成都市武侯外国语学校八年级半期考试卷(新版)

合集下载

2020-2021学年四川省成都外国语学校八年级(上)期中数学试卷

2020-2021学年四川省成都外国语学校八年级(上)期中数学试卷

2020-2021学年四川省成都外国语学校八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列各数中的无理数是()A.B.3.14C.D.π2.(3分)下列三条长度的线段不能组成直角三角形的是()A.,,B.12,5,13C.7,24,25D.9,40,413.(3分)函数y=中,自变量x的取值范围是()A.x>3B.x≤3C.x≠3D.x<34.(3分)下列说法中,正确的是()A.任意数的算术平方根都是正数B.只有正数才有算术平方根C.因为3的平方根是9,所以9的平方根是3D.﹣1是1的平方根5.(3分)下列计算正确的是()A.﹣=B.2×3=12C.=3D.4+3=146.(3分)若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.﹣3,2B.3,﹣2C.﹣3,﹣2D.3,27.(3分)在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13D.58.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y29.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.2.2米B.2.3米C.2.4米D.2.5米10.(3分)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接B、D和B,E,下列四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=30°④BE2=2(AD2+AB2)其中,正确的个数是()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)比较大小:6.12.(4分)已知直角三角形的两条直角边长分别为6cm和8cm,则这个直角三角形的外接圆的半径为cm.13.(4分)已知a、b分别是的整数部分和小数部分,那么2a﹣b的值为.14.(4分)已知A、B、C在数轴上的位置如图,AB=AC,A、B两点对应的实数分别是1和﹣,则点C对应的实数是.三、解答题(本大题共6小题,共54分)15.计算.(1).(2)(2﹣3)2﹣(4+3)(4﹣3).16.若实数y的立方根是2,且实数x、y、z满足+y+(x﹣z+4)2=8,(1)求x+y﹣2z的值;(2)若x、y、z是△ABC的三边长,试判断△ABC的形状.17.如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出B和C的坐标;(3)计算△ABC的面积.18.为了普及“新冠病毒”的防疫知识,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为800米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,并说明理由.(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?19.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点(1)若OF+BE=AB,求证:CF=CE.(2)如图(2),且∠ECF=45°,S△ECF=6,求S△BEF的值.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)已知y=+8x,则的算术平方根为.22.(4分)在平面直角坐标系中,点A(1,2a+3)到x轴的距离与到y轴的距离相等,则a=.23.(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.24.(4分)如图,直线AB的解析式为y=﹣x+b分别与x,y轴交于A,B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.在x轴上方存在点D,使以点A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.25.(4分)定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为.五、解答题(本大题共3小题,共30分)26.解决如下问题:(1)分母有理化:.(2)计算:.(3)若a=,求2a2﹣8a+1的值.27.如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:△AEF≌△CEB.(2)若G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG.(3)如图2,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD=15°,求AM的长.28.如图1,等腰直角△ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K型全等”.(不需要证明)[模型应用]若一次函数y=kx+4(h≠0)的图象与x轴、y轴分别交于A、B两点.(1)如图2,当k=﹣1时,若B到经过原点的直线l的距离BE的长为3,求A到直线l的距离AD的长.(2)如图3,当k=﹣时,点M在第一象限内,若△ABM是等腰直角三角形,求点M的坐标.(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,当Q在第一象限落在直线y=0.5x+1上时,在x轴上求一点H,使HQ+HB的值最小,请求出H的坐标.。

成都市武侯实验2013-2014上学年八年级半期考试(2013新版)

成都市武侯实验2013-2014上学年八年级半期考试(2013新版)

成都市武侯实验中学2013--2014上学年八年级半期考试卷姓名:__________ 满分125分时间90分钟得分:__________一.单项选择(25分)A).选择与划线部分意思相同或相近的词A.taller than any other studentB.overC.discussed aboutD.quite a few26.We had a discussion about he movie theaters.27.I exercise more than one hour every day.28.Tom is the tallest student in class.29.There are a lot of clothes stores on Chunxi RoadB).从各题的A,B,C三个选项中选择正确答案30.--______ did you go on vacation, Tom. --I went to the beach.A.WhereB.WhenC.What31.Gina works really ________, she ________ relaxes on weekends.A.hardly, hardB.hardly, hardlyC.hard, hardly32.Of the three books, The old Man and the Sea is _________.A.interestingB.more interestingC.the most interesting33.--Did you do _______ on your vacation? --Yes, I did.A.something funB.anything funC.fun something34.What do you expect ______ from the program?A.learnB.learningC.to learn35.--______ do you _________ the cinema? --I think it is the best one in town.A.What, thinkB.How, likeC.How, think of36.You are getting fatter and fatter, you should eat ________ food and do _______ exercise.A.more, lessB.less, moreC.less, less37.I think the best clothes store is Tom’s Store. You can buy the clothes __________.A.the cheapestB.the most cheaplyC.the most cheap38.--_______ do you go to a movie? --Once a week.A.How oftenB.WhenC.How much39.We didn’t go to the mountain ________the bad weather yesterday.A.soB.becauseC.because of40.She plays the piano as _____ as her sister.A.goodB.betterC.well41.Who is _____, Molly or Lucy?A.friendlyB.friendlierC.the friendliest42.This is box is ________ than that one.A.much heavyB.more heavierC.much heavier43.My hair is not so long as _____.A.yoursB.yourC.you45.________ Lisa really wanted to win, _____ Nelly danced better than her.A.Although; butB.But, /C.Although; /46.I don’t really care if my friends are the same _________ me or different.A.fromB.asC.ofC.补全对话。

成都武侯外国语学校八年级上册生物 第三次月考试卷(含答案)

成都武侯外国语学校八年级上册生物 第三次月考试卷(含答案)

成都武侯外国语学校八年级上册生物第三次月考试卷(含答案)一、选择题1.下列哪一项不是动物行为的特点A.都是一个运动、变化的动态过程B.同生活环境密切相关,对个体生存和种族延续有重要作用C.都是动物生来就具有的,由体内遗传物质控制的D.都是神经系统、感觉器官、运动器官和激素协调作用的结果2.消灭蝗虫时,把它的头部置于水中不能使它窒息,原因是()A.蝗虫可以吸收水中的氧气B.蝗虫可以通过体表进行呼吸C.蝗虫可以几个小时不呼吸D.蝗虫通过气管进行呼吸3.与家鸽飞行生活相适应的特点是()①身体呈流线型②产卵繁殖后代③前肢变成翼④用肺呼吸,气囊辅助呼吸A.①②③B.①②④C.①③④D.②③④4.为延长食品的保存时间,人们研究了许多贮藏方法.从健康角度考虑,你认为不宜采用的是()A.冷藏冷冻B.脱水处理C.真空包装D.添加防腐剂5.下列动物都具备消化腔有口无肛门的一项是()A.蝗虫、蚯蚓、蛔虫B.水蛭、海蜇、涡虫C.水母、涡虫、水螅D.沙蚕、血吸虫、珊瑚虫6.海葵、乌贼、河蚌、虾、蟹、鲸等的形态各异,但它们有一个共同特征,那就是()A.都有贝壳B.身体都很柔软C.都用肺呼吸D.都适应水中生活7.下列关于动物形态结构特点的叙述,错误的是()A.鲫鱼身体呈流线型是对其水生生活的适应B.具有角质的鳞是蛇适应陆地生活的重要特征C.身体分头部、胸部、腹部三部分是节肢动物的共同特点D.身体由相似的环状体节组成是蚯蚓和沙蚕的共同特点8.研究动物行为的主要方法是实验法和观察法,其最本质的区别是()A.研究者是否利用显微镜进行观察B.研究者是否对被研究的动物直接施加人为的影响C.研究者是否直接观察被研究的动物D.以上说法都不正确9.微生物与人类关系密切,下列说法错误..的是A.广泛用于食品生产B.医药工业中应用广泛C.有些微生物使人患病D.大多数微生物对人类有害10.下雨之前,经常可以看到蚂蚁大军有组织地迁往高处。

这一现象说明蚂蚁具有()A.取食行为B.社会行为C.攻击行为D.繁殖行为11.屠呦呦因创制了抗疟新药——青蒿素和双氢青蒿素,获得了2015年诺贝尔生理学或医学奖。

