磁性材料常识参数介绍

合集下载

磁性材料常识参数介绍

磁性材料常识参数介绍

磁芯
SPINEL
磁学常识: 磁学常识:磁性材料分类
A)锰锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO 电阻率高(10 ohm-cm) 电阻率高 磁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。 形状: , , , , , 等型式。 等型式 用途:功率变压器、 共模滤波器、 用途:功率变压器、EMI共模滤波器、储能电感等 共模滤波器
SPINEL
磁性材质介召:材质发展 磁性材质介召:
在PC50后,TDK相继推 出超低功耗材料PC44,PC45, PC46,PC47,其功率损耗较 PC40降低了约1/4~1/3, 主要差别就在于功耗最低点温 度不同,PC45为60-80℃, PC46为40-50℃,PC47则是 100℃,它们有一个明显的缺 点,一旦偏离了功耗最低点, 损耗值急剧上升。
C点以后是饱和段 点以后是饱和段 点以后是 ab段是上升段 段是上升段 段是 起始磁化 曲线反映 了什么? 了什么?
磁滞回线中H为 磁滞回线中 为 零时B并不为零 零时 并不为零 的现象说明铁 磁材料具有剩 磁材料具有剩 磁性。 磁性。
0
H
起始磁化曲线
oa段是线性段 段是线性段 段是
起始磁化曲线的ab段反映了铁磁材料的 起始磁化曲线的 段反映了铁磁材料的 高导磁性; 点以后说明铁磁材料具有 高导磁性;c点以后说明铁磁材料具有 磁饱和性。 磁饱和性。
SPINEL
磁学常识: 磁学常识:磁性材料分类
B)镍锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO 电阻率很高(107 ohm-cm) 电阻率很高 工作频率高 铁心损耗较锰锌系高 居里温度高 型式: , ,环形等。 型式:DR,R,环形等。 用途:常模滤波器、 用途:常模滤波器、储能电感等

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁性材料基本参数课件

磁性材料基本参数课件

磁性参数与测量:磁损耗 (2)
1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降 (tanδ)gap = tanδ·μe/μi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
磁性参数与测量:磁损耗 (3)
2 品质因素 Q
磁性器件作滤波器的电感时,通常用品质因素Q来表示 它的质量; Q = 1/ tanδ Q与频率和绕组参数有关;
表示小信号下材料的损耗特性,由于磁 芯损耗引起信号相移; tanδ= Rs/ωLs Rs 磁芯及线圈损耗的等效电阻; Ls 装有磁芯的线圈的自感量;
tanδ称损耗因子,表示损耗功率与无 功功率的比值,其磁芯损耗包括磁滞损耗、涡流损 耗、剩余损耗即: tanδ= tanδn + tanδe + tanδr
磁性参数与测量:磁损耗 (4)
3 大信号下的功率损耗Pc
P = Ph + Pe + Pr (Ph、Pe、Pr表示磁滞、涡流、剩余损耗) 磁性材料在高磁通密度下的单位体积损耗。该磁通密 度通常表示为: Bm =E/4.44fNAe ×106(mT) 式中: Bm为磁通密度的峰值(mT) E为线圈两端的电压(V) f为频率(KHz),N为匝数 Ae为磁芯的有效面积(m2)
磁饱和性: B不会随H的增强而无限增强,H增大到 一定值时,B不能继续增强。 磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变,铁心在交变磁场中反复磁化的过 程中,B的变化总是滞后于H的变化,这种现象称为磁 滞性;当H减为零时B并不为零。
磁性参数与测量:磁导率μ (1)
1 起始磁导率μ
起始磁化曲线
磁滞回线中H为 零时B并不为零 的现象说明铁 磁材料具有剩 磁性。

磁性材料常识参数介绍

磁性材料常识参数介绍
2023年其推出旳PC95则属于宽温低功耗功率铁氧体新材料,起始磁导率 为3300±25﹪;25℃时饱和磁通量密度为540mT,100℃时为430mT;25℃ ~120℃内功率损耗均不大于350 Kw/m3(B=200mT,f=100KHz),在 25℃和120℃时,功耗均为350 Kw/m3,80℃时为280 Kw/m3。这种材料 是目前性能最为优良旳功率铁氧体材料。
数。
磁性材质介召:材质发展
以日本TDK企业旳产品为代表,当代功率铁氧体经历了 四代:
70年代初开发旳HC35材料 80年代初旳H7C1(PC30)材料 80年代旳H7C4(PC40)材料 90年代中旳H7F(PC50)材料
最高20KHz 最高100KHz
最高300KHz
500KHz 中心
磁性材质介召:材质发展
510 450 390
510 450 390
530
420
530
410
530
420
470 440 380
540
320
530
410
居里温度 (Tc)

≥290 ≥215 ≥215 ≥240 ≥230 ≥230 ≥230
注:磁芯损耗旳测试条件为:B=200 mT f=100KHz;
饱和磁通量密度测试条件为: H=1194A/m ﹡ 500KHz 50mT
磁性参数与测量:磁滞回线 (2)
1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
因为软磁材料在交变磁场中存在不 可逆磁化而形成磁滞回线。
如左图: Bs为磁化到饱和状态下旳磁通密度; Br为从磁饱和状态清除磁场后,剩
余旳磁通密度; Hc为从磁饱和状态清除磁场后,磁
芯继续被反向旳磁场磁化,直至磁通密 度减小到零,此时旳磁场强度称为矫顽 力。

【精品】磁性材料参数

【精品】磁性材料参数

1、什么是永磁材料的磁性能,它包括哪些指标?永磁材料的主要磁性能指标是:剩磁(Jr,Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m.我们通常所说的永磁材料的磁性能,指的就是这四项。

永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ,jHcθ)、回复导磁率(μrec.)、退磁曲线方形度(Hk/jHc)、高温减磁性能以及磁性能的均一性等。

除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。

此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。

2、什么叫磁场强度(H)?1820年,丹麦科学家奥斯特(H。

C。

Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。

实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。

定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米—克—秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×10?)A/m。

磁场强度通常用H表示.3、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系?理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场—-—关于退磁场的概念,见9Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和.由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B:B=μ0H+J(SI单位制)(1—1)B=H+4πM(CGS单位制)磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。

