常用截面图形的几何性质

合集下载

截面几何性质

截面几何性质

截面几何性质
惯性主轴、中心惯性主轴主惯性矩、中心主惯性矩
惯性主轴:对于该轴系的惯性积为零。
中心惯性主轴:过形心的惯性主轴。 主惯性矩:相应惯性主轴的惯性矩。 中心主惯性矩:相应形心惯性主轴的惯性矩。 令:
Iz1y1 0
I 2
得: tan 2
2
2Izy Iz Iy
Iz Iy
Iz Iy 2 Iyz 2
A A A
截面几何性质
y1 z1 y
Iz1 Iz 2aSz Aa
z
dA
y
2 2
A
O
Iy1 Iy 2bSy Ab
z
z1
a
Iy1z1 Iyz aSz bSy Aab
Iz1 IzC Aa2 Iy1 IyC Ab2
y1
O1
b
若y、z轴通过图形的形心,则Sy=Sz=0。
o
心块的形心坐标。 解:在计算时,将偏心块看着 由一个大半圆和一个小半圆再 挖掉一个小圆而组成。因此, 在图示坐标系下得:
组合 单元 大半圆
面积 (mm2)
形心坐标 (mm)
xc 0 ?
yc
A1
A 2
R
2
2
5000
450
y1
4R 400 3 3
小半圆 小圆
r12
z
Sy AzC
zC
z
如果图形对某轴的静矩为零, 则该轴一定过图形的形心
截面几何性质
例1:求 y=xn, y=0, x=1 所围成图形的形心.
y
(1,1)
解: xc A
xdA
A

材料力学截面的几何性质课件

材料力学截面的几何性质课件
材料力学截面的几何 性质课件
目录
• 截面的基本性质 • 截面的二次矩 • 截面的抗弯截面系数 • 截面的抗扭截面系数 • 材料力学截面的应用
01 截面的基本性质
截面的面积
面积
截面面积是二维平面图形被截后,与 原图形相比增加的面积。对于矩形、 圆形、三角形等简单形状,截面面积 可以通过几何公式直接计算。
的刚度和稳定性。
截面惯性矩
截面惯性矩是衡量截面抗弯刚度 的指标,对于承受弯矩的构件, 选择具有较大惯性矩的截面可以
减少挠度和转角。
截面抵抗矩
截面抵抗矩是衡量截面抗剪切能 力的指标,对于承受剪力的构件 ,选择具有较大抵抗矩的截面可
以增加构件的承载能力。
工程设计中的应用
桥梁设计
在桥梁设计中,需要考虑梁的截面尺寸、材料类型和截面形式等 因素,以确保桥梁具有足够的强度和刚、单位等因素,以确保数 据处理结果的准确性和可靠性。
1.谢谢聆 听
根据微面积和其对应的主 轴方向余弦,计算出截面 二次矩。
主轴的确定
根据计算出的惯性矩,找 出三个主轴的方向余弦和 角度。
实例分析
圆截面
圆截面的二次矩为常数, 且各主轴与截面垂直,说 明圆截面在弯曲时没有翘 曲的趋势。
矩形截面
矩形截面的二次矩与宽度 的平方成正比,说明矩形 截面有较好的抗弯能力。
工字形截面
工字形截面的二次矩比同 样面积的矩形截面小,但 抗弯能力仍高于同样重量 的实心杆件。
03 截面的抗弯截面系数
定义与性质
01
抗弯截面系数是截面对其轴线的惯性矩除以截面的面积 得到的数值,用来度量截面在弯矩作用下抵抗变形的能 力。
02
不同形状的截面有不同的抗弯截面系数,如圆截面为1 ,矩形截面为1.13,工字形截面为1.44等。

截面的几何性质截面的几何性质

截面的几何性质截面的几何性质

分别为图形对于z 轴和y 轴的静矩。
3
平面图形的静矩
S z = ∫A ydA
S y = ∫ A zd A
• 静矩与截面面积大小及坐标设置有关; • 静矩可正、可负、可为零; • 静矩的单位为m3或 mm3。
4
平面图形的形心Leabharlann • 平面图形的形心 — 平面图形几何形状的中心。 • 通过截面形心的坐标轴称为形心轴 。
设图形的形心C坐标为(zC , yC), 由均质等厚薄片重心坐标公式: A yC = ∫A ydA = S z
A z C = ∫ A zd A = S y Sy S yC = z , z C = A A
• 截面对形心轴的静矩必为零;反之,若截面对
某轴的静矩等于零,则该轴必为形心轴。
5
平面图形的静矩和形心
h 1 h * = b − y1 + y1 S z = A* yC 2 2 2 b 2 = ( h2 − 4 y1 ) 8
7
h 2