2020-2021成都武侯外国语学校初二数学下期中第一次模拟试卷及答案

2020-2021成都武侯外国语学校初二数学下期中第一次模拟试卷及答案

2020-2021成都武侯外国语学校初二数学下期中第一次模拟试卷及答案一、选择题1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.73.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C222a b+D222a b-4.下列四组线段中,可以构成直角三角形的是()A.1,2,3B.2,3,4C.23D2,3,5 5.正方形具有而菱形不具有的性质是()A.四边相等 B.四角相等C.对角线互相平分 D.对角线互相垂直6.在矩形ABCD中,AB=2,AD=4,E为CD的中点,连接AE交BC的延长线于F点,P为BC 上一点,当∠PAE=∠DAE时,AP的长为()A.4B.C.D.57.下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.2223,4,5C.53,1,44D.1.5,2,2.58.在水平地面上有一棵高9米的大树,和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行( )A.12米B.13米C.9米D.17米9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为()A.9.6cm B.10cm C.20cm D.12cm10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD12.下列运算正确的是()A.532-=B.822-=C.114293=D.()22525-=-二、填空题13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:植树棵数(单位:棵)456810人数(人)302225158则这100名学生所植树棵数的中位数为_____.14.已知菱形的周长为20㎝,两条对角线的比为3:4,则菱形的面积为___________.15.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC=______cm.16.如图,在ABC∆中,D、E分别为AB、AC的中点,点F在DE上,且AF CF⊥,若3AC=,5BC=,则DF=__________.17.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________18.已知矩形ABCD 如图,AB =4,BC =43,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.19.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题21.计算:16(23)(23)273-+ 22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题: (1)小颖家与学校的距离是 米; (2)AB 表示的实际意义是 ;(3)小颖本次从学校回家的整个过程中,走的路程是多少米? (4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.如图1,ABC V 是等腰直角三角形,90A ∠=︒,4cm BC =,点P 在ABC V 的边上沿路径B A C →→移动,过点P 作PD BC ⊥于点D ,设cm BD x =,BDP △的面积为2cm y (当点P 与点B 或点C 重合时,y 的值为0).琪琪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是琪琪的探究过程,请补充完整:(1)自变量x 的取值范围是______________________; (2)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm12132252 3724y /2cm 018m98215832n 0请直接写出m = ,n = ;(3)在图2所示的平面直角坐标系xoy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图像;并结合画出的函数图像,解决问题:当BDP △的面积为12cm 时,请直接写出BD 的长度(数值保留一位小数).(4)根据上述探究过程,试写出BDP △的面积为y 2cm 与BD 的长度x cm 之间的函数关系式,并指出自变量的取值范围.24.如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作CE ∥BD 、DE ∥AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形.(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若AC =10,BD =24,则OE 的长为____.25.端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时m 千米的速度匀速行驶,途中体息了一段时间后,仍按照每小时m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程()y km 甲,()y km 乙与时间()x h 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:()1图中E 点的坐标是______,题中m =______km/h ,甲在途中休息______h ; ()2求线段CD 的解析式,并写出自变量x 的取值范围; ()3两人第二次相遇后,又经过多长时间两人相距20km ?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A 点坐标即可求得C 点坐标. 【详解】∵四边形ABCD 是长方形, ∴CD=AB= 3,BC=AD= 4, ∵点A (﹣32,﹣1),∴点C 的坐标为(﹣32+3,﹣1+4), 即点C 的坐标为(32,3), 故选D . 【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B 【解析】 【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数. 【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴ 故选:B . 【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.3.C解析:C 【解析】 【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b- ,得到BC=DE=22a b a ba -+-=,根据勾股定理即可得到结论. 【详解】设CD =x ,则DE =a ﹣x , ∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x , ∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b+,∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +,∴BD【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b的式子表示各个线段是解题的关键.4.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+(2)2=(3)2,∴以1,2,3为边组成的三角形是直角三角形,故本选项正确;D.∵(2)2+32≠52,∴以2,3,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.5.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B.6.B解析:B【解析】【分析】根据矩形的性质结合等角对等边,进而得出CF的长,再利用勾股定理得出AP的长.【详解】在中,得点睛:此题主要考查了矩形的性质以及勾股定理等知识,正确得出FC 的长是解题关键.7.B解析:B 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可. 【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.B解析:B 【解析】 【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出. 【详解】如图,设大树高为AB=9m ,小树高为CD=4m ,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=12m ,AE=AB-EB=9-4=5m , 在Rt △AEC 222251213AE EC m ++==.故小鸟至少飞行13m . 故选:B. 【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.B【解析】【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【详解】作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=12AC=6cm,OB=12BD=8cm,∴AB=2268=10(cm),故选:B.【点睛】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.10.A解析:A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键. 11.B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.B解析:B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A.≠A错误;B.=,故B正确;C.=,故C错误;D.2=,故D错误.故选:B.【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.二、填空题13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm .【解析】【分析】【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm .【点睛】本题考查菱形的性质;勾股定理. 15.13【解析】【分析】在△ABD 中根据勾股定理的逆定理即可判断AD⊥BC 然后根据线段的垂直平分线的性质即可得到AC=AB 从而求解【详解】∵AD 是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD 中,根据勾股定理的逆定理即可判断AD ⊥BC ,然后根据线段的垂直平分线的性质,即可得到AC=AB ,从而求解.【详解】∵AD 是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD⊥BC.16.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE 为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.【详解】解:∵D、E分别为AB、AC的中点,∴DE=12BC=2.5,∵AF⊥CF,E为AC的中点,∴EF=12AC=1.5,∴DF=DE﹣EF=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x =+米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x +=+,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 18.【解析】【分析】根据三角形的面积公式求出△APD 和△BPC 的面积相加即可得出答案【详解】过点P 作MN ∥AD 交AB 于点N 交CD 于点M 如图∴AB ∥CDAD ∥BCAD=BC=AB=CD=4∴S △APB+S 解析:83【解析】【分析】根据三角形的面积公式求出△APD 和△BPC 的面积,相加即可得出答案.【详解】过点P 作MN ∥AD ,交AB 于点N ,交CD 于点M .如图,∴AB ∥CD ,AD ∥BC ,AD=BC=3AB=CD=4,∴S △APB +S △DPC =12×AB×PN+12CD×PM=12×4×PN +12×4×PM =12×4×(PM+PN)= 12×4×4383. 故答案为:3【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.19.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD 再根据直角三角形的性质可得AB=2OP 进而得到AB 长然后可算出菱形ABCD 的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD .三、解答题21.1【解析】【分析】先利用平方差公式计算,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=43--=1【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(1)2600;(2)小颖在文具用品店停留了10分钟;(3)小颖本次在从学校回家的整个过程中,走的路程是3400米;(4)小颖从文具用品店回到家步行的速度是90米/分.【解析】【分析】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)由函数图象可知,20~30分钟的路程没变,所以AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)小颖本次从学校回家的整个过程中,走的路程为26002180014003400+-=()(米). (4)用小颖从文具用品店回到家的路程除以所用时间即可.【详解】(1)根据函数图象,可知小颖家与学校的距离是2600米;(2)AB 表示的实际意义是小颖在文具用品店停留了10分钟;(3)26002180014003400+-=()(米).(列的式子只要合理都可) ∴小颖本次在从学校回家的整个过程中,走的路程是3400米.(4)1800503090/()(米分)÷-=. ∴小颖从文具用品店回到家步行的速度是90米/分.【点睛】考查一次函数的应用,读懂函数的图象,明确每一段图象所表示的实际意义是解题的关键.23.(1)0≤x ≤4(2)12;78(3)图见解析,1.4或3.4;(4)y=()()22102212242xx x x x ⎧≤≤⎪⎪⎨⎪-+≤⎪⎩< 【解析】【分析】(1)由于点D 在线段BC 上运动,则x 范围可知;(2)根据题意得画图测量可得对应数据;(3)根据已知数据描点连线画图即可,当△BDP 的面积为1cm 2时,相对于y =1,则求两个函数图象交点即可;(4) 先根据点P 在AB 上时,得到△BDP 的面积y =12×BD ×DP =12x 2,(0≤x ≤2),再根据点P 在AC 上时,△BDP 的面积y =12×BD×DP =−12x 2+2x ,(2<x ≤4),故可求解.【详解】(1)由点D 的运动路径可知BD 的取值范围为:0≤x ≤4故答案为:0≤x ≤4;(2)通过取点、画图、测量,可得m =12,n =78; 故答案为:12,78; (3)根据已知数据画出图象如图当△BDP 的面积为1cm 2时,对应的x 相对于直线y =1与图象交点得横坐标,画图测量得到x=1.4或x=3.4,故答案为:1.4或3.4;(4)当点P 在AB 上时,△BDP 是等腰直角三角形,故BD =x =DP ,∴△BDP 的面积y =12×BD ×DP =12x 2,(0≤x ≤2)当点P 在AC 上时,△CDP 是等腰直角三角形,BD =x ,故CD =4−x =DP ,∴△BDP 的面积y =12×BD ×DP =12x (4−x )=−12x 2+2x ,(2<x ≤4) ∴y 与x 之间的函数关系式为:y=()()22102212242x x x x x ⎧≤≤⎪⎪⎨⎪-+≤⎪⎩<. 【点睛】本题为动点问题的函数图象探究题,考查了函数图象画法以及数形结合的数学思想.解答关键是按照题意画图、取点、测量以得到准确数据.24.(1)见解析;(2)13【解析】【分析】(1)首先由平行判定四边形OCED 是平行四边形,然后由矩形性质得出OC=OD ,即可判定四边形OCED 是菱形;(2)首先由平行判定四边形OCED 是平行四边形,然后由菱形性质得出AC ⊥BD ,AD=CD ,即可判定四边形OCED 是矩形,再利用勾股定理即可得解.【详解】(1)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是矩形,∴AC =BD ,12OC AC =,12OD BD =. ∴OC =OD .∴四边形OCED 是菱形.(2)∵DE ∥AC 、CE ∥BD ,∴四边形OCED 是平行四边形.∵四边形ABCD 是菱形,∴AC ⊥BD ,AD=CD∴∠COD=90°∴四边形OCED 是矩形∴OE=CD∵AC =10,BD =24,∴OD=12,OC=5∴13==【点睛】此题主要考查菱形的判定与性质,熟练掌握,即可解题.25.()()12,160,100,1;()2直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【解析】【分析】(1)根据速度和时间列方程:60×1+m=160,可得m=100,根据D 的坐标可计算直线OD 的解析式,从图中知E 的横坐标为2,可得E 的坐标,根据点E 到D 的时间差及速度可得休息的时间;(2)利用待定系数法求直线CD 的解析式;(3)先计算第二次相遇的时间:y=360时代入y=80x 可得x 的值,再计算x=5时直线OD 的路程,可得路程差为40km ,所以存在两种情况:两人相距20km ,列方程可得结论.【详解】()1由图形得()D 7,560,设OD 的解析式为:y kx =,把()D 7,560代入得:7k 560=,k 80=,OD ∴:y 80x =,当x 2=时,y 280160=⨯=,()E 2,160∴,由题意得:601m 160⨯+=,m 100=,()725601601001---÷=,故答案为()2,160,100,1;()()2A 1,60Q ,()E 2,160,∴直线AE :y 100x 40=-,当x 4=时,y 40040360=-=,()B 4,360∴,()C 5,360∴,()D 7,560Q ,∴设CD 的解析式为:y kx b =+,把()C 5,360,()D 7,560代入得:{5k b 3607k b 560+=+=,解得:{k 100b 140==-, ∴直线CD 的解析式为:()y 100x 1405x 7=-≤≤;()3OD Q 的解析式为:()y 80x 0x 7=≤≤,当x 5=时,y 580400=⨯=,40036040-=,∴出发5h 时两个相距40km ,把y 360=代入y 80x =得:x 4.5=,∴出发4.5h 时两人第二次相遇,①当4.5x 5<<时,80x 36020-=,x 4.75=,()4.75 4.50.25h -=,②当x 5>时,()80x 100x 14020--=,x 6=,()6 4.5 1.5h -=,答:两人第二次相遇后,又经过0.25时或1.5时两人相距20km.【点睛】本题考查了一次函数的应用,读懂函数图象,理解横、纵坐标表示的含义,熟练掌握一次函数的相关知识、利用数形结合思想是解题的关键.。

2022至2023年八年级前半期期末英语专题训练(四川省成都市武侯区)

2022至2023年八年级前半期期末英语专题训练(四川省成都市武侯区)

单选题—Who is ________boy reading a book over there?—He is my classmate, Li Ping.A.aB./C.the【答案】C【解析】句意:——在那边读书的男孩是谁?——他是我的同学,李平。

考查定冠词。

a/an不定冠词,表示泛指;the定冠词,表示特指。

题干中特指在那边读书的那个男孩,所以用定冠词the。

故选C。

单选题—Can you come to my party on Saturday afternoon?—Sorry, I can’t. I ________ meet my friends.A.can’tB.might have toC.needn’t【答案】B【解析】句意:——星期六下午你能来参加我的派对吗?——抱歉,我不能。

我可能不得不见我的朋友。

考查情态动词。

can’t 不能;might可能,have to不得不;needn’t不需要。

根据句意空格处必须是肯定的。

可知,此处表示“我可能不得不见朋友。

”所以去不了派对,故用might have to,故选B。

单选题—Tom, may I use your bicycle?—Sorry, mine isn’t here. You can ask Lily for ________.A.mineB.hisC.hers【答案】C【解析】句意:——汤姆,我能用一下你的自行车吗?——抱歉,我的自行车不在这里。

你能问Lily借一下她的。

考查名词性物主代词。

mine名词性物主代词,我的;his名词性或形容词性物主代词,他的;hers名词性物主代词,她的。

根据句意可知此处表示Lily的自行车。

横线后没有名词bicycle,故要填名词性物主代词,表示“她的”。

故选C。

单选题—Do you know ________?—It’s a kind of promise.A.when people make resolutionsB.why people make resolutionsC.what a resolution is【答案】C【解析】句意:——你知道决心是什么?——它是一种承诺。

四川省成都外国语学校2018_2019学年八年级语文上学期期中试题(含答案)

四川省成都外国语学校2018_2019学年八年级语文上学期期中试题(含答案)

四川省成都外国语学校2018-2019学年八年级语文上学期期中试题全卷满分150分,考试时间120分钟A卷(共100分)第Ⅰ卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下面的字注音全部正确的一项是( )A.潇.洒(xiāo)翘.首(qiào)由衷.(chōng)锃.(cèng)亮B.颤.抖(chàn) 澎湃..(péngbài)桅.杆(guī)屏.声敛息(píng)C.抑扬顿挫.(cuò)绯.(fěi)红瞥.(biē)见殚.精竭虑(dān)D. 叱咤.风云(zhà)芋梗.. (yù gěng ) 汤字帖.(tiè) 颔.首低眉(hàn)2.下面选项中有错别字的一项是()A.学年试验完毕之后,我便到东京玩了一夏天,秋初再回学校,成绩早已发表了,同学一百余人之中,我在中间,不过是没有落第。

B. 他们有的坐火车旅行慢长的路程,有的从图拉驾车赶来,在客厅里正经危坐地等待这位大师的接见。

C. 人民解放军百万大军,从一千余华里的战线上,冲破敌阵,横渡长江。

D. 整个游泳场都沸腾了,如梦初醒的观众用震耳欲聋的掌声和欢呼声,来向他们喜爱的运动员表达由衷的赞赏。

3.下列句子加点成语使用正确的一项是()A.让情况更加尖锐的是这些势力越来越锐不可当....并常常卷入法律制裁之中。

B.新组建的这支足球队上场比赛到底怎样,还不得而知,我们将刮目相看....。

C.十一黄金周,天南海北的游客齐聚北京游玩,故宫景点人头攒动,摩肩接踵....。

D. 这栋现代建筑,在这个老社区里显得鹤立鸡群....。

4. 下列各句中,没有语病的一句是()A.随着“神舟十号”飞船和长征二F遥十火箭组合体顺利转运到发射区,意味着“神十”发射已进入最后准备阶段。

B.几个学校的老师找刘成辉同学就克服学习困难交换了意见。

C.在学习上,老师要求我们独立思考、积极探究、互相合作。

2025届四川省成都市成都外国语学校八年级物理第一学期期末学业质量监测模拟试题含解析

2025届四川省成都市成都外国语学校八年级物理第一学期期末学业质量监测模拟试题含解析

2025届四川省成都市成都外国语学校八年级物理第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题1.5分,共30题,45分)1.湖水深2m,距水面3m高的树杈上有画眉鸟,距水面1.5m深的水中有小鲤鱼,水中的画眉鸟、树、小鲤鱼、蓝天白云相映成趣。

以下说法正确的是()A.水中的“画眉鸟”距离水面2mB.我们看到水中的“画眉鸟”和“小鲤鱼”都是虚像C.站在岸边看见的“小鲤鱼”到水面的距离肯定大于1.5mD.水中的“画眉鸟”是树上的画眉鸟通过水面折射形成的虚像2.如图所示物态变化现象中,需要吸热的是()A.雾凇的形成B.河水结冰C.樟脑丸逐渐变小D.露珠的形成3.下列说法正确的是()A.太空中宇航员能对话,说明声音可在真空中传播B.手在小提琴上不同位置按弦,主要目的是改变响度C.道路两旁的隔音墙是在声源处减弱噪声D.B超检查身体是声与信息在医学中的应用4.关于安全用电,下列说法正确的是A.用试电笔辨别火线、零线时,手指不能接触笔尾金属体B.使用有金属外壳的家用电器时,应将其外壳接在零线上C.发现有人触电或电线起火时,首先要做的是立即切断电源D.用湿抹布擦工作中的用电器5.下列有关分子的说法中错误的是()A.扩散现象表明,一切物质的分子都在做热运动B.固体分子紧密排列,分子间没有间隙C.气体分子之间的距离很大,分子间几乎没有力的作用D.分子之间的引力和斥力是同时存在的6.水结冰,下列说法中正确的是A.质量体积密度都不变B.质量不变、密度变小、体积变大C.质量和密度都变小,体积变大D.质量体积都变大,密度不变7.12月8日凌晨,中国嫦娥四号探测器发射升空,开启了人类首次探索月球背面的新旅程。

成都武侯外国语学校初中物理八年级上册期中测试卷(包含答案解析)

成都武侯外国语学校初中物理八年级上册期中测试卷(包含答案解析)

一、选择题1.在“探究水沸腾时温度变化的特点”的实验中,某组同学用如图甲所示的实验装置进行了两次实验,并根据实验数据绘制了如图乙所示的图像。

下列说法不正确的是()A.两次实验时大气压都低于标准大气压B.第一次实验和第二次实验所用水的质量之比是4:5C.实验中烧杯上的盖子留个小孔是为了使烧杯内外气压平衡D.两次实验都是通过热传递的方式改变水的内能2.下列验证性小实验的说法中,错误的是()A.将正在发生的音叉接触平静的水面,看到水面溅起水花,说明声音是由物体振动产生的B.将温度计的玻璃泡包上浸过水的棉花,放在恒温的环境中,观察到其示数会下降,说明液体蒸发要吸热C.对着冰冷的镜面哈气,发现镜面变模糊,说明降低温度可以使液体汽化D.在玻璃板上滴等量两滴酒精,让它们表面积相同,放在温度条件相同而通风条件不同的环境中,发现通风条件好的地方的酒精先消失,说明其他条件相同时,空气流速越快,蒸发越快3.物质M通过吸、放热,出现三种不同物态,如图所示。