磁钢参数解读

磁钢参数解读

磁钢参数解读磁钢是一种常用的磁性材料,具有很高的磁导率和磁化强度。

在电子电气领域,磁钢被广泛用于电机、变压器、声音设备等各种电磁设备中。

磁钢的性能参数对设备的工作效果和性能起着至关重要的作用。

本文将解读磁钢的几个常见参数,以帮助读者更好地了解并选择合适的磁钢材料。

1.磁导率(μ):磁导率是磁钢的基本物理参数,表示了材料对磁场的响应能力。

磁导率越高,材料对磁场的感应能力越强,磁导率越低,材料对磁场的感应能力越弱。

磁导率的单位是亨利/米(H/m),常用的磁导率数值范围一般在1000-7000之间。

2.饱和磁化强度(Bs):饱和磁化强度是指磁钢材料在饱和磁场下的磁化强度。

简单来说,就是磁钢能够达到的最高磁化程度。

饱和磁化强度越高,材料的磁化能力越强,磁场越容易被磁化。

饱和磁化强度的单位是特斯拉(T),常用的数值范围一般在0.5-2.5T之间。

3.剩磁(Br):剩磁是指在去磁场的作用下,磁钢材料表面产生的剩余磁场。

剩磁是磁钢材料磁化后得到的一个留存状态,可以用来储存或传输磁能。

剩磁的大小与材料本身的磁化强度有关,一般剩磁越大,材料的磁能保存能力越强。

剩磁的单位也是特斯拉(T),常用的数值范围一般在0.05-1.0T之间。

4.矫顽力(Hc):矫顽力是指磁钢材料在去磁化后,需要外加的磁场强度才能使其重新磁化的能力。

矫顽力越大,材料越难去磁化,矫顽力越小,材料越容易去磁化。

矫顽力的单位是安培/米(A/m),常用的数值范围一般在100-1000A/m之间。

5.温度系数(α):温度系数是指磁钢材料在不同温度下的磁化能力变化率。

温度系数可以用来评估磁钢材料的温度稳定性。

温度系数的单位是%/℃,常用的数值范围根据具体应用要求而定。

以上是磁钢的几个重要参数,不同的磁钢材料具有不同的参数组合,适用于不同的应用场景。

在选择磁钢时,需要根据具体的设计要求和工作环境来合理选择磁钢材料,以确保设备的性能和稳定性。

需要注意的是,磁钢的参数解读只是初步了解磁钢性能的一种方式,实际应用中还需要综合考虑其他因素,例如成本、可加工性、耐腐蚀性等。

磁性材料相关知识

磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。

磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。

磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。

2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。

软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。

常见的软磁性材料有铁、镍、钴等。

软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。

2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。

硬磁性材料主要应用于存储设备、传感器等领域。

常见的硬磁性材料有钕铁硼、钴磁体等。

硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。

3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。

磁化过程可以分为顺磁化和逆磁化两种情况。

3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。

顺磁化过程中,磁性材料会被吸引到磁场较强的地方。

顺磁性材料的磁化强度与外磁场强度成正比。

3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。

逆磁化过程中,磁性材料会被排斥出磁场较强的地方。

逆磁性材料的磁化强度与外磁场强度成负相关。

4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。

矫顽力越高,磁性材料越难磁化。

矫顽力的单位是安培/米(A/m)。

4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。

磁导率越大,磁性材料的磁性能越好。

磁导率的单位是亨利/米(H/m)。

4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。

磁性材料参数汇总表

磁性材料参数汇总表

磁性材料参数汇总表引言磁性材料是一类重要的材料,在许多领域中都有广泛的应用,例如电子设备、电力传输、通信等。

了解磁性材料的参数对于正确选择和设计合适的磁性材料至关重要。

本文档旨在提供一个汇总表,列出常见磁性材料的重要参数和特性,以帮助工程师和研究人员进行选择和评估。

1. 常见磁性材料1.1 铁氧体材料铁氧体材料是一类具有高饱和磁感应强度和低磁导率的磁性材料。

下表列出了一些常见的铁氧体材料及其参数。

材料名称饱和磁感应强度 (T) 磁导率 (H/m) 矫顽力 (A/m)镍锌铁氧体0.4 50 800锰锌铁氧体0.3 100 500镍铜铁氧体0.6 20 10001.2 钕铁硼磁体钕铁硼磁体是一类具有极高磁能积和高矫顽力的磁性材料。

下表列出了一些常见的钕铁硼磁体及其参数。

材料名称饱和磁感应强度 (T) 磁能积 (J/m3) 矫顽力 (A/m)N35 1.17 263e6 955N45 1.33 326e6 955N52 1.45 398e6 9551.3 钢磁材料钢磁材料是一类在低频磁场中具有高导磁率和低矫顽力的磁性材料。

下表列出了一些常见的钢磁材料及其参数。

材料名称饱和磁感应强度 (T) 导磁率 (H/m) 矫顽力 (A/m)低碳钢 2 1000 4硅钢 2 5000 6非晶合金钢 2.1 10000 22. 参数解释2.1 饱和磁感应强度饱和磁感应强度是材料在外加磁场作用下能够达到的最大磁感应强度。

单位为特斯拉(T)。

2.2 磁导率磁导率描述了材料对磁场的响应程度,即磁场强度与磁感应强度之间的比值。

单位为亨利/米(H/m)。

2.3 矫顽力矫顽力是材料从饱和磁化状态中恢复到磁场消失状态所需施加的逆磁场强度。

单位为安培/米(A/m)。

2.4 磁能积磁能积是材料单位体积的储磁能力,表示材料在磁场中存储的能量密度。

单位为焦耳/立方米(J/m3)。

3. 典型应用3.1 铁氧体材料•镍锌铁氧体:常用于磁芯和磁带记录头。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

・磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M 并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M〜H曲线或B〜H 曲线上的某一点,该点常称为工作点。

2・软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列°剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相矢。

初始磁导率L1J、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率| ip。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。

在自由静止空气中磁芯的损耗与磁芯的温升矢系为:总功率耗散(mW)/表面积(cm2)3・软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。

器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相矢。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换矢系。