组合图形的静矩和形心位置 • 组合图形 — 由几个简单图形(如矩形、圆形
或三角形等规则图形)组成的图形。
zC =
8
∑ Ai zC i ∑ Ai
截面的几何性质 • 平面图形的静矩和形心 • 平面图形的惯性矩、惯性积和惯性半径 • 惯性矩和惯性积的平行移轴公式 • 惯性矩和惯性积的转轴公式 • 主惯性轴和主惯性矩
9
平面图形的极惯性矩和惯性矩 • 定义
I z = ∫A y 2dA
I y = ∫ A z 2 dA
• 组合图形对某一对正交轴的惯性积等于各组成
部分对同一对正交轴的惯性积之和。
I yz = ∑ ( I yz ) i

第26讲第五章 材料力学(九)

第26讲第五章 材料力学(九)

第五节截面图形的几何性质一、静矩与形心对图所示截面静矩的量纲为长度的三次方。

对于由几个简单图形组成的组合截面形心坐标显然,若z轴过形心,y c=0,则有S z=0,反之亦然:若y轴过形心,z c=0,则有S y=0,反之亦然。

【真题解析】5—30(2007年真题)图所示矩形截面,m-m线以上部分和以下部分对形心轴z的两个静矩( )。

(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(c)绝对值不等,正负号相同(D)绝对值不等,正负号不同解:根据静矩定义,图示矩形截面的静矩等于m-m线以上部分和以下部分静矩之和,即,又由于z轴是形心轴,Sz=0,故答案:(B)二、惯性矩、惯性半径、极惯性矩、惯性积对图所示截面,对z轴和y轴的惯性矩为惯性矩总是正值,其量纲为长度的四次方,也可写成i z、i y称为截面对z、y轴的惯性半径,其量纲为长度的一次方。

截面对0点的极惯性矩为因=y2+z2,故有I p=I z+I y,显然I p也恒为正值,其量纲为长度的四次方。

截面对y、z轴的惯性积为I yz可以为正值,也可以为负值,也可以是零,其量纲为长度的四次方。

若y、z两坐标轴中有一个为截面的对称轴,则其惯性积I yz恒等于零。

例6图(a)、(b)所示的两截面,其惯性矩关系应为哪一种?A.(I y)1>(I y)2,(I z)1=(I z)2B. (I y)1=(I y)2, (I z)1>(I z)2C.(I y)1=(I y)2,(I z)1<(I z)2D. (I y)1<(I y)2,(I z)1=(I z)2解:两截面面积相同,但图 (a)截面分布离z轴较远,故I z较大。

对y轴惯性矩相同。

答案:B2016—63真题面积相同的两个如图所示,对各自水平形心轴 z 的惯性矩之间的关系为()。

提示:图( a )与图( b )面积相同,面积分布的位置到 z 轴的距离也相同,故惯性矩I za=I zb而图( c )虽然面积与( a )、( b )相同,但是其面积分布的位置到 z 轴的距离小,所以惯性矩I zc也小。

建筑力学第七章 截面的几何性质

建筑力学第七章 截面的几何性质

第七章平面图形的几何性质研究截面几何性质的意义从上章介绍的应力和变形的计算公式中可以看出,应力和变形不仅与杆的内力有关,而且与杆件截面的横截面面积A、极惯性矩I P、抗扭截面系数W P等一些几何量密切相关。

因此要研究构件的的承载能力或应力,就必须掌握截面几何性质的计算方法。

另一方面,掌握截面的几何性质的变化规律,就能灵活机动地为各种构件选取合理的截面形状和尺寸,使构件各部分的材料能够比较充分地发挥作用,尽可能地做到“物尽其用”,合理地解决好构件的安全与经济这一对矛盾。

第一节 静矩一、静距的概念Ay S z d d =Az S y d d =⎰⎰⎰⎰====AAy y AAz z Az S S A y S S d d d d zy d A yz静距是面积与它到轴的距离之积。