甲、乙、丙物态依次为()A.固气液B.固液气C.气液固D.液气固4.下列说法正确是()A.初春的早晨,出现大雾是水蒸气汽化形成的B.秋天的早晨,地面小草上出现的白霜是水蒸气凝固形成的C.北方的冬天,玻璃上出现的冰花是水蒸气凝华形成的D.寒冷的冬天,人们在外面说话时,嘴里呼出的“白气”是水蒸气遇冷凝华形成的5.如图所示,小胡同学做有关声现象的实验时,将一个正在发声的音叉贴近面颊,目的是为了()A.估算发声音叉的质量B.体验发声音叉的温度C.感受发声音叉的振动D.判断声音的传播速度6.生活在海边的渔民经常看见这样的情景:风和日丽,平静的海面上出现一把一把小小的“降落伞”—水母,它们在近海处悠闲自得地升降、漂游,忽然水母像受到什么命令似的,纷纷离开海岸,游向大海,不一会儿,狂风呼啸,波涛汹涌,风暴来临了,就划线部分,以下解释合理的是()A.水母接收到了次声波B.水母感受到了温度的突然变化C.水母接收到了其他海洋生物发出的信号D.水母感受到了阳光光照的变化7.下列有关声现象的叙述错误的是()A.声音都是靠空气来传播的B.声音传播的速度与响度无关C.面对听力较弱者要提高音量讲话D.企鹅妈妈能在众多小企鹅的叫声中辨别出自己的“孩子”8.已知声音在铁、空气中传播速度分别为5200m/s、340m/s,人耳能分前后两次声音的时间间隔需大于0.1s。

成都武侯外国语学校八年级上册生物 第三次月考试卷(含答案)

成都武侯外国语学校八年级上册生物 第三次月考试卷(含答案)

成都武侯外国语学校八年级上册生物第三次月考试卷(含答案)一、选择题1.下列关于两栖动物和爬行动物的叙述,正确的是()A.都是陆生脊椎动物B.都能产有卵壳的卵,都要经过变态发育C.都是变温动物D.蝮蛇属于两栖动物,大鲵属于爬行动物2.陆地生活的动物体表一般都有防止水分散失的结构,以适应陆地干燥气候,下列哪项结构不具有这种功能A.蚯蚓的刚毛B.蛇的鳞片C.蝗虫的外骨骼D.蜥蜴的细鳞3.人们在运动中难免会遇到意外伤害。

下列意外伤害不会影响运动功能的是A.尺骨骨折B.肌肉拉伤C.肩关节脱臼D.皮肤檫伤4.下列诗句中的各种动物,不具备“体表都有外骨骼,身体和附肢均分节”特征的是()A.谁家新燕啄春泥B.春蚕到死丝方尽C.蝉噪林逾静D.早有蜻蜓立上头5.有关哺乳动物的下列特征正确的是()A.哺乳动物都在陆地上生活B.哺乳动物不同于鸟的特点是不能在空中飞翔C.胎生提高了哺乳动物的产仔率D.牙齿分化提高了哺乳动物的摄食、消化能力6.某海关在进口食品中,检疫出一种病原微生物,这种病原微生物为单细胞,细胞内没有成形的细胞核,你认为这种生物最有可能属于()A.病毒B.细菌C.真菌D.霉菌7.下列四种生物,在细胞结构组成上不同于其他几种的是()A.B.C.D.8.下列关于哺乳动物的叙述,正确的是()A.体表被毛;有利于吸引异性和求偶B.胎生可以提高产仔数量C.胎生、哺乳有利于提高后代成活率D.所有哺乳动物都是通过胎生繁殖后代9.下列关于病毒的叙述;错误的是()A.病毒没有细胞结构;不能独立生活B.病毒个体很小;要用电子显微镜才能观察到C.病毒一旦侵入人体;就会使人患病D.病毒有植物病毒、动物病毒和细菌病毒之分10.下列哪项不属于动物间的通讯()A.黑长尾猴发现蛇时发出特殊叫声B.夜里狼不停地嚎叫C.狐狸在逃避追捕时左右晃动尾巴D.羊一边走一边嗅地上同伴的粪便11.玉米螟的幼虫咬食玉米的茎、叶和果实,使玉米减产。

而赤眼蜂可将卵产在玉米螟幼虫的体内,吸收营养发育长大,使玉米螟的幼虫死亡,起到了生物防治的作用。

成都武侯外国语学校初2014级半期试卷

成都武侯外国语学校初2014级半期试卷

成都武侯外国语学校初2014级八年级上学期英语半期试卷命题人:罗佳石丽佳王利群杨建平审题人:杨建平注意:本卷分为A卷满分100分,B卷满分50分。

考试时间2个小时A卷(100分)第一部分听力测试(共25小题,计25分)一、听对话录音,选择正确的答语,每题念两遍。

(共6小题,每题1分,计6分)( ) 1. A. Yes, I am. B. No, I don‟t. C. Yes, I‟d love to.( ) 2. A. To Taiwan. B. Go camping. C. A postcard( ) 3. A. Five days ago B. For five days C. In five days( ) 4. A. She is smart B. She likes music. C. She is a teacher( ) 5. A. In the evening. B. Twice a week. C. This month( ) 6. A. Please read it. B. Not bad C. You‟re kind.二、听对话录音,选择与你所听到的句子相符合的图片,并将图片的字母排在正确的位置,每题念两遍。

(共4小题,每题1分,计4分)A B C D7.___________ 8. ____________ 9. ____________ 10. _____________三、听对话,根据对话内容及问题选择正确答案。

每题念两遍。

(共10小题,每题1分,计10分)( ) 11. A. Twice a week B. Three times a week C. Four times a week( ) 12. A. He had a sore back B. He had a fever C. He had a toothache( ) 13. A. On Tuesday B. On Thursday. C. On Sunday.( ) 14. A. By car B. By subway C. By train( ) 15.. A. No, he can‟t. B. Yes, he can. C. We don‟t know.( ) 16. A. Nancy B. Nancy‟s sister C. Sarah‟s sister( ) 17. A. English B. Physics. C. Chinese.( ) 18. A. Go hiking B. Go fishing. C. Visit his uncle( ) 19. A. He is ill. B. He is hungry C. He is thirsty.( ) 20. A. To the mountain B. To the countryside. C. To the beach.四、听短文录音,根据短文内容选择正确答案,短文念三遍。

成都武侯外国语学校八年级上学期 期末生物试题题

成都武侯外国语学校八年级上学期 期末生物试题题

成都武侯外国语学校八年级上学期期末生物试题题一、选择题1.爬行动物的生殖发育方式比两栖动物高等,主要体现在哪些方()①卵生②胎生③体内受精④体外受精⑤生殖和发育摆脱了对水的依赖⑥卵外有卵壳保护⑦有孵卵、育雏行为A.③⑤⑥B.①③⑥C.⑤⑥⑦D.③⑤⑦2.对以下几种无脊椎动物的归类,正确的是()A.水蛭——软体动物B.蝗虫——环节动物C.蜈蚣——线形动物D.七星瓢虫——节肢动物3.绦虫和蛔虫均为肠道寄生虫;蝗虫对禾本科作物危害很大;青蛙被称为田园卫士。

绦虫、蛔虫、蝗虫、青蛙它们分别属于()A.腔肠动物、扁形动物、环节动物、爬行动物B.扁形动物、线形动物、节肢动物、两栖动物C.线形动物、线形动物、环节动物、两栖动物D.扁形动物、环节动物、节肢动物、两栖动物4.十二生肖是中国的传统文化之一,其中“龙”的创造充满了想象力。

据说“龙”的体表覆盖角质的鳞片,有四肢和牙齿,卵外有坚韧的卵壳,能在水中和陆地生活。

下列动物中与上述特征相似度最高的是A.鱼B.两栖动物C.爬行动物D.哺乳动物5.如图中圆圈表示各生物的特征,重合部分表示它们之间的共同特征。

下列观点正确的是()A.P可以表示体温恒定B.E可以表示体内受精C.F可以表示胎生哺乳D.Q可以表示体内有脊柱6.下列哪些项不是线形动物的特征()A.体表有角质层,适应寄生生活B.消化道后端有肛门C.身体一般是细长的D.身体细长而且分节7.一些细菌、真菌能引起动植物和人患病,下面相关叙述中错误的是A.真菌引起棉花枯萎病B.霉菌引起人患感冒C.链球菌引起人患扁桃体炎D.真菌引起人患足癣8.细菌和植物细胞的主要区别是()A.细菌有细胞壁B.细菌有细胞质C.细菌没有成形的细胞核D.细菌有成形的细胞核9.当我们伸肘时,肱二头肌和肱三头肌的舒缩情况分别是()A.舒张;舒张B.舒张;收缩C.收缩;收缩D.收缩;舒张10.如图蛔虫,下列形态结构特点中,哪项不是适于寄生生活的?()A.身体呈圆柱形B.体表有角质层C.生殖器官发达D.消化管结构简单11.终生保持造血功能的红骨髓位于()A.骨密质内B.骨膜内C.骨松质内D.骨髓腔内12.动物的社会行为对动物的生存有着重要意义。

【三套打包】成都武侯外国语学校八年级下学期期末数学试题含答案

【三套打包】成都武侯外国语学校八年级下学期期末数学试题含答案

新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分) 1.下列式子中,属于最简二次根式的是( ) A .B .C .D .2.下列各组数中能作为直角三角形的三边长的是( ) A .1,2,3B .2,3,4C .3,4,5D .4,5,63. 已知□ABCD 中,∠A +∠C =200°,则∠B 的度数是( ) A .100°B .160°C .60°D .80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( ) A .甲B .乙C .丙D .无法确定5. 函数y =﹣x 的图象与函数y =x +1的图象的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限6. 如图,在矩形ABCD 中,点M 从点B 出发沿BC 向点C 运动,点E 、F 分别是AM 、MC 的中点,则EF 的长随着M 点的运动( ) A .不变 B .变长 C .变短 D .先变短再变长7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米第6题 第8题B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分)第14题第15题第10题16.(8分)计算: )(1-22-182-3217.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究.成绩类别 第一次月考第二次月考期中 第三次月考第四次月考期末 成绩/分105110108113108112(1)(2)下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x… -4 -3 -2 -1 0 1234 … y …21n1m34…其中,m = n = ;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =ABDCEFAx OC y B·22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元. (1)若购进x 个篮球,购买这批球共花费y 元,求y 与x 之间的函数关系式; (2)设售出这批球共盈利w 元,求w 与x 之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD 与正方形CEFG (点C 、E 、F 、G 按顺时针排列),M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,求证:DM =EM ,DM ⊥EM .简析: 由M 是AF 的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论. (2)如图2新八年级下册数学期末考试题(答案)一、填空题(本大题共6个小题,每小题3分,共18分) 1. 若二次根式1-a 有意义,则a 的取值范围是 .2. 正比例函数kx y =(0≠k )的图象过点(-1,3),则k = .3.一个五边形的内角和等于 .4. 分解因式:12-a = .5. 如图,在平行四边形ABCD 中,AB =5cm , BC =7cm ,BE 平分∠ABC 交AD 边于点E , 则线段DE 的长度为 cm .CADBE6. 若一次函数m x m y --=)1(的图象经过第二、三、四象限,则m 的取值范围 是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列二次根式中,属于最简二次根式的是( ) A . 7 B .31C .8D . 98. 以下列各组数为边长,不能构成直角三角形的是( )A . 5,12,13B . 1,2,5C .1,3,2D . 4,5,69. 甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s 2甲=5,s 2乙=12,则甲、乙两个同学的数学成绩比较稳定的是( )A . 甲B .乙C .甲和乙一样D .无法确定 10.下列各式中,运算正确的是( ) A .532=+ B .336)2(a a = C . 1)2019(0=- D .2)2(2-=-11.如图,已知:函数b x y +=2和2-=ax y 的图象交于点P (﹣3,﹣4),则根据图象可得不等式b x +2>2-ax 的解集是( ) A .x >﹣4 B .x >﹣3 C .x >﹣2 D .x <﹣312. 如图,四边形ABCD 的对角线AC 和BD 交于点,则下列不能判断四边形ABCD 是平行四边形的条件是( ) A . OC OA =,AD ∥BC B . ∠ABC =∠ADC ,AD ∥BC C . DC AB =,AD =BC D .∠ABD =∠ADB ,∠BAO =∠DCO13. 在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )A .这次比赛的全程是500米B .乙队先到达终点C .比赛中两队从出发到1.1分钟时间段,乙队 的速度比甲队的速度快1.9 1.1 2甲乙 500(终点) 200O/分钟/米DABCOPO-3 -4D .乙与甲相遇时乙的速度是375米/分钟14. 如图,D 、E 分别是AB 、AC 的中点,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是 ( )A .CF EF =B . DE EF =C .CF <BD D .EF >DE 三、解答题(本大题共9个小题,共70分) 15.(本小题6分)计算:218÷2112⨯-2)3(24-+16. (本小题6分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).17.(本小题7分)如图, ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.求证△ADE ≌△CBF18.(本小题7分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单A BCD E F 地面?尺3尺B FAD EO位:分)情况如下表: 评委 评委1 评委2 评委 3 评委 4 评委 5 评委 6 评委7 打分9.29.49.39.49.19.39.4(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.19.(本小题7分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(本小题8分)如图,直线1l 的解析式为2+-=x y ,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点C新八年级下册数学期末考试题(答案)一、填空题(本大题共6个小题,每小题3分,共18分) 1. 若二次根式1-a 有意义,则a 的取值范围是. 2. 正比例函数kx y =(0≠k )的图象过点(-1,3),则k = .3.一个五边形的内角和等于 .4. 分解因式:12-a = .5. 如图,在平行四边形ABCD 中,AB =5cm , BC =7cm ,BE 平分∠ABC 交AD 边于点E , 则线段DE 的长度为 cm .6. 若一次函数m x m y --=)1(的图象经过第二、三、四象限,则m 的取值范围 是 .DC A BO CADBE二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7. 下列二次根式中,属于最简二次根式的是( ) A . 7 B .31C .8D . 98. 以下列各组数为边长,不能构成直角三角形的是( )A . 5,12,13B . 1,2,5C .1,3,2D . 4,5,69. 甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s 2甲=5,s 2乙=12,则甲、乙两个同学的数学成绩比较稳定的是( )A . 甲B .乙C .甲和乙一样D .无法确定 10.下列各式中,运算正确的是( ) A .532=+ B .336)2(a a = C . 1)2019(0=- D .2)2(2-=-11.如图,已知:函数b x y +=2和2-=ax y 的图象交于点P (﹣3,﹣4),则根据图象可得不等式b x +2>2-ax 的解集是( ) A .x >﹣4 B .x >﹣3 C .x >﹣2 D .x <﹣312. 如图,四边形ABCD 的对角线AC 和BD 交于点ABCD 是平行四边形的条件是( ) A . OC OA =,AD ∥BC B . ∠ABC =∠ADC ,AD ∥BC C . DC AB =,AD =BC D .∠ABD =∠ADB ,∠BAO =∠DCO13. 在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是( )A .这次比赛的全程是500米B .乙队先到达终点C .比赛中两队从出发到1.1分钟时间段,乙队 的速度比甲队的速度快D .乙与甲相遇时乙的速度是375米/分钟14. 如图,D 、E 分别是AB 、AC 的中点,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是 ( )A .CF EF =B . DE EF =1.9 1.1 2 甲乙500 (终点) 200O /分钟 /米DABCOA BCDEFPO-3 -4C .CF <BD D .EF >DE 三、解答题(本大题共9个小题,共70分) 15.(本小题6分)计算:218÷2112⨯-2)3(24-+16. (本小题6分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).17.(本小题7分)如图, ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是OA ,OC 的中点.求证△ADE ≌△CBF18.(本小题7分)某同学参加“希望之星”英语口语大赛,7名评委给该同学的打分(单位:分)情况如下表: 评委 评委1 评委2 评委3 评委4 评委5 评委6 评委7 打分9.29.49.39.49.19.39.4地面?尺3尺B FAD EO(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.19.(本小题7分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(本小题8分)如图,直线1l 的解析式为2+-=x y ,1l 与x 轴交于点B ,直线2l 经过点D (0,5),与直线1l 交于点C (﹣1,m ),且与x 轴交于点A .(1)求点CD CA B O。