磁性材料入门知识

磁性材料入门知识

磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。

它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。

本文将为你介绍磁性材料的基本知识。

1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。

磁化强度的单位是安培每米(A/m)或高斯(Gs)。

磁力线越接近选定的物体,磁化强度就越强。

2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。

磁场强度的单位是特斯拉(T)或高斯(Gs)。

3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。

高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。

4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。

磁饱和是磁性材料失去磁性的一个重要特征。

5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。

每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。

6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。

磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。

7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。

软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。

硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。

8. 磁性材料应用磁性材料广泛应用于各个领域。

在电子行业,磁性材料用于制造电感和磁芯等元器件。

在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。

磁性材料还用于通讯、医疗、军事和安全等领域。

总之,磁性材料具有重要的应用和理论价值。

通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。

磁性材料基本参数详解

磁性材料基本参数详解

磁性材料基本参数详解磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。

自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。

铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。

顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。

本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。

锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。

它是以氧化铁、氧化锌为主要成分的复合氧化物。

其工作频率在1kHz 至10MHz 之间。

主要用着开关电源的主变压器用磁芯. 。

随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。

但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。

磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。

使用频率可达100KHZ ,甚至更高。

但最适合于10KHZ 以下使用。

磁场强度H :磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。

它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。

均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N IH 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一•磁性材料的基本特性1・磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M〜H或B〜H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H, Ms保持不变;以及当材料的M值达到饱和后,外磁场H 降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M〜H曲线或B〜H曲线上的某一点,该点常称为工作点。

2 •软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br/Bs矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率小是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率山、最大磁导率nm>微分磁导率pd、振幅磁导率pa、有效磁导率pe、脉冲磁导率|ip o居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe oc f2 t2 / , p 降低,磁滞损耗Ph的方法是降低矫顽力He;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率P。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3 •软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性。

