!(n的阶乘)种。

而在组合中,如果有n个元素进行组合,那么可能的组合方式为C(n, m) = n!/((n-m)!m!)种,其中C(n, m)表示从n个元素中取出m个元素进行组合。

这些性质对于解决实际问题和计算排列组合的数量都有着重要的意义。

最后,排列和组合在实际生活中有着广泛的应用。

比如在购买彩票时,我们需要计算不同号码的排列组合数量;在安排座位时,我们需要计算不同人员的排列组合方式;在设计密码时,我们需要考虑不同数字字母的排列组合情况等等。

排列和组合的知识不仅可以帮助我们解决这些实际问题,而且也能够培养我们的逻辑思维能力和问题解决能力。

总之,排列和组合是小学数学中一个重要的知识点,它不仅有着广泛的应用,而且对学生的思维能力有着很大的促进作用。

通过本文的介绍,希望能够帮助学生更好地理解和掌握排列组合的知识,从而在数学学习中取得更好的成绩。

希望学生们能够善于运用排列组合的知识,发挥自己的想象力和创造力,解决更多有趣的问题。

三年级数学排列组合题

三年级数学排列组合题

三年级数学排列组合题1.有3个苹果,放在4个盘子里面,问有多少种不同的方法?解答:从3个苹果中选择1个,放在4个盘子里面,有4种方法;从剩下的2个苹果中选择1个,放在剩下的3个盘子里面,有3种方法;从剩下的1个苹果中选择1个,放在剩下的2个盘子里面,有2种方法。

所以总共有4×3×2=24种方法。

2.有5个男生和3个女生,要选出2个小组,每个小组4个人,问有多少种不同的方法?解答:从5个男生中选择1个,放在第一个小组里面,有5种方法;从剩下的4个男生中选择1个,放在第二个小组里面,有4种方法;从3个女生中选择1个,放在第一个小组里面,有3种方法;从剩下的2个女生中选择1个,放在第二个小组里面,有2种方法。

所以总共有5×4×3×2=120种方法。

3.有7个人排队,其中3个人不想站在相邻的位置,问有多少种不同的方法?解答:先不考虑那3个人,其余4个人排队,有4种方法;再把那3个人插空排列,有2×3=6种方法。

所以总共有4×6=24种方法。

4.有7个苹果,要分成3堆,问有多少种不同的方法?解答:先不考虑大小顺序,把7个苹果放在一起,一共有6个空隙,从6个空隙中选出2个空隙,把苹果分成3堆,有6×5÷2=15种方法。

但这样算出来的结果是按照每堆苹果的数量排列的,所以再除以3的阶乘,即15×2×1=30种方法。

5.有8个苹果,要分成4堆,问有多少种不同的方法?解答:先不考虑大小顺序,把8个苹果放在一起,一共有7个空隙,从7个空隙中选出3个空隙,把苹果分成4堆,有7×6×5÷(3×2×1)=35种方法。

但这样算出来的结果是按照每堆苹果的数量排列的,所以再除以3的阶乘,即35×2×1=70种方法。

6.有5副手套,要选出3双手套,问有多少种不同的方法?解答:先不考虑大小顺序,从5副手套中选出3双手套,有5×4÷2=10种方法;再从每双手套中选出一双手套,有10×2=20种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

994994994
6.剔除法 (间接法)
从总体中排除不符合条件的方法数,这是一种间 接解题的方法. (对立事件)
排列组合应用题往往和代数、三角、立体几何、 平面解析几何的某些知识联系,从而增加了问题的综 合性,解答这类应用题时,要注意使用相关知识对答 案进行取舍.
例6 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直
将10个小球串成一串,截为4段有
C
3 9
84
种截断法,对应放到4个盒子里.
因此,不同的分配方案共有84种 .
变式2:xyzw100
(1)求这个方程组的正整数解的组数?
3 C
99
(2)求这个方程组的自然数解的组数?
(x 1 ) (y 1 ) (z 1 ) (w 1 ) 10
3 C
103
Байду номын сангаас

3 12 21 3 C CC CC C
因此,不同的分配方案共有455种 .
5.隔板法(剪截法):
变式1: 某校准备参加今年高中数学联赛,把16个选 手名额分配到高三年级的1-4 个教学班,每班的名额 不少于该班的序号数,则不同的分配方案共有___种.
解: 问题等价于先给2班1个,3班2个,4班3个,再 把余下的10个相同小球放入4个盒子里,每个盒子至 少有一个小球的放法种数问题.
解排列组合的几种基本方法
2015年12月23日
1.捆绑法
相邻元素的排列,可以采用“局部到整体”的排 法,即将相邻的元素局部排列当成“一个”元素,然 后再进行整体排列.
例1 6人排成一排.甲、乙两人必须相邻,有多少种不的
排法?
特殊元素优先考虑
♀♀♀♀♀♀
解:(1)分两步进行:
第一步,把甲乙排列(捆绑):有A22=2种捆法
A到B只能上行或右行
共有多少条不同的路线?
也可以看作是
B
1,2,3,4,5,6,7,①,②,③,
A
将一条路经抽象为如下的一个
④顺序一定的排列, 排法(5-1)+(8-1)=11格:

A 11 11
→↑ →↑ ↑ →→→↑ →→
A
A
种排法.
4 4
A
7 7
1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
3.消序法 /倍缩法 (留空法 / 空位法)
几个元素顺序一定的排列问题,一般是先排列,再 消去这几个元素的顺序或者,先让其它元素选取位 置排列,留下来的空位置自然就是顺序一定的了.
例3 5个人站成一排,甲总站在乙的右侧的有多少种站法?
解法1:将5个人依次站成一排,有
A
5 5
种站法,
然后再消去甲乙之间的顺序数
特别当n=2, 3 , 4 , 5时的错位数各为1, 2 , 9 , 44.(列举)
例7 编号为1至6的6个小球放入编号为1至6的6个 盒子里,每个盒子放一个小球,其中恰有2个小球 与盒子的编号相同的放法有___种.
解: 选取编号相同的两组球和盒子的方法有
甲乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有 A5 5= 120种 排 法 几个元素必须相邻时,
共 有 2 1 2 0 = 2 4 0 种 排 法 先再捆与绑其成它一 的个 进元 行素 排, 列.
2.插空法:
解决一些不相邻问题时,可以先排“一般” 元素然后插入“特殊”元素,使问题得以解决.
♀ ♀♀ ♀ ♀♀♀
↑↑ ↑ ↑ ↑ ↑
例2 7人排成一排.甲、乙两人不相邻,有多少种不同 的排法?
解:分两步进行:
第1步,把除甲乙外的人排列: 有 A55=120种 排 法
第2步,将甲乙分别插入到不同的间隙或两端中(插空):
有 A62=30种 插 入 法
几个元素不能相邻时,
共 有 1 2 0 3 0 = 3 6 0 0 种 排 法 先特排殊一元般素元 插素 空,. 再让
线方程Ax+By+C=0中的A、B、C,所得的经过坐标
原点的直线有_________条.
解:所有这样的直线共有 A73 210 条,
直接法:
其中不过原点的直线有 A61A62 180条,
∴所得的经过坐标原点的直线有210-180=30条.
2 A
6
30
7.错位法:
编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编号都 不同,这种排列称为错位排列.
所以, 四个↑和七个→一个排序就对应一条路经, 所以从A到B共有 C 4 条不同的路径.
11
4.分组(堆)分配问题
分组(堆)分配问题的六个模型: 不分配: ①无序不等分;②无序等分;③无序局部等分; (分配:④有序不等分;⑤有序等分;⑥有序局部等分.)
处理问题的原则:
①若干个不同的元素“等分”为 n个堆,要将 选取出每一个堆的组合数的乘积除以n!
A
2 2
∴甲总站在乙的右侧的有站法总数为
A55 A22
543 A53
解法2:先让甲乙之外的三人从5个位置选出3个站好,有
A
3 5
种站法,留下的两个位置自然给甲乙有1种站法
∴甲总站在乙的右侧的有站法总数为 A53 1 A53
3.消序法(留空法)
变式:如下图所示,有5 解: 如图所示
B
横8竖构成的方格图,从
解法1:要完成承包这件事,可以分为两个步骤:
⑴先将四项工程分为三“堆”,有
C
2 4
C
1 2
C
1 1
A
2 2
6
种分法;
⑵再将分好的三“堆”依次给三个工程队,
有3!=6种给法.
∴共有6×6=36种不同的发包方式.
解法2:
23 CA
43
5.隔板法(剪截法):
n个 相同小球放入m (m ≤ n)个盒子里,要求每个 盒子里至少有一个小球的放法 (等价于 n个相同小球串 成一串从间隙里选m-1个结点剪截成m段.)
②非均分堆问题,只要按比例取出分完再用乘 法原理作积.
③若干个不同的元素局部“等分”有 m个均等 堆,要将选取出每一个堆的组合数的乘积除以m!
④要明确堆的顺序(分配)时,必须先分堆后再 把堆数当作元素个数作全排列.
4.分组(堆)分配问题
例4 有四项不同的工程,要承包给三个工程队,要 求每个工程队至少要得到一项工程. 共有多少种不同的 发包方式?
例5 某校准备参加今年高中数学联赛,把16个选手名 额分配到高三年级的1-4 个教学班,每班至少一个名额, 则不同的分配方案共有___种.
解: 问题等价于把16个相同小球放入4个盒子里, 每个盒子至少有一个小球的放法种数问题.
将16个小球串成一串,截为4段有 C135 455
种截断法,对应放到4个盒子里.
相关文档
最新文档