四川省成都外国语学校2024-2025学年上学期八年级半期考试数学试卷

四川省成都外国语学校2024-2025学年上学期八年级半期考试数学试卷

四川省成都外国语学校2024-2025学年上学期八年级半期考试数学试卷一、单选题1.四个数1-,0,12)A .1-B .0C .12D 2.下列运算正确的是()A7=-B 2=-C6´=D 3=-3.以下列各组数为长度的线段中,能构成直角三角形的为()A .1,2,3B .3,4,5CD .6,12,184.如图,在ABC V 中,90C ∠=︒,若1AC =,2AB =,则BC 的长是()A .1BC .2D 5.在哪两个相邻的整数之间()A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.如图,根据尺规作图痕迹,图中标注在点A 处所表示的数为()A .B .1C .1-+D .1-7.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是()A .3cmB .4cmC .5cmD .6cm8.点M 在第四象限,点M 到x 轴的距离为3,到y 轴的距离为4,则M 点坐标是()A .(4,﹣3)B .(4,3)C .(3,﹣4)D .(﹣3,4)二、填空题9=.10.要使得式子有意义,则a 的取值范围是.11.点()27,1A a a +-在第一、三象限的角平分线上,则a =.12.如图,圆柱体的底面圆周长为16cm ,高AB 为6cm ,BC 是上底面的直径.一只蚂蚁从圆柱的表面点A 出发,沿着圆柱的侧面爬行到点C ,则爬行的最短路程为cm .13.如图,两个较小正方形的面积分别为4,10,则字母A 所代表的正方形的面积是.三、解答题14.计算-15.如图,在平面直角坐标系中,每个小正方形网格的边长均为1.(1)点A 的坐标为______,点B 的坐标为______.(2)在图中描出点()1,2C .(3)在(2)的条件下,D 为x 轴上方的一点,且BC AD ∥,BC AD =,则点D 的坐标为_____.16.已知2a +,2b =求下列各式的值:(1)222a ab b ++;(2)22a b -.17.如图,某沿海城市A 接到台风预警,在该市正南方向340km 的B 处有一台风中心,沿BD 方向以15km /h 的速度移动,已知城市A 到BC 的距离AD 为160km .(1)台风中心经过多长时间从B 点移到D 点?(2)如果在距台风中心200km 的圆形区域内都将受到台风的影响,那么A 市受到台风影响的时间持续多少小时?18.如图所示,在平面直角坐标系中,点(),0A a ,点()0,B b ,且10a ++(1)求点A ,B 的坐标;(2)若直线AC AB ⊥交y 轴负半轴于点C ,求ABC V 的面积;(3)在y 轴上是否存在点P ,使以A ,B ,P 三点为顶点的三角形是等腰三角形?若存在,请直接写出点P 的坐标;若不存在.请说明理由.四、填空题19.已知实数x y 、0=,则()2024x y +的值为.20.若1x +,则224x x -+的值是.21.设4的整数部分为a ,小数部分为b ,则(a b的值是.22.如图,动点P 从坐标原点()0,0出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点1,0,第2秒运动到点()1,1,第3秒运动到点0,1,第4秒运动到点()0,2 ,则第24秒时点P 所在位置的坐标是,第2024秒时点P 所在位置的坐标是.23.在ABC 中,60ABC ∠=︒,8BC =,10AC =,点D 、E 在A 、AC 边上,且AD CE =,则CD BE +的最小值.五、解答题24.阅读下列材料,然后回答问题.31以上这种化简的步骤叫做分母有理化.(1(2(3+…25.如图,已知在平面直角坐标系中,ABO 的面积为8,OA OB =,12BC =,点P 的坐标是(,6)a .(1)求ABC V 三个顶点A 、B 、C 的坐标;(2)若点P 坐标为(1,6),连接PA ,PB ,求PAB 的面积;(3)是否存在点P ,使PAB 的面积等于ABC V 的面积?如果存在,请求出点P 的坐标.26.从特殊到一般再到特殊是数学学习的重要模式,某数学兴趣小组拟做以下探究学习.在Rt ABC △中,90ACB ∠=︒,AC BC =,将线段BC 绕点C 顺时针旋转α(0180α︒<<︒)得到线段DC ,取AD 中点H ,直线CH 与直线BD 交于点E ,连接AE .(1)【感知特殊】如图1,当30α=︒时,小组探究得出:AED △为等腰直角三角形,请写出证明过程;(2)【探究一般】①如图2,当090α︒<<︒时,试探究线段EA ,EC ,EB 之间的数量关系并证明;②当90180α︒<<︒时,直接写出线段EA ,EC ,EB 之间的数量关系.(3)【应用迁移】已知AC =DC 的旋转过程中,当3AE =时,求线段EC 的长.。

成都武侯外国语学校八年级上册下学期试题题

成都武侯外国语学校八年级上册下学期试题题

成都武侯外国语学校八年级上册下学期试题题一、选择题1.血吸虫病预防的根本措施是不接触疫水,因为血吸虫疫水中含有()A.血吸虫尾蚴B.血吸虫卵C.血吸虫成虫D.人畜粪便2.与雌蛔虫相比,雄蛔虫的特征是()A.虫体较大,尾端尖直B.虫体较大,尾端向腹面卷曲C.虫体较小,尾端尖直D.虫体较小,尾端向腹面卷曲3.下列动物中,有外骨骼的是A.涡虫B.蛔虫C.蝗虫D.水螅4.下列各图的说法错误的是()A.在图1中玉米切面上加碘液,图中2会变蓝B.图2中的②分布大量毛细血管,有利于气体交换,是鱼的呼吸器官C.不含消化酶的消化液是由图3中的③分泌的D.在由图4中生物构成的食物链中,物质和能量流动的方向是:丙→丁→乙→甲5.如图是三种动物特征比较的示意图,交叉部分为共同特征。

表示恒温动物的是()字母A.A B.B C.C D.D6.下列关于脊椎动物类群的叙述,正确的是()A.鸟类体表被毛,前肢变成翼,有喙无齿,体温恒定B.两栖类的成体都生活在陆地上,用肺呼吸,皮肤可以辅助呼吸C.爬行类体表覆盖着角质鳞片或甲,用肺呼吸,在陆地产卵D.鱼类生活在水中,体表覆盖着鳞片,用鳃呼吸用鳍游泳7.俗话说“蛙满塘,谷满仓”,青蛙是“田园卫士”。

青蛙既能在水中生活,又能在陆地生活的主要原因是()A.青蛙体表无覆盖物,失水较快B.青蛙的呼吸依赖肺和皮肤两种器官C.在水中或陆地都没有足够的食物D.身体散热差,不能长时间留在水中8.如图所示,下列动物中,受精过程完全摆脱了水的限制的是A.②③⑤⑥B.③④⑥C.①②③④D.③⑤⑥9.如图是长骨的结构示意图,下列关于长骨结构的叙述错误的是()A.①内的骨髓终生具有造血功能B.③内红骨髓变成黄骨髓后便永远失去造血功能C.骨折后对骨的愈合起作用的是④内的成骨细胞D.②致密坚硬,抗压力强10.图是展示同学们体育课训练时的四种不同运动状态,下列对不同运动状态中上肢肌肉活动状况的分析中,不正确的是()A.身体悬垂时肱二头肌舒张、肱三头肌收缩B.伸肘时肱二头肌舒张、肱三头肌收缩C.双臂自然下垂时肱二头肌舒张、肱三头肌舒张D.屈肘时肱二头肌收缩、肱三头肌舒张11.动物的运动依赖于一定的结构基础。

2020-2021成都武侯外国语学校八年级数学下期中模拟试题(及答案)

2020-2021成都武侯外国语学校八年级数学下期中模拟试题(及答案)