器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。

磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。

即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。

材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。

2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。

剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。

矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。

初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。

居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。

它确定了磁性器件工作的上限温度。

损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。

在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。

器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。

设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。

磁钢参数解读

磁钢参数解读

磁钢参数解读磁钢是一种具有强磁性的材料,广泛应用于各种电磁设备中。

在磁钢的生产和使用过程中,需要了解其各种参数,以便正确地应用和选择磁钢。

下面将介绍磁钢的一些主要参数及其解读。

1.磁通密度(B)磁通密度是衡量磁钢在单位面积上所能产生的最大磁通量的物理量。

一般来说,磁通密度越高,磁钢的磁性能越好。

在磁钢应用中,需要根据实际需要选择具有适当磁通密度的磁钢。

2.磁导率(μ)磁导率是衡量磁钢对磁场作用的敏感程度的物理量。

一般来说,磁导率越高,磁钢的磁导性能越好。

在电磁设备中,选择具有适当磁导率的磁钢可以获得更好的电磁性能。

3.饱和磁通密度(Bs)饱和磁通密度是衡量磁钢在磁场作用下所能产生的最大磁通量的物理量。

一般来说,饱和磁通密度越高,磁钢的磁性能越稳定。

在选择磁钢时,需要考虑实际应用场景中可能出现的最大磁场强度,以确保不会超过磁钢的饱和磁通密度。

4.矫顽力(Hc)矫顽力是衡量磁钢保持磁性能力的物理量。

一般来说,矫顽力越高,磁钢的保持磁性能力越强。

在电磁设备中,选择具有适当矫顽力的磁钢可以保证设备的长期稳定运行。

5.剩磁(Br)剩磁是衡量磁钢在去除磁场后仍然保留的磁性能力的物理量。

一般来说,剩磁越高,磁钢的剩磁能力越强。

在电磁设备中,选择具有适当剩磁的磁钢可以提高设备的电磁性能。

6.内禀矫顽力(Hcj)内禀矫顽力是衡量磁钢不受外界磁场干扰时的保持磁性能力的物理量。

一般来说,内禀矫顽力越高,磁钢的抗干扰能力越强。

在电磁设备中,选择具有适当内禀矫顽力的磁钢可以提高设备的抗干扰能力。

磁性材料的基本特性及分类参数

磁性材料的基本特性及分类参数

一.磁性材料的根本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线〔M〜H或B〜H曲线〕.磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象.即当磁场强度H足够大时,磁化强度M到达一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值到达饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr 曲线变化.材料的工作状态相当于M〜H曲线或B〜H曲线上的某一点,该点常称为工作点.2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整洁排列.剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值.矩形比:Br/Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷〔杂质、应力等〕.磁导率?是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关.初始磁导率小最大磁导率m、微分磁导率用、振幅磁导率阳、有效磁导率区、脉冲磁导率卬.居里温度Tc:铁磁物质的磁化强度随温度升高而下降,到达某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度.它确定了磁性器件工作的上限温度.损耗P:磁滞损耗Ph及涡流损耗PeP=Ph+Pe=af+bf2+cPef2t2/,p降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁1/14性材料的厚度t及提升材料的电阻率P.在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散〔mW〕/外表积〔cm2〕3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压〜电流特性.器件的电压〜电流特性与磁芯的几何形状及磁化状态密切相关.设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系.设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数.二、软磁材料的开展及种类4.软磁材料的开展软磁材料在工业中的应用始于19世纪末.随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等.到20世纪初,研制出了硅钢片代替低碳钢,提升了变压器的效率,降低了损耗.直至现在硅钢片在电力工业用软磁材料中仍居首位.到20年代,无线电技术的兴起,促进了高导磁材料的开展,出现了坡莫合金及坡莫合金磁粉芯等.从40年代到60年代,是科学技术飞速开展的时期,雷达、电视播送、集成电路的创造等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料.进入70年代,随着电讯、自动限制、计算机等行业的开展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料一非晶态软磁合金.5.常用软磁磁芯的种类铁、钻、镇三种铁磁性元素是构成磁性材料的根本组元.按〔主要成分、磁性特点、结构特点〕制品形态分类:2/14〔1〕粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯〔HighFlu为、坡莫合金粉芯〔MPP〕、铁氧体磁芯〔2〕带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金三常用软磁磁芯的特点及应用〔一〕粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料.由于铁磁性颗粒很小〔高频下使用的为0.5〜5微米〕,又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定.主要用于高频电感.磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等.常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种.磁芯的有效磁导率区及电感的计算公式为:e=DL/4N2SX109其中:D为磁芯平均直径〔cm〕,L为电感量〔享〕,N为绕线匝数,S为磁芯有效截面积〔cm2〕.〔1〕铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成.在粉芯中价格最低.饱和磁感应强度值在1.4T左右;磁导率范围从22〜100;初始磁导率d随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高.铁粉芯初始磁导率随直流磁场强度的变化铁粉芯初始磁导率随频率的变化3/1422).坡莫合金粉芯坡莫合金粉芯主要有铝坡莫合金粉芯(MPP)及高磁通量粉芯(HighFlux).MPP是由81%Nk2%Mo及Fe粉构成.主要特点是:饱和磁感应强度值在7500Gs左右;磁导率范围大,从14〜550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生.主要应用于300kHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等,在AC电路中常用,粉芯中价格最贵.高磁通粉芯HF是由50%Ni、50%Fe粉构成.主要特点是:饱和磁感应强度值在15000Gs 左右;磁导率范围从14〜160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压水平;磁芯体积小.主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等,在DC电路中常用,高DC偏压、高直流电和低交流电上用得多.价格低于MPP.(3)铁硅铝粉芯(KoolMeores)铁硅铝粉芯由9%Ak5%Si,85%F的构成.主要是替代铁粉芯,损耗比铁粉芯低80%,可在8kHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26〜125;磁致伸缩系数接近0,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压水平;具有最正确的性能价格比.主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等.有时也替代有气隙铁氧体作变压器铁芯使用.3.软磁铁氧体(Ferrites)软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物,采用粉末冶金方法生产.有Mn-ZnCu-ZnNi-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,为1〜10欧姆-米,一般在100kHz以下的频率使用.Cu-ZnNi-Zn铁氧体的电阻率为102〜104欧姆-米,在100kHz〜10兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器.磁芯形状种类丰富,有E、I、U、ECETD形、方形(RM、EPPQ)、罐形(PC4/14RSDS〕及圆形等.在应用上很方便.由于软磁铁氧体不使用银等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此本钱低,又由于是烧结物硬度大、对应力不敏感,在应用上很方便.而且磁导率随频率的变化特性稳定,在150kHz以下根本保持不变.随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替.国内外铁氧体的生产厂家很多,在此仅以美国的Magnetics公司生产的Mn-Zn铁氧体为例介绍其应用状况.分为三类根本材料:电信用根本材料、宽带及EMI材料、功率型材料.电信用铁氧体的磁导率从750〜2300,具有低损耗因子、高品质因素Q、稳定的磁导率随温度/时间关系,是磁导率在工作中下降最慢的一种,约每10年下降3%〜4%.广泛应用于高Q滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器.宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有5000、10000、15000.其特性为具有低损耗因子、高磁导率、高阻抗/频率特性.广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和EMI上多用.功率铁氧体具有高的饱和磁感应强度,为4000〜5000Gs另外具有低损耗/频率关系和低损耗/温度关系.也就是说,随频率增大、损耗上升不大;随温度提升、损耗变化不大.广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路.〔二〕带绕铁芯1.硅钢片铁芯硅钢片是一种合金,在纯铁中参加少量的硅〔一般在4.5%以下〕形成的铁硅系合金称为硅钢.该类铁芯具有最高的饱和磁感应强度值为20000GS;由于它们具有较好的磁电性能,又易于大批生产,价格廉价,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯.是软磁材料中产量和使用量最大的材料.也是电源变压器用磁性材料中用量最大的材料.特别是在低频、大功率下最为适用.常用的有冷轧硅钢薄板DGa冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器5/14铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式.但高频下损耗急剧增加,一般使用频率不超过400Hzo从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和本钱.对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片.在工频下使用时,常用带材的厚度为0.2〜0.35毫米;在400Hz下使用时,常选0.1毫米厚度为宜.厚度越薄,价格越高.2.坡莫合金坡莫合金常指铁银系合金,银含量在30〜90%范围内.是应用非常广泛的软磁合金.通过适当的工艺,可以有效地限制磁性能,比方超过105的初始磁导率、超过106的最大磁导率、低到2%.奥斯特的矫顽力、接近1或接近0的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1即的超薄带及各种使用形态.常用的合金有1J5.1J791J85等.1J50的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2〜3倍.