2020-2021成都武侯外国语学校八年级数学下期中模拟试题(及答案)一、选择题1.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .310B .3105C .10D .35 2.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直3.如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .4.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为,CE 且D 点落在对角线'D 处.若3,4,AB AD ==则ED 的长为( )A .32B .3C .1D .435.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 6.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k <3 B .k <0 C .k >3 D .0<k <37.已知点(﹣2,y 1),(﹣1,y 2),(1,y 3)都在直线y =﹣x+b 上,则y 1,y 2,y 3的值的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 3>y 1>y 2D .y 3>y 1>y 28.在▱ABCD 中,已知AB =6,AD 为▱ABCD 的周长的27,则AD =( ) A .4 B .6 C .8 D .109.如图1,∠DEF =25°,将长方形纸片ABCD 沿直线EF 折叠成图2,再沿折痕GF 折叠成图3,则∠CFE 的度数为( )A .105°B .115°C .130°D .155° 10.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120°11.已知直角三角形中30°角所对的直角边长是23,则另一条直角边的长是( ) A .4cm B .3 C .6cm D .312.下列运算正确的是( )A 235+=B 362=C .235=gD .1333÷= 二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.如图,已知在Rt △ABC 中,AB =AC =3,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.15.在函数y=1x-中,自变量x 的取值范围是_____. 16.△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm .17.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m ,当它把绳子的下端拉开旗杆4m 后,发现下端刚好接触地面,则旗杆的高为________18.如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.19.如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=_____度.20.如图,在菱形ABCD 中,AC 与BD 相交于点O ,点P 是AB 的中点,PO =2,则菱形ABCD 的周长是_________.三、解答题21.已知长方形的长1322a =,宽1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.如图,ABC V 是边长为1的等边三角形,BCD V 是等腰直角三角形,且90BDC ∠=︒.(1)求BD 的长.(2)连接AD 交BC 于点E ,求AD AE的值. 23.先化简,再求值:21142()111x x x x +-÷+--,其中x=﹣3 24.先化简,再求值:(2﹣11x x -+)÷22691x x x ++-,其中x 2﹣3. 25.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x 分后行走的路程为y 米.图中的折线表示小亮在整个行走过程中y 随x 的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.2.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .3.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b ,∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意.故选:A .【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.4.A解析:A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得DEC V ≌'V D EC ,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,再根据勾股定理可得方程2222(4)x x +=-,解方程即可求得结果.【详解】解:∵四边形ABCD 是长方形,3,4AB AD ==,∴3,4====AB CD AD BC ,90ABC ADC ∠=∠=︒,∴ABC V 为直角三角形, ∴2222345AC AB BC =+=+=,根据折叠可得:DEC V ≌'V D EC ,∴'3==CD CD ,'DE D E =,'90∠=∠=︒CD E ADC ,∴'90∠=︒AD E ,则AD'E △为直角三角形,设ED x =,则'=D E x ,''2=-=AD AC CD ,4AE x =-,在'V Rt AD E 中,由勾股定理得:222''+=AD D E AE ,即2222(4)x x +=-, 解得:32x =, 故选:A .【点睛】 此题主要考查了轴对称的折叠问题,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.C解析:C【解析】【详解】如图,作MG ⊥BC 于G ,MH ⊥CD 于H ,则BG=GC ,AB ∥MG ∥CD ,∴AM=MN ,∵MH ⊥CD ,∠D=90°,∴MH ∥AD ,∴NH=HD ,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a ,∠MCD=30°,∴MH=12MC=12a ,3, ∴DH=a 3, ∴CN=CH ﹣NH=32a ﹣(a ﹣32a )=3﹣1)a , ∴△MNC 的面积=12×2a ×3﹣1)31-a 2. 故选C. 6.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴,解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.7.A解析:A【解析】【分析】先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.【详解】解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1>y2>y3.故选:A.【点睛】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.8.C解析:C【解析】【分析】由平行四边形的性质和已知条件得出AD=27(AB+BC+CD+AD),求出AD即可.【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD27(AB+BC+CD+AD),∴AD27(2AD+12),解得:AD=8,∴BC=8;故选C.【点睛】本题考查了平行四边形的性质以及周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.A解析:A【解析】【分析】由矩形的性质可知AD∥BC,由此可得出∠BFE=∠DEF=25°,再根据翻折的性质可知每翻折一次减少一个∠BFE的度数,由此即可算出∠CFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠BFE=∠DEF=25°.由翻折的性质可知:图2中,∠EFC=180°-∠BFE=155°,∠BFC=∠EFC-∠BFE=130°,图3中,∠CFE=∠BFC-∠BFE=105°.故选:A.【点睛】本题考查翻折变换以及矩形的性质,解题的关键是找出∠CFE=180°-3∠BFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.10.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°. 11.C解析:C【解析】如图,∵∠C=90°,∠B=30°,3,∴3cm,由勾股定理得:22AB AC-,故选C.12.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式23+B 362=,故错误;C、原式6,故C错误;D1333=,正确;故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴BO=22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.15.x<1【解析】【分析】根据被开方数大于等于0分母不等于0列式进行计算即可求解【详解】解:根据题意得1-x≥0且1−x≠0解得x<1故答案为x<1【点睛】本题考查了函数自变量的取值范围函数自变量的范围解析:x<1【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可求解.【详解】解:根据题意得,1-x≥0且1−x≠0,解得x<1.故答案为x<1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】∵AD是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD⊥BC.17.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x =+米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x +=+,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 18.3或6【解析】【分析】对直角△AEF 中那个角是直角分三种情况讨论再由折叠的性质和勾股定理可BE 的长【详解】解:如图若∠AEF=90°∵∠B=∠BCD=90°=∠AEF ∴四边形BCFE 是矩形∵将ABE解析:3或6【解析】【分析】 对直角中那个角是直角分三种情况讨论,再由折叠的性质和勾股定理可BE 的长.【详解】解:如图,若∠AEF=90°∵∠B=∠BCD=90°=∠AEF∴四边形BCFE 是矩形∵将ABEC 沿着CE 翻折∴CB=CF∵四边形BCFE 是正方形∴BE=BC-AD=6,如图,若∠AFE=90°∵将△BEC沿着CE翻折∴CB=CF=6,∠B=∠EFC=90°,BE=EF∵∠AFE+∠EFC=180°∴点A,点F,点C三点共线∴∴AF=AC-CF=4∵∴∴BE=3,若∠EAF=90°,∵CD=8> CF=6∴点F不可能落在直线AD上∴.不存在∠EAF=90综上所述:BE=3或6故答案为:3或6【点睛】本题主要考查的是翻折的性质,矩形的性质,正方形的判定和性质,勾股定理,依据题意画出符合题意的图形是解题的关键.19.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED的度数根据平角定义求出即可【详解】解:设∠BAE=解析:45【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【详解】解:设∠BAE=x°.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD.∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°﹣∠BAE)=90°﹣12x°,∠DAE=90°﹣x°,∠AED=∠ADE=12(180°﹣∠DAE)=12[180°﹣(90°﹣x°)]=45°+12x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣12x°)﹣(45°+12x°)=45°.故答案为45.点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.20.16【解析】【分析】根据菱形的性质可得AC⊥BDAB=BC=CD=AD再根据直角三角形的性质可得AB=2OP进而得到AB长然后可算出菱形ABCD的周长【详解】∵四边形ABCD是菱形∴AC⊥BDAB=解析:16【解析】【分析】根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故答案为:16.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.三、解答题21.(1)622)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.22.(1)2(2)AD AE = 【解析】【分析】(1)已知BC=AB=AC=1,则在等腰直角△BCD 中,由勾股定理即可求BC(2)易证△ABD ≌△ACD ,从而得E 点BC 的中点,再根据等腰三角形的三线合一结合勾股定理即可求AE ,DE ,即可求得AD AE 的值 【详解】解:(1)∵△ABC 是边长为1的等边三角形,∴BC=1∵△BCD 是等腰直角三角形,∠BDC=90°∴由勾股定理:BC 2=BD 2+DC 2,BD=DC 得,BC 2=2BD 2,则2=故BD (2)∵△ABC 是边长为1的等边三角形,△BCD 是等腰直角三角形∴易证得△ABD ≌△ACD (SSS )∴∠BAE=∠CEA∴E 为BC 中点,得BE=EC ,AE ⊥BC∴在Rt △AEC 中,由勾股定理得==同理得12==∵AD=AE+ED∴1AD AE ED ED AE AE AE +==+=故AD AE =. 【点睛】此题主要考查等腰三角形“三线合一”性质,熟练运用等腰三角形“三线合一”性质是解题的关键.23.12x -+,【解析】【分析】 原式括号中两项通分并利用同分母分式的加减法则计算,再把除法转化成乘法约分即可得到结果.【详解】解:原式=2111x x x ----÷2421x x +- =221x --÷2421x x +- =221x --×2142x x-+ =22(2)x -+ =﹣12x+,当x=﹣原式==24.13x x -+;1﹣【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 原式=()()()211221·13x x x x x x +-+-+++=()()()211 3·13x xxx x+-+++=13xx-+,当x﹣31==-【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.(1)3600,20;(2)65(米/分),55(米/分);(3)1100(米).【解析】【分析】(1)根据图象可知小亮走的总路程和中途休息的时间;(2)根据图象可知休息前走了30分钟,1950米,休息后走了30分钟,3600-1950米,由此根据速度公式进行求解即可;(3)先求出缆车到达终点所需时间,从而求出小亮行走的时间,最后根据题意求出当小颖到达缆车终点时,小亮离缆车终点的路程.【详解】(1)根据图象可知:小亮行驶的总路程为3600m,中途休息时间为:50﹣30=20min,故答案为;3600,20;(2)观察图象可知小亮休息前走了30分钟,1950米,所以小亮休息前的速度为:19506530=(米/分),小亮休息后的速度为:36001950558050-=-(米/分),答:小亮休息前的速度为65米/分,休息后的速度为55米/分;(3)缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟,小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,80-60=20(分),∴小颖到达终点时,小亮离缆车终点的路程为:20⨯55=1100(米),答:当小颖到达缆车终点时,小亮离缆车终点的路程是1100米.【点睛】本题考查了函数的图象,弄清题意,读懂图象,根据图象提供的信息进行解答是关键.。

成都武侯外国语学校八年级数学上册第二单元《全等三角形》测试卷(包含答案解析)

成都武侯外国语学校八年级数学上册第二单元《全等三角形》测试卷(包含答案解析)

一、选择题1.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA2.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等3.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组4.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 5.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 6.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .97.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA +BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 8.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠D B .EB=DFC .AD=BCD .AE=CF9.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20° 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 12.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题13.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.14.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.15.如图,△ABC ≌△A'B'C',其中∠A =35°,∠C =25°,则∠B'=_____.16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.17.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.18.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .22.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.23.如图,点C 在BE 上,AB ⊥BE ,DE ⊥BE ,且AB =CE ,AC =CD .判断AC 和CD 的关系并说明理由.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.25.如图,点P是锐角∠ABC内一点,BP平分∠ABC,点M在边BA上,点N在边BC 上,且PM=PN.求证:∠BMP+∠BNP=180°.26.如图,在△ABD中,∠ABD=90°,AB=BD,点E在线段BD上,延长AB使BC=BE,连接AE、CE、CD,点M在线段AE上,点N在线段CD上,BM⊥BN,易证△ABE≌△DBC;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC≌△ONC(SSS),即可得到结论.【详解】在△OMC 和△ONC 中,OM ON CM CN OC OC =⎧⎪=⎨⎪=⎩, ∴△OMC ≌△ONC(SSS),∴∠MOC=∠NOC ,∴射线OC 即是∠AOB 的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.2.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.3.C解析:C【分析】要使△ABC ≌△DEF 的条件必须满足SSS 、SAS 、ASA 、AAS ,可据此进行判断.【详解】解:第①组满足SSS ,能证明△ABC ≌△DEF .第②组满足SAS ,能证明△ABC ≌△DEF .第③组满足ASA ,能证明△ABC ≌△DEF .第④组只是SSA ,不能证明△ABC ≌△DEF .所以有3组能证明△ABC ≌△DEF .故符合条件的有3组.故选:C .【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.4.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE =CE ,∵EF ∥BC ,∴EG 是△ABC 的中位线,∴EF 平分AB ,而AE 与CE 不一定相等,∴不能证明EF 平分AB ,故C 错误;∵Rt ACB Rt FEC ≅,∴∠A =∠F ,∴∠A +∠ACD =∠F +∠ACD =90°,∴∠ADC=90°,∴AB⊥CF,故D正确.∴结论不正确的是C.故选:C.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理.5.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.6.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;8.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS 、SAS 、AAS 、ASA ;【详解】A ∵∠A=∠C ,∠AFD=∠CEB ,∠B=∠D ,三个角相等,不能判定三角形全等,该选项不符合题意;B ∵∠A=∠C ,∠AFD=∠CEB ,EB=DF ,符合AAS 的判定,该选项符合题意;C ∵∠A=∠C ,∠AFD=∠CEB ,AD=BC ,符合AAS 的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;9.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.10.C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB,再利用等式的性质可得答案.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.D解析:D【分析】根据HL定理分别证明Rt△ABC≌Rt△ADE和Rt△AEO≌Rt△ACO,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键.二、填空题13.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.14.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判 解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 15.120°【分析】根据三角形内角和定理求出∠B 根据全等三角形的性质得出∠B=∠B′即可【详解】解:∵△ABC ∠A =35°∠C =25°∴∠B =180°﹣∠A ﹣∠C =180°﹣25°﹣35°=120°∵△解析:120°【分析】根据三角形内角和定理求出∠B ,根据全等三角形的性质得出∠B=∠B′即可.【详解】解:∵△ABC ,∠A =35°,∠C =25°,∴∠B =180°﹣∠A ﹣∠C =180°﹣25°﹣35°=120°,∵△ABC ≌△A'B'C',∴∠B =∠B′=120°,故答案为:120°.【点睛】本题考查了三角形内角和定理,全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.16.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案【详解】∵∴∠1+∠CAD=∠CAE+∠CAD ∴∠1解析:55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.18.【分析】首先由角平分线的性质可知DF=DE=4然后由S △ABC=S △ABD+S △ACD 及三角形的面积公式得出结果【详解】解:∵AD 是∠BAC 的平分线DE ⊥ABDF ⊥AC ∴DF=DE=4又∵S △ABC解析:【分析】首先由角平分线的性质可知DF=DE=4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4.又∵S △ABC =S △ABD +S △ACD ,AB=8, ∴12×8×4+ 12×AC×4=28, ∴AC=6.故答案是:6.【点睛】本题主要考查了角平分线的性质;利用三角形的面积求线段的长是一种很好的方法,要注意掌握应用.19.AD=BD 【分析】要判定△BCD ≌△ACD 已知∠1=∠2CD 是公共边具备了一边一角对应相等注意SAS 的条件;两边及夹角对相等只能选AD=BD 【详解】解:由图可知只能是AD=BD 才能组成SAS 故答案为解析:AD=BD【分析】要判定△BCD ≌△ACD ,已知∠1=∠2,CD 是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD ,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.20.8【分析】由题意可得进而证明结合已知条件证明故根据分别求出与的面积即可【详解】在和中故答案为:【点睛】本题主要考查全等三角形的判定与性质熟记全等三角形的判定定理是解题关键解析:8【分析】由题意可得90ADC CEA ∠=∠=︒,进而证明EAH HCD ∠=∠,结合已知条件证明BEC HEA ∆≅∆,故8EC EA == ,根据AHC AEC AEH S S S ∆∆∆=-分别求出AEH S ∆与AEC S ∆的面积即可.【详解】AD BC ⊥,CE AB ⊥,90ADC CEA ∴∠=∠=︒,AHE CHD ∠=∠,EAH CEH HCD ADC ∴∠+∠=∠+∠,EAH HCD ∴∠=∠,在BEC △和HEA △中,90BEC HEA HCD EAHEB EH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BEC HEA AAS ∴≅,EC EA ∴=,8EA =,8EC ∴=,6EH =,11862422AEH S AE EH ∆∴=⨯⋅=⨯⨯=, 11883222AEC S AE EC ∆=⋅=⨯⨯=, 32248AHC AEC AEH S S S ∆∆∆∴=-=-=.故答案为:8.【点睛】本题主要考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题关键.三、解答题21.见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;22.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.23.AC ⊥CD ,理由见解析【分析】根据条件证明△ABC ≌△CED 就得出∠ACD=90°,则可以得出AC ⊥CD .【详解】解:AC ⊥CD .理由:∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°.在Rt △ABC 和Rt △CED 中,AB CE AC CD =⎧⎨=⎩, ∴Rt △ABC ≌Rt △CED (HL ),∴∠A =∠DCE ,∠ACB =∠D .∵∠A+∠ACB =90°,∴∠DCE+∠ACB =90°.∵∠DCE+∠ACB+∠ACD =180°,∴∠ACD =90°,∴AC ⊥CD .【点睛】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.24.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.见解析【分析】过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,根据角平分线性质定理可得PE =PF ,再由HL 可证Rt △MEP ≌Rt △NFP ,进而证得∠PME =∠PNF ,从而证得∠BMP +∠BNP =180°.【详解】证明:如图所示,过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,∴∠MEP =∠NFP =90°.∵BP 平分∠ABC ,∴PE =PF .在Rt △MEP 与Rt △NFP 中,PE PF PM PN=⎧⎨=⎩, ∴Rt △MEP ≌Rt △NFP (HL ).∴∠PME =∠PNF .∵∠BMP +∠PME =180°,∴∠BMP +∠BNP =180°.【点睛】本题主要考查了全等三角形的判定与性质,通过证明三角形全等得出对应角相等是解决问题的关键.26.△ABM≌△DBN,△BME≌△BNC,理由见解析.【分析】观察图形,可找出△ABM≌△DBN,△BME≌△BNC.①由△ABE≌△DBC可得到∠BAE=∠BDC,根据BM⊥BN可得到∠AMB+∠MBE =∠DBN+∠MBE,继而得到∠AMB=∠DBN,AB=BD,可得△ABM≌△DBN;②由△ABM≌△DBN可得BM=BN,根据∠NBE+∠MBE =∠NBE+∠NBC,可得∠MBE =∠NBC,继而可证得△BME≌△BNC.【详解】解:全等三角形:△ABM≌△DBN,△BME≌△BNC,理由如下:由题意知△ABE≌△DBC,∴∠BAE=∠BDC,∵BM⊥BN,∴∠MNB=90 ,∴∠ABM+∠MBE =∠DBN+∠MBE,∴∠ABM=∠DBN,AB=BD,∴△ABM≌△DBN,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC,∴∠MBE =∠NBC,∵BE=BC,∴△BME≌△BNC.【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键.。