做成较高频率(400〜8000Hz)勺变压器,空载电流小,适合制作100W以下小型较高频率变压器.1J79具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯.1J85的初始磁导率可达十万105以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等.3.非晶及纳米晶软磁合金(AmorphousandNanocrystallinealloy9硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规那么排列,形成周期性的点阵结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利.从磁性物理学上来说,原子不规那么排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的.非晶态金属与合金是70年代问世的一个新型材料领域.它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命.由于超急冷凝固,合金凝固时6/14原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命.这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等.由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点.目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场.我国自从70年代开始了非晶态合金的研究及开发工作,经过六五〞、七五〞、八五〞期间的重大科技攻关工程的完成,共取得科研成果134项,国家发明奖2项,获专利16项,已有近百个合金品种.钢铁研究总院现具有4条非晶合金带材生产线、一条非晶合金元器件铁芯生产线.生产各种定型的铁基、铁银基、钻基和纳米晶带材及铁芯,适用于逆变电源、开关电源、电源变压器、漏电保护器、电感器的铁芯元件,年产值近2000万元.九五〞正在建立千吨级铁基非晶生产线,进入国际先进水平行列.目前,非晶软磁合金所到达的最好单项性能水平为:初始磁导率⑷=14X104钻基非晶最大磁导率叩=220X104钻基非晶矫顽力Hc=0.001Oe钻基非晶矩形比Br/Bs=0.995钻基非晶饱和磁化强度4KMs=18300Gs铁基非晶电阻率尸270区SCm常用的非晶合金的种类有:铁基、铁银基、钻基非晶合金以及铁基纳米晶合金.其国家牌号及性能特点见表及图所示,为便于比照,也列出晶态合金硅钢片、坡莫合金1J79及铁氧体的相应性能.这几类材料各有不同的特点,在不同的方面得到应用.牌号根本成分和特征:7/141K101Fe-Si-繇快淬软磁铁基合金1K102Fe-Si-B-凉快淬软磁铁基合金1K103Fe-Si-B-N添快淬软磁铁基合金1K104Fe-Si-B-NiM源快淬软磁铁基合金1K105Fe-Si-B-C双其他元素)系快淬软磁铁基合金1K106高频低损耗Fe-Si-B系快淬软磁铁基合金1K107高频低损耗Fe-Nb-Cu-Si-陈快淬软磁铁基纳米晶合金1K201高脉冲磁导率快淬软磁钻基合金1K202高剩磁比快淬软磁钻基合金1K203高磁感低损耗快淬软磁钻基合金1K204高频低损耗快淬软磁钻基合金1K205高起始磁导率快淬软磁钻基合金1K206淬态高磁导率软磁钻基合金1K501Fe-Ni-P-薛快淬软磁铁银基合金1K502Fe-Ni-V-Si-朦快淬软磁铁银基合金400Hz:硅钢铁芯非晶铁芯功率(W)4545铁芯损耗(W)2.41.3激磁功率(VA)6.11.3总重量(g)295276(1)铁基非晶合金(Fe-basedamorphousalloys)8/14铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(1.54D,铁基非晶合金与硅钢的损耗比拟磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3—1/5),代替硅钢做配电变压器可节能60—70%.铁基非晶合金的带材厚度为0.03mm左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯,适合于10kHz以下频率使用.2)铁银基、钻基非晶合金(Fe-Nibased-amorphousalloy)铁银基非晶合金是由40%Nk40%Fe及20%类金属元素所构成,它具有中等饱和磁感应强度〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性.在中、低频率下具有低的铁损.空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线.价格比1J79廉价30—50%.铁银基非晶合金的应用范围与中银坡莫合金相对应,但铁损和高的机械强度远比晶态合金优越;代替1J79,广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等.铁银基非晶合金是国内开发最早,也是目前国内非晶合金中应用量最大的非晶晶种,年产量近200吨左右.空气中热处理不发生氧化铁银基非晶合金(1K503)获得国家创造专利和美国专利权.(4)铁基纳米晶合金(Nanocrystallinealloy)铁基纳米晶合金是由铁元素为主,参加少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为10-20nm的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料.纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8X104)低Hc(0.32A/M),高磁感下的高频损耗低(P0.5V20kHz=30W/kg),电阻率为80^Sm,比坡莫合金(50-60区Sm)高,经纵向或横向磁场处理,可得到高Br(0.9)或低Br值(1000Gs%是目前市场上综合性能最好的材料;适用频率范围:50Hz-100kHz最正确频率范围:20kHz-50kHz广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电保护开关、共模电感铁芯.(三)常用软磁磁芯的特点比拟9/141.磁粉芯、铁氧体的特点比拟:MPP磁芯:使用安匝数<200,50Hz〜1kHz区已125〜500;1〜10kHz;125〜200;>100kHz:区?10〜125HF磁芯:使用安匝数<500,能使用在较大的电源上,在较大的磁场下不易被饱和,能保证电感的最小直流漂移,生:20〜125铁粉芯:使用安匝数>800,能在高的磁化场下不被饱和,能保证电感值最好的交直流叠加稳定性.在200kHz以内频率特性稳定;但高频损耗大,适合于10kHz以下使用.FeSiAlF磁芯:代替铁粉芯使用,使用频率可大于8kHzDC偏压水平介于MPP与HF之间.铁氧体:饱和磁密低〔5000Gs〕,DC偏压水平最小3.硅钢、坡莫合金、非晶合金的特点比拟:硅钢和FeSiAl材料具有高的饱和磁感应值Bs,但其有效磁导率值低,特别是在高频范围内;坡莫合金具有高初始磁导率、低矫顽力和损耗,磁性能稳定,但Bs不够高,频率大于20kHz时,损耗和有效磁导率不理想,价格较贵,加工和热处理复杂;钻基非晶合金具有高的磁导率、低Hc、在宽的频率范围内有低损耗,接近于零的饱和磁致伸缩系数,对应力不敏感,但是Bs值低,价格昂贵;铁基非晶合金具有高Bs值、价格不高,但有效磁导率值较低.纳米晶合金的磁导率、Hc值接近晶态高坡莫合金及钻基非晶,且饱和磁感Bs与中银坡莫合金相当,热处理工艺简单,是一种理想的廉价高性能软磁材料;虽然纳米晶合金的Bs值低于铁基非晶和硅钢,但其在高磁感下的高频损耗远低于它们,并具有更好的耐蚀性和磁稳定性.纳米晶合金与铁氧体相比,在低于50kHz时,在具有更低损耗的根底上具有高2至3倍的工作磁感,磁芯体积可小一倍以上.四、几种常用磁性器件中磁芯的选用及设计10/14开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器〔高频功率变压器〕、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等.不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求.〔一〕、高频功率变压器变压器铁芯的大小取决于输出功率和温升等.变压器的设计公式如下:P=KfNBSIx10-6T=hePbWPW其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数.由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量.但B 值的增加受到材料的Bs值的限制.而频率f可以提升几个数量级,从而有可能使体积重量显著减小.而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取.一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低.单端式变压器由于铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器.它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm 和剩磁Br之差要大;同时要求高的脉冲磁导率.特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求.线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2.这就要求材料有足够高的Bs值和适宜的磁导率,常为宽恒导磁材料.对于工作在士Bm^间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最适宜的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中.通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不11/14存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2—3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器.已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20—50kHz、功率50kW以下,是变压器最正确磁芯材料.近年来开展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要求变压器铁芯材料具有低的高频损耗、高的饱和磁感Bs和低的Br以获得大的工作磁感B,使焊机体积和重量减小.常用的用于高频弧焊电源的铁芯材料为铁氧体,虽然由于其电阻率高而具有低的高频损耗,但其温度稳定性较差,工作磁感较低,变压器体积和重量较大,已不能满足新型弧焊机的要求.采用纳米晶环形铁芯后,由于其具有高的Bs值〔Bs>1.2T〕,高的田值〔田〕0.7T〕,很高的脉冲磁导率和低的损耗,频率可达100kHz可使铁芯的体积和重量大为减小.近年来逆变焊机已应用纳米晶铁芯达几万只,用户反映用纳米晶变压器铁芯再配以非晶高频电感制成的焊机,不仅体积小、重量轻、便于携带,而且电弧稳定、飞溅小、动态特性好、效率高及可靠性高.这种环形纳米晶铁芯还可用于中高频加热电源、脉冲变压器、不停电电源、功率变压器、开关电源变压器和高能加速器等装置中.可根据开关电源的频率选用磁芯材料.环形纳米晶铁芯具有很多优点,但它也有绕线困难的不利因素.为了在匝数较多时绕线方便,可选用高频大功率C型非晶纳米晶铁芯.采用低应力粘结剂固化及新的切割工艺制成的非晶纳米晶合金C型铁芯的性能明显优于硅钢C型铁芯.目前这种铁芯已批量用于逆变焊机和切割机等.逆变焊机主变压器铁芯和电抗器铁芯系列有:120A、160A、200A、250A、315A、400A、500A、630A系列.〔二〕、脉冲变压器铁芯脉冲变压器是用来传输脉冲的变压器.当一系列脉冲持续时间为td〔⑹、脉冲幅值电压为Um〔V〕的单极性脉冲电压加到匝数为N的脉冲变压器绕组上时,在每一个脉冲结束时,铁芯中的磁感应强度增量田〔T历:缶=Umtd/NScX10-其中Sc为铁芯的有效截面积〔cm2〕.12/14即磁感应强度增量出与脉冲电压的面积〔伏秒乘积〕成正比.对输出单向脉冲时,ZB=Bm-Br如果在脉冲变压器铁芯上加去磁绕组时,出=Bm+Br在脉冲状态下,由动态脉冲磁滞回线的田与相应的由p之比为脉冲磁导率卬.理想的脉冲波形是指矩形脉冲波,由于电路的参数影响,实际的脉冲波形与矩形脉冲有所差异,经常会发生畸变.比方脉冲前沿的上升时间tr与脉冲变压器的漏电感Ls、绕组和结构零件导致的分布电容Cs成比例,脉冲顶降入与励磁电感Lm成反比,另外涡流损耗因素也会影响输出的脉冲波形.脉冲变压器的漏电感Ls=邻N21lm/h脉冲变压器的初级励磁电感Lm=4区pScN2/lx10-9涡流损耗Pe=Umd2tdIF/12N21ScB为与绕组结构型式有关的系数,lm为绕组线圈的平均匝长,h为绕组线圈的宽度,N1为初级绕组匝数,l为铁芯的平均磁路长度,Sc为铁芯的截面积,中为铁芯的脉冲磁导率,p为铁芯材料的电阻率,d为铁芯材料的厚度,F为脉冲重复频率.从以上公式可以看出,在给定的匝数和铁芯截面积时,脉冲宽度愈大,要求铁芯材料的磁感应强度的变化量田也越大;在脉冲宽度给定时,提升铁芯材料的磁感应强度变化量田,可以大大减少脉冲变压器铁芯的截面积和磁化绕组的匝数,即可缩小脉冲变压器的体积.要减小脉冲波形前沿的失真,应尽量减小脉冲变压器的漏电感和分布电容,为此需使脉冲变压器的绕组匝数尽可能的少,这就要求使用具有较高脉冲磁导率的材料.为减小顶降,要尽可能的提升初级励磁电感量Lm,这就要求铁芯材料具有较高的脉冲磁导率中.为减小涡流损耗,应选用电阻率高、厚度尽量薄的软磁带材作为铁芯材料,尤其是对重复频率高、脉冲宽度大的脉冲变压器更是如此.脉冲变压器对铁芯材料的要求为:①高饱和磁感应强度Bs值;②高的脉冲磁导率,能用较小的铁芯尺寸获得足够大的励磁电感;13/14③大功率单极性脉冲变压器要求铁芯具有大的磁感应强度增量田,使用低剩磁感应材料;当采用附加直流偏磁时,要求铁芯具有高矩形比,小矫顽力。