成都武侯外国语学校数学分式填空选择单元综合测试(Word版 含答案)

成都武侯外国语学校数学分式填空选择单元综合测试(Word版 含答案)

成都武侯外国语学校数学分式填空选择单元综合测试(Word 版 含答案)一、八年级数学分式填空题(难)1.若关于x 的分式方程12x -﹣3a x -=2256x x -+无解,求a=______. 【答案】-1或2【解析】 ∵12x -﹣3a x -=2256x x -+, ∴12x -+3a x -=()223x x --()∵方程无解,∴(x -2)(x -3)=0, ∴x =2由x =3.2.函数y =x 的取值范围是______. 【答案】23x -<≤【解析】【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x 的不等式组,解不等式组即可求出x 的取值范围.【详解】由题意得,30200x x ⎧-≥⎪+≥⎨≠, 解得:-2<x≤3,故答案为:-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.3.方程146x x =+的解是_____. 【答案】x =2.【解析】【分析】 本题考查解分式方程的能力,观察可得最简公分母是x (x+6),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以x (x+6),得x+6=4x , 解得x=2. 经检验:x=2是原方程的解. 【点睛】此题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程解.(2)解分式方程一定注意要验根.4.若关于x 的方程x 1m x 5102x -=--无解,则m= . 【答案】﹣8【解析】【分析】试题分析:∵关于x 的方程x 1m x 5102x -=--无解,∴x=5 将分式方程x 1m x 5102x-=--去分母得:()2x 1m -=-, 将x=5代入得:m=﹣8【详解】请在此输入详解!5.若22440,x y x xy y x y--+=+则等于________. 【答案】13【解析】 解:∵x 2﹣4xy +4y 2=0,∴(x ﹣2y )2=0,∴x =2y ,∴x y x y -+=22y y y y -+=13.故答案为13. 点睛:根据已知条件x 2﹣4xy +4y 2=0,求出x 与y 的关系是解答本题的关键.6.若a 2+5ab ﹣b 2=0,则的值为__.【答案】5【解析】试题分析:先根据题意得出b 2﹣a 2=5ab ,再由分式的减法法则把原式进行化简﹣===5. 故答案为:5.点睛:本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.7.当x 取_____时,分式1111x x x+--有意义. 【答案】x≠0且x≠±1【解析】分析:要想使分式有意义,那么分式的分母就不能为0,据此列出关于x 的不等式组,解不等式组即可求得x 的取值范围. 详解:由题意可知,只有当:0101101x x x x x x ⎧⎪⎪≠⎪⎪-≠⎨⎪+⎪-≠⎪-⎪⎩时,原分式才有意义,解得:011x x x ≠⎧⎪≠±⎨⎪≠-⎩,即当x ≠0且x ≠±1时,原分式有意义.故答案为:x ≠0且x ≠±1.点睛:本题主要考查了分式有意义的条件,要求掌握.对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得字母的取值即可. 本题的难点在于,题中是一个繁分式,需一层一层分析,x 是1x的分母,所以x ≠0; x ﹣1x 是11x x x +-的分母,所以x ﹣1x ≠0;1﹣11x x x+-又是整个分式的分母,因此1﹣11xx x+-≠0.繁分式的有关知识超出初中教材大纲要求,只在竞赛中出现.8.化简:(a +2+52a -)243a a -⋅+=_______. 【答案】2a ﹣6【解析】【分析】先计算括号,进行通分,后按同分母加减计算,再计算乘除,约分即可.【详解】原式=24524()223a a a a a ---⋅--+ =292(2)23a a a a --⋅-+ =(3)(3)2(2)23a a a a a +--⋅-+ =2(a ﹣3)=2a ﹣6.故答案为2a ﹣6.【点睛】 本题考查分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.9.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.226 24x x x --+- 2(2)6(2)(2)(2)(2)x x x x x x --=-+-+- 第一步 =2(x -2)-x +6 第二步=2x -4-x +6 第三步=x +2 第四步小明的解法从第___步开始出现错误,正确的化简结果是______.【答案】二12x - 【解析】根据分式的加减法,先对分式进行因式分解,然后通分为同分母的分式相加,再化简即可,因此错误在第二步,应为()()()()()2262222x x x x x x ---+-+-=24621(2)(2)(2)(2)2x x x x x x x x --++==+-+--. 故答案为二、12x -.10.满足222210105,4b a a b a b a b+=+=++的整数对(),a b 的组数为 _________________ ; 【答案】2【解析】【分析】将两式联立组成方程组,先将两式相减,再根据题意a 、b 均为整数,得出新的方程组求出满足条件的解,再数出满足条件的个数即可.【详解】 解:2222105104b a a b a b a b ⎧+=⎪⎪+⎨⎪+=⎪+⎩①② 由①-②得()22101b a a b a b--+=+ ()221010a b a b a b----=+ 去分母,并整理得()()()()()()()()222222110011011011010a b a b a b a b a b a b a b a b --+--=--+---=--+-=因为,a b 为整数,所以有22111010a b a b --=⎧⎨+-=⎩①②221-110-10a b a b --=⎧⎨+-=⎩③22110101a b a b --=⎧⎨+-=⎩④221-1010-1a b a b --=⎧⎨+-=⎩⑤2212105a b a b --=⎧⎨+-=⎩⑥221-210-5a b a b --=⎧⎨+-=⎩⑦221-510-2a b a b --=⎧⎨+-=⎩⑧2215102a b a b --=⎧⎨+-=⎩解方程组①得,42a b =⎧⎨=⎩或24a b =-⎧⎨=-⎩; 解方程组②得,0a b ;解方程组③得,此方程组无解;解方程组④得,此方程组无解;解方程组⑤得,无整数解;解方程组⑥得,12a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩解方程组⑦得,22a b =-⎧⎨=⎩解方程组⑧得,无整数解;将求出的解代入原方程,42a b =⎧⎨=⎩或12a b =⎧⎨=⎩是原方程的解 所以满足题意的数对有(1,2)或(4,2)故答案为:2.【点睛】本题考查了分式方程的整数解的特殊解法,认真审题,弄清题意是解决本题的关键.二、八年级数学分式解答题压轴题(难)11.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.12.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台【解析】【分析】(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;(3)找到(2)中3种购进方案符合条件的即为所求.【详解】解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有20x =400.3x ×2, 解得x =0.1,x+0.3=0.1+0.3=0.4.答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有0.10.4(50)1031s n n n +-⎧⎨⎩, 解得31≤n≤3313, ∵n 为整数, ∴n 取31,32,33,∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)①购买甲种空调31台,购买乙种空调19台,(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3000﹣120+5400﹣560﹣2520=7720﹣2520=5200(元),不符合题意,舍去;②购买甲种空调32台,购买乙种空调18台,(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3100﹣120+5100﹣560﹣2520=7520﹣2520=5000(元),符合题意;③购买甲种空调33台,购买乙种空调17台,(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520=3200﹣120+4800﹣560﹣2520=7320﹣2520=4800(元),不符合题意,舍去.综上所述,购买甲种空调32台,购买乙种空调18台.【点睛】此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.13.已知11x a b c ⎛⎫=+ ⎪⎝⎭,11y b a c ⎛⎫=+ ⎪⎝⎭,11z c a b ⎛⎫=+ ⎪⎝⎭. (1)当1a =,1b =,2c =时,求1111x y +--的值; (2)当0ab bc ac ++≠时,求111111x y z +++++的值. 【答案】(1)4;(2)1【解析】【分析】(1)分别对x 、y 进行化简,然后求值即可;(2)分别求出1x +、1y +、和z 1+值,然后代入化简即可.【详解】 (1),,ac ab bc ab bc ac x y z bc ac ab+++===, 当1,1,2a b c ===时,1211111=;122x ⨯+⨯∴-=-⨯ 1211111=122y ⨯+⨯∴-=-⨯ 1111=4111122x y ∴+=+-- (2)11ac ab ac ab bc x bc bc ++++=+=, 11bc ab bc ab ac y ac ac ++++=+=, 11bc ac bc ac ab z ab ab++++=+=, ∵+0ab bc ac +≠, ∴111111;+++x y z bc ac ab ab bc ac ab bc ac ab bc ac+++++=+++++ ++ab bc ac ab bc ac+=+ =1.【点睛】 本题考查了整式的化简求值问题,解题的关键是仔细认真的进行整式的化简.14.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】 返回时的平均速度是80千米/小时.【解析】分析:根据题意,设去时的平均速度是x 千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.详解:设去时的平均速度是x 千米/小时.由题:90120181.660x x =+ 解得:50x = 检验:50x =是原方程的解.并且,当50x =时,1.680x =,符合题意.答:返回时的平均速度是80千米/小时.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.15.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.【解析】【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得y=a+(60﹣a ),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a ,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.。

成都武侯外国语学校八年级数学上册第三单元《轴对称》测试卷(包含答案解析)

成都武侯外国语学校八年级数学上册第三单元《轴对称》测试卷(包含答案解析)