磁性材料介绍

磁性材料介绍
7.6 KG(千高斯)
Bis
0.94 T
9.4 KG
(BH)max
36 KJ/m3
4.5 MG*Oe
Bd
0.46 T
4.6 KG
Hd
80 KA/m
1000 Oe
要求磁場
640 KA/ m
8.0 KOe
在(BH)max下的導磁系數
5.0
平均反沖導磁性
2.1 G/ Oe
四﹑機械性能和物理性能
1﹒密度﹕7.0 g/ cm3
2﹒在500℃以下抗大氣4﹒抗溫度影響优于其它永磁材料﹔
5﹒居里(Curie)轉化溫度﹕860℃﹔
6﹒磁力線有方向性﹐方向取決于加熱溫度﹒
三﹑電磁性能
特性參數
數值
等效值
Hc
125 KA/m
1550 Oe (奧斯特)
Hci
134 KA/m
1675 Oe
Br
0.76 T(特斯拉)
2﹒橫向斷裂模量﹕382 Mpa
3﹒硬度: HRC 43
4﹒線膨脹系數: 11.3μm / m*K
5﹒電導率﹕530 nΩ*m
6﹒最高使用溫度540℃
Sintered Alnico 8磁性材料介紹
Sintered Alnico 8屬于粉末冶金燒結工藝生產的磁性材料﹐又稱燒結鋁鎳鈷合金﹒下面分別介紹各項性能﹕
一﹑化學成份
Fe---7Al---15Ni---35Co---4Cu---5Ti
二﹑基本特性
1﹒材料硬脆﹐只能通過表面研磨加工﹑放電加工或電化學銑切﹔

磁钢参数解读

磁钢参数解读

磁钢参数解读一、磁钢概述磁钢是一种常见的磁性材料,其具有磁性,可以产生磁场并吸引铁、镍等物质。

磁钢广泛应用于电子、电机、仪表、通讯、医疗和家电等领域,是现代工业中不可或缺的材料之一。

磁钢的性能参数对其在不同应用场合下的性能表现有着重要的影响,因此磁钢参数的解读对于优化材料选择、设计和应用具有重要意义。

二、磁性参数1. 饱和磁感应强度(Bs):饱和磁感应强度是指在外加磁场作用下,磁钢达到饱和状态时的磁感应强度。

Bs是衡量磁钢磁性能好坏的重要参数,通常情况下,Bs值越大,磁性能越好。

对于需要产生强磁场的应用来说,选择具有高Bs值的磁钢是非常关键的。

2. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

3. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

4. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

5. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

6. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

矫顽力值越大,表示磁性材料的抗磁退磁能力越强,对于需要稳定的磁性能的应用而言,较大的矫顽力是必要的。

7. 矫顽力(Hc):矫顽力是指在外部磁场作用下,磁钢磁化状态从饱和状态变为无磁化状态所需的磁场强度。

磁材基础知识简介

磁材基础知识简介

1.磁性材料简介磁性材料是指由过渡金属元素铁、钴、镍及其合金等组成的能够直接或间接产生磁性的物质。

根据物质在外磁场中表现出的特性,物质的磁性可分为五类:顺磁性、抗磁性、铁磁性、亚铁磁性、反铁磁性。

我们把顺磁性和抗磁性物质称为弱磁性物质,把铁磁性和亚铁磁性物质称为强磁性物质。

通常所说的磁性材料是指强磁性物质。

磁性材料按磁化后去磁的难易可分为软磁材料和硬磁材料。

磁化后容易去掉磁性的物质叫软磁材料,不容易去磁的物质叫硬磁材料,也称为永磁材料。

软硬磁材料最明显的区别就是矫顽力,一般来讲软磁材料的矫顽力较小,硬磁材料的矫顽力较大。

通常软磁材料的矫顽力小于80 A/m,而永磁材料的矫顽力则大于4000 A/m。

磁性材料按使用又可分为软磁材料、永磁材料和功能磁性材料。

功能磁性材料主要有磁致伸缩材料、磁记录材料、磁电阻材料、磁泡材料、磁光材料、旋磁材料以及磁性薄膜材料等。

磁性材料的磁化过程可通过磁滞回线来表示。

图1和1’分别为软磁材料和永磁材料的磁滞回线。

其中Bs表示饱和磁感应强度,Br表示剩磁,Hc表示矫顽力。

图中可以看出,软磁材料和硬磁材料最明显的区别就在于,硬磁材料的矫顽力远大于软磁材料。

图1 磁性材料的磁滞回线1:软磁材料的磁滞回线,1’:硬磁材料的磁滞回线;Hc、Hc’:矫顽力;Bs、Bs’:饱和磁感应强度;Br、Br’:剩磁。

1.1 磁性材料各性能参数(1)饱和磁感应强度Bs:是指磁体被磁化至饱和状态时的磁感应强度,其大小取决于材料的成分,与其他外在条件无关。

它所对应的物理状态是材料内部的磁化矢量整齐排列。

(2)剩余磁感应强度Br:磁性材料经磁化至技术饱和,去掉外磁场后所保留的表面场Br, 称为剩余磁感应强度。

简称剩磁,用Br表示,单位为特斯拉(T)或高斯(Gs),换算关系为1 T=10000 Gs。

(3)矫顽力Hc:磁性材料在饱和磁化后,当外磁场退回到零时其磁感应强度B 并不退到零,只有在原磁化场相反方向加上一定大小的磁场才能使磁感应强度退回到零,该磁场称为矫顽磁场,又称矫顽力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPINEL
磁性参数与测量:磁损耗 (5) 磁性参数与测量: 3 大信号下的功率损耗Pc
为标准化PC的测量,通常情况下根据使用情况指定 测试频率与Bm,如: 16KHz 150mT; 25Khz 200mT ; 100KHz 200mT等
测量方法
SPINEL
磁性参数与测量:磁滞回线 (1) 磁性参数与测量: 1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
2003年其推出的PC95则属于宽温低功耗功率铁氧体新材料,起始磁导率 为3300±25﹪;25℃时饱和磁通量密度为540mT,100℃时为430mT; 25℃~120℃内功率损耗均小于350 Kw/m3(B=200mT,f=100KHz),在 25℃和120℃时,功耗均为350 Kw/m3,80℃时为280 Kw/m3。这种材料 是目前性能最为优良的功率铁氧体材料。
磁性参数与测量:磁损耗 (2) 磁性参数与测量: 1 损耗因子tanδ
气隙对损耗因子的影响 磁芯开制气隙后,可以增加磁场和温度的稳定性,损耗因 子有所下降 (tanδ)gap = tanδ·µe/µi 比损耗因子 ,与材料几何尺寸无关,表示小信号下材料 的损耗特性;
SPINEL
磁性参数与测量:磁损耗 (3) 磁性参数与测量: 2 品质因素 Q
SPINEL
磁性参数与测量:磁导率温度稳定性 磁性参数与测量: 磁导率温度稳定性αμ
定义为:由于温度的改变而引起的被测量的相对变化 与温度变化之比。例:磁导率的温度系数为: αμ=
μ2-μ1 μ1(T2-T1)
式中:μ1是T1温度时的磁导率,μ2是T2温度时的磁导率 。因对于同一种软磁材料,其磁芯的αμ/μi值是一个常 数。故常用αμ/μi来表示温度特性。
SPINEL
磁学常识:磁性来源1 磁学常识:磁性来源1
铁磁材料之所以具有高导磁 性,是因为在它们的内部具有一 磁畴。 种特殊的物质结构—磁畴。
(a)无外磁场情况 铁磁材料内部的 磁畴排列杂乱无章 杂乱无章, 磁畴排列杂乱无章, 磁性相互抵消, 磁性相互抵消,因此 对外不显示磁性。 对外不显示磁性。
Le有效磁路长度 µ导磁率
Hc矫顽力
磁学常识:磁化曲线2 磁学常识:磁化曲线2
软磁材料反复磁化一周 所构成的曲线称为磁滞 所构成的曲线称为磁滞 回线。 回线。
B c b a
bc段是磁化曲线的膝部 段是磁化曲线的膝部 段是磁化曲线的
磁滞回线中B的变化总 磁滞回线中 的变化总 是落后于H的变化 的变化说明 是落后于 的变化说明 铁磁材料具有磁滞性 磁滞性; 铁磁材料具有磁滞性;
20%
μi
居里温度是磁性材料 从铁磁性到顺磁性的转 变温度,在这个温度磁 性材料的磁性将变得很 小或消失,它的表示方 式有很多,我们一般按 下图进行测量,即随着 温度升高,磁导率下降 到最大值的80%及20% 时,两点的联线,延长 到与温度轴的交点即为 居里温度。