一、选择题1.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个2.如图所示,等腰直角三角形ADM 中,AM DM =,90AMD ∠=︒,E 是AD 上一点,连接ME ,过点D 作DC ME ⊥交ME 于点C ,过点A 作AB ME ⊥交ME 于点B ,4AB =,10CD =,则BC 的长度为( )A .3B .6C .8D .103.如图,在ABC 中,6AB =,8AC =,10BC =,EF 是BC 的垂直平分线,P 是直线EF 上的一动点,则PA PB +的最小值是( ).A .6B .8C .10D .11 4.下列命题中,是假命题的是( )A .能够完全重合的两个图形全等B .两边和一角对应相等的两个三角形全等C .三个角都相等的三角形是等边三角形D .等腰三角形的两底角相等 5.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…,在射线ON 上,点B ,1B ,2B ,3B ,…,在射线OM 上,112A B B ,223A B B △,334A B B △,…,均为等边三角形.若11OB =,则202020202021A B B △的边长为( )A .20192B .20202C .20212D .202227.若a ,b 为等腰ABC 的两边,且满足350a b -+-=,则ABC 的周长为( )A .11B .13C .11或13D .9或15 8.如图,在△ABC 纸片中,AB=9cm ,BC=5cm ,AC=7cm ,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为是( )A .9cmB .11cmC .12cmD .14cm9.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm 10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( ) A .30 B .60︒ C .40︒或50︒ D .30或60︒ 11.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒12.如图,在ABC 中,∠ACB =90°,边BC 的垂直平分线EF 交AB 于点D ,连接CD ,如果CD =6,那么AB 的长为( )A .6B .3C .12D .4.5二、填空题13.如图,已知∠AOB =30°,点P 在射线OA 上,OP =16,点E 、点F 在射线OB 上,PE=PF ,EF =6.若点D 是射线OB 上一动点,当∠PDE =45°时,DF 的长为___________.14.如图,在ABC 中,22A ∠=︒,D 为AB 边中点,E 为AC 边上一点,将ADE 沿着DE 翻折,得到A DE ',连接A B '.当A B A D ''=时,A EC '∠的度数为______.15.如图,ABC 中,AB BC =,点D 在线段BC 上(不与点,B C 重合). 作法如下:①连接AD ,作AD 的垂直平分线分别交直线,AB AC 于点,P Q ,连接,DP DQ ,则APQ DPQ △≌△;②过点D 作AC 的平行线交AB 于点P ,在线段AC 上截取AQ ,使AQ DP =,连接,PQ DQ ,则APQ DQP △≌△;③过点D 作AC 的平行线交AB 于点P ,过点D 作AB 的平行线交AC 于点Q ,连接PQ ,则APQ DQP △≌△;④过点D 作AB 的平行线交AC 于点Q ,在直线AB 上取一点P ,连接DP ,使DP AQ =,连接PQ ,则APQ DPQ △≌△.以上说法一定成立的是__________.(填写正确的序号)16.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.17.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________18.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.19.如图所示的网格是正方形网格,点A ,B ,C ,D ,O 是网格线交点,那么AOB ∠___________COD ∠(填“>”,“<”或“=”).20.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).三、解答题21.在平面直角坐标系中,点A 在x 轴正半轴上,以OA 为边在x 轴上方作等边OAC . (1)如图1,在AC 的右上方作线段AD ,点D 在y 轴正半轴上,10DAC ∠=︒,以AD 为边在AD 右侧作等边ADE ,则AEC ∠=______.(2)如图2,点P 是x 轴正半轴上且在点A 右侧的一动点,PAM △为等边三角形,OM 与PC 交于点F .求证:AF MF PF +=.(3)如图3,点P 是x 轴正半轴上且在点A 右侧的一动点,CPM △为等边三角形,MA 的延长线交y 轴于点N ,请直接写出线段AM 、AP 、AN 的数量关系______.22.已知在ABC 中,CAB ∠的平分线AD 与BC 的垂直平分线DE 交于点D ,DM AB ⊥于M ,DN AC ⊥交AC 的延长线于N .(1)证明:BM CN =;(2)当80BAC ∠=︒时,求DCB ∠的度数.23.如图,在ABC ∆中,,36,AB AC BAC BD =∠=︒平分ABC ∠交AC 于点,D 过点A 作//,AE BC 交BD 的延长线于点E .()1求ADB ∠的度数﹔()2求证:ADE ∆是等腰三角形.24.在平面直角坐标系中,点(0,)A a ,点(,0)B b ,点(3,0)C -,且a 、b 满足269||0a a a b -++-=.(1)点A 坐标为______,点B 坐标为______,ABC 是______三角形.(2)如图,过点A 作射线l (射线l 与边BC 有交点),过点B 作BD l ⊥于点D ,过点C 作CE l ⊥于点E ,过点E 作EF DC ⊥于点F 交y 轴于点G .①求证:BD AE =;②求点G 的坐标.(3)如图,点P 是x 轴正半轴上一动点,APO ∠的角平分线交y 轴于点Q ,点M 为线段OP 上一点,过点M 作//MN PQ 交y 轴于点N ;若45AMN ∠=︒,请探究线段AP 、AN 、PM 三者之间的数量关系,并证明你的结论.25.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D . (1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.26.如图,点E 、F 在BC 上,BE CF =,AB DC =,B C ∠=∠,AF 与DE 交于点G ,求证:GE GF =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理求出∠CAB ,求出∠CAD=∠BAD=∠B ,推出AD=BD ,AD=2CD 即可.【详解】解:∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B ,∴AD=BD ,AD=2CD ,②正确;∴BD=2CD ,③正确;根据已知不能推出CD=DE ,故④错误;故选:C .【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.2.B解析:B【分析】通过先证明AMB MDC △≌△,得到=4AB MC =,=10MB CD =,即可求得=BC MB MC -,即可得到答案.【详解】解:∵DC ME ⊥,AB ME ⊥,90AMD ∠=︒∴DCM B ∠=∠,+90AMB DMC ∠∠=︒,+90MDC DMC ∠∠=︒∴AMB ∠=MDC ∠∵AM DM =∴AMB MDC △≌△∴AB MC =,MB CD =∵4AB =,10CD = ∴4MC =,10MB =∴=1046BC MB MC -=-=故选B .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的定义,熟练掌握全等三角形判定和性质,并能进行推理计算是解决问题的关键.3.B解析:B【分析】根据题意,设EF 与AC 的交点为点P ,连接BP ,由垂直平分线的性质,则BP=CP ,得到PA PB PA PC AC +=+=,即可得到PA PB +的最小值.【详解】解:根据题意,设EF 与AC 的交点为点P ,连接BP ,如图:∵EF 是BC 的垂直平分线,∴BP=CP ,∴8PA PB PA PC AC +=+==,∴PA PB +的最小值为8;故选:B .【点睛】本题考查了垂直平分线的性质,解题的关键是正确找出点P 的位置,使得PA PB +有最小值.4.B解析:B【分析】根据全等三角形的定义去判断A ,全等三角形性质去判断B ,等边三角形和等腰三角形性质判断C 、D ,依次分析解答即可.【详解】解:A.由全等三角形的定义得到:能够完全重合的两个图形全等,此命题是真命题;B.两边和一角对应相等且该角是两边的夹角的两个三角形全等,此命题是假命题;C. 三个角都相等的三角形是等边三角形,此命题是真命题;D. 等腰三角形的两底角相等,此命题是真命题;故选B .【点睛】此题主要考查了命题的真假,关键是掌握相关定义和性质.注意SAS 时,一角必须是两边的夹角.5.A解析:A【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A 1与A 2关于x 轴对称,A 2与A 3关于y 轴对称,A 3与A 4关于x 轴对称,A 4与A 5关于y 轴对称,A 1与A 5是同一个点,四次一循环,100÷4=25,A 100与A 4重合,即第一象限,故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.A解析:A【分析】先求出∠O=∠OA 1B 1=30°,从而A 1B 1=A 1B 2= OB 1=1,然后根据含30°角的直角三角形的性质求解即可.【详解】解:∵△A 1B 1B 2是等边三角形,∴∠A 1B 1B 2=∠A 1B 2O=60°,A 1B 1=A 1B 2,∵∠O=30°,∴∠A 2A 1B 2=∠O+∠A 1B 2O=90°,∵∠A 1B 1B 2=∠O+∠OA 1B 1,∴∠O=∠OA 1B 1=30°,∴OB 1=A 1B 1=A 1B 2=1,在Rt △A 2A 1B 2中,∵∠A 1A 2B 2=30°,∴A 2B 2=2A 1B 2=2,同法可得A 3B 3=22,A 4B 4=23,…,A n B n =2n-1,∴202020202021A B B △的边长=22019,故选:A .【点睛】本题考查了图形类规律探究,等边三角形的性质,三角形外角的性质,含30角的直角三角形的性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.7.C解析:C【分析】根据非负数的意义列出关于a 、b 的方程并求出a 、b 的值,再根据b 是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-3=0,b-5=0,解得a=3,b=5,(1)若3是腰长,则三角形的三边长为:3、3、5,能组成三角形,周长为:3+3+5=11;(2)若3是底边长,则三角形的三边长为:3、5、5,能组成三角形,周长为3+5+5=13.故选:C .【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形作出判断.8.B解析:B【分析】根据折叠的性质得到:DE=CD ,BE=BC=5cm ,求出AE=4cm ,根据△ADE 的周长为AD+DE+AE=AC+AE 代入数值计算即可得解.【详解】由折叠得:DE=CD ,BE=BC=5cm ,∵AB=9cm ,∴AE=AB-BE=9cm-5cm=4cm ,∴△ADE 的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm ,故选:B .【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键. 9.D解析:D【分析】要求运动后得到的等腰三角形的腰长,首先要求出动点所运动的时间.我们可以设M 、N 运动的时间为x 秒.【详解】设M 、N 运动的时间为x 秒.当CMN △是以MN 为底的等腰三角形时,,182, 1.6CM CN CM x CN x ==-= 即182 1.6x x -=,解得5x =.∴腰长为5 1.68cm ⨯=故选D .【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度.10.D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 11.C解析:C【分析】根据等腰ABC ,118ABC ︒∠=,得到AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=,由DE 垂直平分AB ,求得∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,根据∠EBQ=∠ABC-∠ABE-∠QBC 计算得出答案.【详解】在等腰ABC 中,118ABC ︒∠=,∴AB=CB ,∠A=∠C=1(180)312ABC ︒︒-∠=, ∵DE 垂直平分AB ,∴AE=BE ,∴∠ABE=31A ∠=︒,同理:31QBC C ∠=∠=︒,∴∠EBQ=∠ABC-∠ABE-∠QBC=56︒,故选:C .【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.12.C解析:C【分析】根据线段的垂直平分线的性质得到DC=DB=6,则∠DCB=∠B ,由∠ACB=∠ACD+∠DCB=90°,得∠A+∠B=90°,从而∠A=∠ACD ,DA=DC=6,则AB=AD+DB 便可求出.【详解】∵EF 是线段BC 的垂直平分线,DC =6,∴DC=DB=6,∴∠DCB=∠B ,又∵∠ACB=∠ACD+∠DCB=90°,∴∠A+∠B=90°,∴∠A=∠ACD ,∴DA=DC=6,∴AB=AD+DB=6+6=12.故选:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.二、填空题13.5或11【分析】过点P 作PH ⊥OB 于点H 根据PE=PF 可得EH=FH=EF=3根据∠AOB=30°OP=16可得PH=OP=8当点D 运动到点F 右侧或当点D 运动到点F 左侧时分别计算可得DF 的长【详解】解析:5或11【分析】过点P 作PH ⊥OB 于点H ,根据PE=PF ,可得EH=FH=12EF=3,根据∠AOB=30°,OP=16,可得PH=12OP=8,当点D 运动到点F 右侧或当点D 运动到点F 左侧时,分别计算可得DF 的长.【详解】如图,过点P 作PH ⊥OB 于点H ,∵PE=PF ,∴EH=FH=12EF=3, ∵∠AOB=30°,OP=16,∴PH=12OP=8,当点D 运动到点F 右侧时,∵∠PDE=45°,∴∠DPH=45°,∴PH=DH=8,∴DF=DH-FH=8-3=5;当点D 运动到点F 左侧时,D′F=D′H+FH=8+3=11.所以DF 的长为5或11.故答案为:5或11.【点睛】本题考查了含30度角的直角三角形的性质、等腰三角形的性质,解决本题的关键是分两种情况画图解答.14.【分析】根据折叠的性质可得根据及折叠的性质可得为等边三角形再根据三角形的外角性质求解即可【详解】在中将沿着翻折交于点得到如图;∴∴∵为边中点∴为等边三角形∴∴∵即∴故答案为:【点睛】本题考查了全等三 解析:16 【分析】根据折叠的性质可得AED A ED '≅,根据A B A D ''=及折叠的性质可得A BD '为等边三角形,再根据三角形的外角性质求解即可【详解】在ABC 中,22A ∠=︒,将ADE 沿着DE 翻折,A D '交AC 于点F ,得到A DE ',如图;∴AED A ED '≅ ∴1=,222AD A D AB EA D A ''===∠∠, ∵A B A D ''=,D 为AB 边中点,∴A B A D DB ''==,A BD '为等边三角形, ∴=60A DB '∠,∴60A AFD +=∠∠,∵=AFD EA D A EC ''+∠∠∠即()60A EA D A EC ''++=∠∠∠∴=16A EC '∠.故答案为:16【点睛】本题考查了全等三角形的性质,等边三角形的性质,三角形外角的性质等知识点,解题的关键是根据折叠找到对应的边角关系15.①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ 为AD 的垂直平分线∴PA=PDQA=QD ∴在△APQ 和△DPQ 中∴△APQ ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ 为AD 的垂直平分线,∴PA=PD ,QA=QD ,∴ 在△APQ 和△DPQ 中,PA PD PQ PQ QA QD =⎧⎪=⎨⎪=⎩,∴△APQ ≌△DPQ (SSS ),①正确;②如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,∴在△APQ 和△DQP 中,AQ DP AQP DPQ QP PQ =⎧⎪∠=∠⎨⎪=⎩,∴△APQ ≌△DQP (SAS ),②正确 ;③如图,∵PD ∥AC ,∴∠DPQ=∠AQP ,同理∠DQP=∠APQ ,∴在△APQ 和△DQP 中,DPQ AQP PQ PQDQP APQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△APQ ≌△DQP (ASA ),③正确 ;④如图,△APQ ≌△DPQ 不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.16.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B =解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.18.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,,以此类推:a n =2n-1.∴2021a =20202,故答案是:20202. .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.19.>【分析】如图过点B 作BE ⊥AC 于E 证明△BOE 是等腰直角三角形得到∠BOE=过点C 作CF ⊥OC 使FC=OC 证明△OCF 是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD 即可得到∠AOB>∠CO解析:>【分析】如图,过点B 作BE ⊥AC 于E ,证明△BOE 是等腰直角三角形,得到∠BOE=45︒,过点C 作CF ⊥OC ,使FC=OC ,证明△OCF 是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD ,即可得到∠AOB>∠COD .【详解】如图,过点B 作BE ⊥AC 于E ,∵OB=OE=2,∠BEO=90︒,∴△BOE 是等腰直角三角形,∴∠BOE=45︒,过点C 作CF ⊥OC ,使FC=OC ,∴∠FCO=90︒,∴△OCF 是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD ,∴∠AOB>∠COD ,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.20.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.三、解答题21.(1)20°;(2)证明见解析;(3)12AM AN AP =+. 【分析】(1)借助等边三角形的性质可证明△CAE ≌△OAD ,再利用直角三角形两锐角互余即可得出结论;(2)在OM 上截取EM=PF ,证明△FAP ≌△EAM ,得出AE=AF ,∠EAM=∠FAP ,再利用角的和差可得∠EAF=∠MAP=60°,即△AEF 为等边三角形,继而得出结论;(3)证明△CAM ≌△COP 可得AM=OP=OA+AP ,利用三角形内角和定理和对顶角相等可得∠OAN=60°,∠ONA=30°,根据直角三角形30°角所对边是斜边的一半可得12OA AN =,继而可得12AM AN AP =+. 【详解】解:(1)∵△AOC 和△DAE 是等边三角形,∴AC=AO ,AE=AD ,∠OAC=∠EAD=60°,∵10DAC ∠=︒, 6070CAE DAO DAC ∴∠=∠=︒+∠=︒,在△CAE 和△OAD 中∵AC AO CAE OAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△OAD (SAS ),∴∠AEC=∠ADO ,∵∠ADO=90°-∠DAO=20°,∴∠AEC=20°,∴故答案为:20°;(2)与(1)同理可证,△OAM ≌△CAP ,∴∠OMA=∠CPA ,AM=AP ,如下图,在OM 上截取EM=PF ,在△FAP 和△EAM 中,∵PF ME OMA CPA AP AM =⎧⎪∠=∠⎨⎪=⎩,∴△FAP ≌△EAM (SAS ),∴∠EAM=∠FAP ,EA=FA ,∵∠EAF=∠EAM-∠FAM ,∠MAP=∠FAP-∠FAM ,∴∠EAF=∠MAP=60°,∴△AEF 为等边三角形,EF=AF ,∴AF MF EF MF EM PF +=+==,即AF MFPF +=;(3)与(1)同理可证△CAM ≌△COP ,∠MCP=60°,∴AM=OP=OA+AP ,∠AMC=∠OPC ,∵OP=OA+AP ,∴AM=OA+AP ,∵∠CEM=∠AEP ,∠AMC=∠OPC ,∴∠PAM=∠MCP=60°,∴∠OAN=60°,∠ONA=30°,∴12OA AN =, ∴12AM AN AP =+, 故答案为:12AM AN AP =+. 【点睛】 本题考查全等三角形的性质和判定,等边三角形的性质和判定.(1)中理解等边三角形三边相等,三角都等于60°是解题关键;(2)能根据“截长补短”作出辅助线构造全等三角形是解题关键;(3)中根据三角形内角和定理和对顶角相等得出∠OAN=60°是解题关键. 22.(1)证明见解析;(2)∠DCB=40°.【分析】(1)根据角平分线的性质和线段垂直平分线的性质可得到DM=DN ,DB=DC ,根据HL 证明Rt △DMB ≌Rt △DNC ,即可得出BM=CN ;(2)根据角平分线的性质得到DM=DN ,根据全等三角形的性质得到∠ADM=∠ADN ,线段垂直平分线的性质和等腰三角形的性质得到∠EDC=50°于是得到结论.【详解】(1)证明:连接BD ,DC ,如图所示:∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分BC ,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN =⎧⎨=⎩, ∴Rt △DMB ≌Rt △DNC (HL ),∴BM=CN ;(2)解:由(1)得:∠BDM=∠CDN ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,在Rt △DMA 和Rt △DNA 中,DA DA DM DN =⎧⎨=⎩∴Rt △DMA ≌Rt △DNA (HL ),∴∠ADM=∠ADN ,∵∠BAC=80°,∴∠MDN=100°,∠ADM=∠ADN=50°,∵∠BDM=∠CDN ,∴∠BDC=∠MDN=100°,∵DE 是BC 的垂直平分线,∴DB=DC ,∴∠EDC=12∠BDC=50°, ∴∠DCB=90°-∠EDC=40°,∴∠DCB=40°.【点睛】本题主要考查了全等三角形的判定与性质、角平分线的性质、线段垂直平分线的性质,熟悉角平分线的性质和线段垂直平分线的性质,证明三角形全等是解决问题的关键. 23.(1)108ADB ∠=︒;(2)证明见解析【分析】(1)根据角平分线的定义和三角形的外角性质求解;(2)根据平行线的性质和三角形的内角和定理求解 .【详解】()1解:,36AB AC BAC =∠=︒,()1180722ABC C BAC ∴∠=∠=︒-∠=. BD 平分,ABC ∠136,2DBC ABC ∴∠=∠=︒ 7236108ADB C DBC ∴∠=∠+∠=︒+︒=()2证明://,AE BC72,EAC C ∴∠=∠=︒72,36C DBC ∠=︒∠=︒,180723672,ADE CDB ∴∠=∠=︒-︒-︒=︒,EAD ADE ∴∠=∠,AE DE ∴=ADE ∴∆是等腰三角形.【点睛】本题考查等腰三角形的综合运用,熟练掌握等腰三角形的判定与性质、平行线的性质、三角形的内角和定理和外角性质是解题关键.24.(1)(0,3)A ,(3,0)B ,等腰直角;(2)①见解析;②点 (0,3)G -;(3)AP AN PM =+,证明见解析.【分析】(1)根据偶次方与绝对值的非负性,解得a b 、的值,即可解得点A 、B 的坐标,继而根据等腰直角三角形的判定方法解题;(2)①由等角的余角相等,解得BAD ACE =∠∠,结合(1)中结论,进而证明AEC BDA ≌△△(AAS),即可解题;②由AEC BDA ≌△△可证CAE ABD ∠=∠,继而得到GAE CBD ∠=∠,设CF 交y 轴于点H ,根据等角的余角相等,得到HGE OCH ∠=∠,继而证明AGE BCD ≌△△(AAS)解得AG 、OG 的长即可解题;(3)在AP 上截取AH AN =,连接MH ,设NMO α∠=,分别解得45AMO α∠=︒+,=45NAM α∠︒-,由角平分线的性质解得2APO α∠=,45HAM α∠=︒-,进而得到NAM HAM ∠=∠,即可证明AMN AMH ≌(SAS),继而证明PMH PHM ∠=∠,PH PM =即可解题.【详解】(1)269||0a a a b -++-=2(3)||0a a b ∴-+-=3,3a b a ∴===(0,3)A ∴,(3,0)B ,(3,0)C -,AO OB CO AO ∴==90AOB AOC ∠=∠=︒45ACO ABO ∴∠=∠=︒90CAB ∴∠=︒()AOC AOB SAS ∴≅AC AB ∴=ABC ∴为等腰直角三角形,故答案为:(0,3)A ,(3,0)B ,等腰直角;(2)①BD l ⊥,CE l ⊥90BDA AEC ∴∠=∠=︒90,90BAD CAE CAE ACE ∠+∠=︒∠+∠=︒BAD ACE ∴∠=∠AC AB =AEC BDA ∴≌(AAS),∴BD AE =.②AEC BDA ≌ CAE ABD ∴∠=∠45CAO ABO ∠=∠=︒GAE CBD ∴∠=∠,设CF 交y 轴于点HEF DC ⊥90CFG ∴∠=︒90FGH FHG ∴∠+∠=︒90COH ∠=︒90OCH CHO ∴∠+∠=︒∴CHO FHG ∠=∠HGE OCH ∴∠=∠又∵AE BD =∴AGE BCD ≌△△(AAS)∴6AG BC ==又∵3AO =,∴3OG =∴点(0,3)G -.(3)AP AN PM =+.证明过程如下:在AP 上截取AH AN =,连接MH ,设NMO α∠=,45AMN ∠=︒45AMO α∴∠=︒+,∴()904545NAM αα∠=︒-︒+=︒-,又∵//MN PQ∴QPO NMO α∠=∠=,∵PQ 平分APO ∠∴2APO α∠=∴45245HAM ααα∠=︒+-=︒-∴NAM HAM ∠=∠又∵AN AH =,AM AM =∴AMN AMH ≌(SAS)∴45AMH AMN ∠=∠=︒∴90PMH α∠=︒-, 又∵()454590PHM αα∠=︒+︒-=︒-∴PMH PHM ∠=∠∴PH PM =∴AP AH PH AN PM =+=+.【点睛】本题考查全等三角形的判定与性质、等腰直角三角形、角平分线的性质、平行线的性质、绝对值的非负性、偶次方的非负性等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE SS =, ∴1122CE AH BE AG ⨯⨯=⨯⨯, ∴AH=AG ,∴DA 平分∠CDE.【点睛】本题考查了三角形的全等,等边三角形的性质,角平分线性质定理的逆定理,准确选择全等判定方法,活用角的平分线的逆定理是解题的关键.26.见详解【分析】由题意,根据SAS 证明△ABF ≌△DCE ,得到∠AFB=∠DEC ,即可得到GE GF =.【详解】解:根据题意,如图:∵BE CF =∴BE EF CF EF +=+,∴BF CE =,∵AB DC =,B C ∠=∠,∴△ABF ≌△DCE ,∴∠AFB=∠DEC ,∴GE GF =.【点睛】本题考查了全等三角形的判定和性质,等角对等边,解题的关键是掌握所学的知识,证明△ABF ≌△DCE .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市武侯外国语学校2013--2014八年级半期考试卷姓名:__________ 满分125分时间90分钟得分:__________一.单项选择(25分)A.选择方框内与句中的单词意思相近的单词。