T
Tc
SPINEL
磁性参数与测量:其它参数 磁性参数与测量:
电阻率ρ 电阻率 单位截面积和单位长度的磁性材料的电阻;和磁芯 的涡流损耗有关系。 密度d 密度 单位体积材料的重量d=W/V 式中:W为磁性材料的重量, V为磁性材料的体积。 磁芯的密度对Bs、µi等特性有一定影响。 电感系数AL 电感系数 定义为具有一定形状和尺寸的磁芯上每一匝线圈 产生的自感量。 AL=L/N2 式中:L为装有磁芯线圈的自感量(H),N为匝 数。
SPINEL
磁性材质介召:材质发展 磁性材质介召:
以日本TDK公司的产品为代表,现代功率铁氧体经历了 四代: 70年代初开发的HC35材料 80年代初的H7C1(PC30)材料 80年代的H7C4(PC40)材料 90年代中的H7F(PC50)材料
最高20KHz 最高100KHz
最高300KHz
500KHz 中心
SPINEL
磁学常识: 磁学常识:磁性材料分类
B)镍锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 50%, NiO 24%, 其他为:ZnO 电阻率很高(107 ohm-cm) 电阻率很高 工作频率高 铁心损耗较锰锌系高 居里温度高 型式: , ,环形等。 型式:DR,R,环形等。 用途:常模滤波器、 用途:常模滤波器、储能电感等
磁性参数与测量:磁损耗 (1) 磁性参数与测量: 1 损耗因子tanδ
表示小信号下材料的损耗特性,由于磁 芯损耗引起信号相移; tanδ= Rs/ωLs Rs 磁芯及线圈损耗的等效电阻; Ls 装有磁芯的线圈的自感量; tanδ称损耗因子,表示损耗功率与无 功功率的比值,其磁芯损耗包括磁滞损耗、涡流损 耗、剩余损耗即: tanδ= tanδn + tanδe + tanδr
磁性器件作滤波器的电感时,通常用品质因素Q来表示 它的质量; Q = 1/ tanδ Q与频率和绕组参数有关;
SPINEL
磁性参数与测量:磁损耗 (4) 磁性参数与测量: 3 大信号下的功率损耗Pc
P = Ph + Pe + Pr (Ph、Pe、Pr表示磁滞、涡流、剩余损耗) 磁性材料在高磁通密度下的单位体积损耗。该磁通密 度通常表示为: Bm =E/4.44fNAe ×106(mT) 式中: Bm为磁通密度的峰值(mT) E为线圈两端的电压(V) f为频率(KHz),N为匝数 Ae为磁芯的有效面积(m2)
磁芯
SPINEL
磁学常识: 磁学常识:磁性材料分类
A)锰锌系 ) 组成约为: 其他为: 组成约为:Fe2O3 71%, MnO 20%, 其他为:ZnO 电阻率高(10 ohm-cm) 电阻率高 磁心损耗低 居里温度高 形状:EE,EI,ER,PQ,RM,POT等型式。 形状: , , , , , 等型式。 等型式 用途:功率变压器、 共模滤波器、 用途:功率变压器、EMI共模滤波器、储能电感等 共模滤波器
磁畴是怎么 形成的? 形成的?
(b)有外磁场情况
磁畴因受外磁 场作用而顺着外磁 场的方向发生归顺 性重新排列,在内 性重新排列, 部形成一个很强的 附加磁场。 附加磁场。
铁磁材料内部往往有相邻的几百个分子 电流圈流向一致, 电流圈流向一致,因此在这些极小的区域内 就形成了一个个天然的磁性区域—磁畴 磁畴。 就形成了一个个天然的磁性区域 磁畴。
SPINEL
磁性材质介召:材质发展 磁性材质介召:
在PC50后,TDK相继推 出超低功耗材料PC44,PC45, PC46,PC47,其功率损耗较 PC40降低了约1/4~1/3, 主要差别就在于功耗最低点温 度不同,PC45为60-80℃, PC46为40-50℃,PC47则是 100℃,它们有一个明显的缺 点,一旦偏离了功耗最低点, 损耗值急剧上升。
磁路磁阻很小, 磁路磁阻很小,在线圈中通入较小的电流即可获得较
磁性参数与测量:磁导率µ (1) 磁性参数与测量:磁导率µ 1 起始磁导率μi
μi是材料在弱场磁化过程中的一个宏观特性表示量。 是磁性材料的磁导率(B/H)在磁化曲线始端的极限值, 1 lim B μi= B式中:
µ0
H→0
H
µ0为真空磁导率(4π×10-7H/m); H为交流磁场强度(A/m); B为交流磁通密度(T)(测试时应小于0.25mT)。
C1 …… 磁芯磁路常数(cm-1)
磁性参数与测量:磁导率µ (4) 磁性参数与测量:磁导率µ 3 振幅导磁率µα
作功率变换的开关电源变压器磁芯是工作在 高磁通密度下,因此必须引入振幅磁导率参数才能 真实反映出功率型磁芯在高磁通密度下的磁特性; µα= 1/µ0
* B/H
(式中规定的B值比测时高出数百倍以上,例如:200mT)
测量方法Biblioteka 磁性参数与测量:磁导率µ (3) 磁性参数与测量:磁导率µ 2 有效导磁率µe
变压器或电感器磁芯中常用非闭合的E型、U 型等配对磁芯,其磁路各部分形状尺寸不同,而且 其配合面不可避免地仍有残余气隙; 此时,必须用有效导磁率µe来表示磁芯的导 磁率; µe = LC1/(4πN2) ×107
SPINEL
磁性参数与测量:磁滞回线 (2) 磁性参数与测量: 1 饱和磁感应强度Bs、剩余磁感应强度Br、 矫顽力Hc
由于软磁材料在交变磁场中存在不 可逆磁化而形成磁滞回线。 如左图: Bs为磁化到饱和状态下的磁通密度; Br为从磁饱和状态去除磁场后,剩 余的磁通密度; Hc为从磁饱和状态去除磁场后,磁 芯继续被反向的磁场磁化,直至磁通密 度减小到零,此时的磁场强度称为矫顽 力。
SPINEL
磁学常识:磁化曲线3 磁学常识:磁化曲线3
高导磁性 大的磁通。 大的磁通。 磁饱和性: 不会随 的增强而无限增强, 增大到 磁饱和性: B不会随 的增强而无限增强,H增大到 不会随H的增强而无限增强 一定值时, 不能继续增强 不能继续增强。 一定值时,B不能继续增强。 磁芯线圈中通过交变电流时, 的大 磁滞性和剩磁性 磁芯线圈中通过交变电流时,H的大 小和方向都会改变, 小和方向都会改变 , 铁心在交变磁场中反复磁化的过 程中, 的变化总是滞后于 的变化,这种现象称为磁 的变化总是滞后于H的变化 程中,B的变化总是滞后于 的变化,这种现象称为磁 滞性; 减为零时B并不为零 滞性;当H减为零时 并不为零。 减为零时 并不为零。 磁导率可达10 磁导率可达 2~104,由软磁材料组成的
SPINEL
磁学常识:磁性来源2 磁学常识:磁性来源2
B B
H
(A) (B)
H
B
B
H
(C)
SPINEL
H
(D)
磁学常识:磁化曲线1 磁学常识:磁化曲线1
磁路部分
B
Br
Bs
φ
u
Hc
I
H
电路部分
H 磁场强度 B磁感应强度 Bs饱和磁感应强度 Br剩磁 µ导磁率
相关文档
最新文档