A.nearB.canC.arrived inD.easy26.The visitors reached Chengdu on a rainy morning.27.I’d like to buy a house close to my workplace.28.I think the answer to this question is very simple.29.The boy is able to help his parents with housework though he is only six years old.B. 从各题的A 、B、C三个选项中选择正确的答案30.It seems to be rainy. You should take ________ umbrella with you.A.aB.anC.the31.--It’s three o’clock by my watch. --Oh, my watch goes faster than _________.A.yoursB.yourC.you32.The student ________ a reason for his being late for class.A.made upB.picked upC.put up33.The little girl has to look after herself because _____ of her parents are working far away.A.allB.eachC.both34.--_______ do you eat in a fast food restaurant? --Never. I don’t like eating junk food.A.How oftenB.How longC.How much35.The new washing machine uses ________ water than the old one.A.littleB.lessC.the least36.Be quiet, everyone! I have ________ to tell you.A.anything importantB.important somethingC.something important37.The teacher expected _______ with Mr Green about his son.A.talkB.talkingC.to talk38.Wait for me! You know I can’t walk as _______ as you.A.quickB.quicklyC.more quickly39.--Did you enjoy ________ in the park? --Not at all. It began to rain hard when we got there.A.yourselfB.yourselvesC.themselves40.--________ do you think of soap operas? --Oh, I can’t stand them.A.WhatB.HowC.Why41.--Can you help me get the book on the bookcase?--I’m sorry. I’m not _______ to reach it.A.enough tallB.tall enoughC.taller enough42.Mary hardly has breakfast every morning, _______?A.has sheB.does sheC.doesn’t she43.Chengdu is one of _________ cities to live in China.fortableB.more comfortableC.the most comfortable44.--Jim was late for class this morning, wasn’t he?--No, he wasn’t, __________ it was raining.A.althoughB.ifC.because45.Although they were tired and hungry, they kept on ______.A.walkB.to walkC.walking46.--I’m terribly sorry, but may I use your phone?--Yes, _______.A.of courseB.it doesn’t matterC.it’s up to youC. 根据对话内容,从方框中选出适当的选项补全对话,并将选项的编号依次填入题号后横线上。

A:Hi! I’m a reporter. Can I ask you some questions?B:Of course.A:___47_____B:Yes, very much. And I watch them once a week.A:What do you think is the best movie theater in town?B:Rose Cinema, I think.A:____48______B:Because it has the biggest screens and the best sound.A:Well, what do you think of Town Cinema?B:____49_____A:What about Movie Palace?B:It is the cheapest, but he movie there are always boring.A:I see. Thank you very much.B:____50______A.It’s popular, but it is the most expensive.B.Do you like watching movies?C.No problem.D.Why do you think so?二、完型填空(共20小题,每小题1分;计20分)分别通读下面两篇短文,根据短文内容,从A、B、C三个选项中选出可以填入空白处的最佳答案。

AI had my worst trip last year. I still remember everything very 51 . My family planned to stay for a few days in my 52 house in the countryside. I like taking vacations there 53 the clean, fresh air and the quiet forest.We decided to start our trip early in the morning before the 54 hours on the roads, but we were still late. The road was full of cars and buses! We didn’t 55 for one hour! We were all very bored and tired. All the drivers were 56 shouting. Oh! How terrible!When we arrived at the countryside, it was already dark. A high wind started to blow. The weather was cold. The worst thing was that we didn’t know 57 we were. We wanted to 58 my uncle but the cellphone had no power (电)! Luckily, when we were ready to give up, we saw my uncle. He was 59 us.Today maybe my story can make you 60 , but I’m sure it was the most terrible trip I ever had.51. A.carefully B.easily C.clearly52. A.friend’s B.uncle’s C.grandparents’53. A.such as B.in fact C.because of54. A.busy B.tidy C.noisy55. A.sleep B.move C.eat56. A.hardly B.maybe C.almost57. A.where B.when C.why58. A.thank B.call C.watch59. A.looking for B.paying for C.thinking about60. A.touch B.cry ughBIn life, people come and go. But there isn’t anyone that is like you. 61 is different from everyone else(其他的).As you know, some people are 62 than you, and some are shorter. Maybe your friend’s 63 has the same color as your hair. Maybe it is longer than 64 . You must have some friends smarter than you. And you must also have some other friends and they are not as good ____65____sports as you.Some people say that they can’t 66 the differences between friends. So, they like to have friends with the same interests. 67 that is just wrong. In fact, how fantastic a 68 is for you! It can make the world become a 69 place.So, when you decide to make a friend, 70 care if you are the same or different. As long as you can share everything and enjoy yourselves, it will be great.61.A.Somebody B.Nobody C.Everybody62.A.taller B.heavier C.richer63.A.T-shirt B.schoolbag C.hair64.A.his B.hers C.yours65.A.at B.for C.in66.A.mind B.stand C.find67.A.So B.But C.Or68.A.reason petition C.difference69.A.terrible B.wonderful C.similar70.A.never B.always ually第三部分阅读理解(共10小题,计20分)三、阅读下面短文,根据短文内容判断句子的正误。

相关文档
最新文档