平面图形的静矩是对一定的坐标而言的,同一平面图形对不同的坐标轴,其静矩显然不同。

静矩的数值可能为正,可能为负,也可能等于零。

它常用单位是m 3或mm 3。

形心d A zyy zCx Cy ⎪⎪⎭⎪⎪⎬⎫⋅∆∑=⋅∆∑=A y A y Az A z C C ⎪⎪⎭⎪⎪⎬⎫==⎰⎰A ydA y A zdA z AC A C ⎪⎪⎭⎪⎪⎬⎫==A S y A S z z C y C ⎭⎬⎫⋅=⋅=C y C z z A S y A S 平面图形对z 轴(或y 轴)的静矩,等于该图形面积A 与其形心坐标y C (或z C )的乘积。

当坐标轴通过平面图形的形心时,其静矩为零;反之,若平面图形对某轴的静矩为零,则该轴必通过平面图形的形心。

如果平面图形具有对称轴,对称轴必然是平面图形的形心轴,故平面图形对其对称轴的静矩必等于零。

⎭⎬⎫⋅=⋅=C y C z z A S y A S二、组合图形的静矩根据平面图形静矩的定义,组合图形对z 轴(或y 轴)的静矩等于各简单图形对同一轴静矩的代数和,即⎪⎪⎭⎪⎪⎬⎫=+++==+++=∑∑==ni Ci i Cn n C C y ni Ci i Cn n C C z z A z A z A z A S y A y A y A y A S 1221112211 式中 y Ci 、z Ci 及A i 分别为各简单图形的形心坐标和面积;n 为组成组合图形的简单图形的个数。

第7章-截面图形的几何性质(PDF)

第7章-截面图形的几何性质(PDF)

第7章 截面图形的几何性质教学提示:在对构件进行应力和强度等计算时,需要用到构件截面图形的几何性质,即与构件截面几何形状和尺寸有关的一些量,例如形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积等。

本章的主要内容就是讨论这些几何性质的定义和计算。

教学要求:通过本章学习,要求理解形心、静矩、惯性矩、极惯性矩、惯性积和主惯性矩的概念,会用平行移轴公式计算组合截面对形心轴的惯性矩、主惯性矩等。

受力构件的承载能力,不仅与材料性能和加载方式有关,而且与构件截面的几何形状和尺寸有关。

当研究构件的强度、刚度和稳定性问题时,都要涉及到一些与截面形状和尺寸有关的几何量。

这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积、主惯性矩等,统称为“截面图形的几何性质”。

研究这些几何性质时,完全不需考虑研究对象的物理和力学因素,只作为纯几何问题处理。

7.1 静矩与形心考察如图7.1所示任意截面几何图形。

在其上取面积微元d A ,设该微元在Oyz 坐标系中的坐标为(y 、z )。

定义下列积分d y AS z A =∫, d z AS y A =∫(7.1)图7.1分别为截面图形对y 轴和z 轴的静矩(或称为面积矩)。

其量纲为长度的三次方。

常用单位是3m 或3mm 。

由于均质等厚薄板的重心与薄板截面图形的形心有相同的坐标(C y 、C z ),而薄板的重心坐标由式(2.24)给出,即d d AAzCy V y A S y V AA ===∫∫d d y AAC z Vz A S z VAA===∫∫第7章 截面图形的几何性质·91··91·所以,形心坐标为d Az Cy A Sy AA==∫, d y ACz A S z AA==∫ (7.2a)或y C S A z =⋅,z C S A y =⋅(7.2b)由式(7.2)可知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即若0C y =,则0z S =,或若0C z =,则0y S =;反之,若图形对某一坐标轴的静矩等于零,则该坐标轴必然通过图形的形心。

第5章 截面的几何性质

第5章 截面的几何性质

(
A
)
A
I x = I xc + a 2 A
I y = I yc + b 2 A
I xy = I xc yc + abA
(此为平行移轴公式 ) 此为平行移轴公式 注意: 式中的 注意: 式中的 、b代表坐标值,有时可能取负值。 式中的a 代表坐标值, 代表坐标值 有时可能取负值。 等号右边各首项为相对于形心轴的量。 等号右边各首项为相对于形心轴的量。 等号右边各首项为相对于形心轴的量
I x = I x1 + 2 I x 2 = 5333 × 10 4 + 2 × 3467 × 10 4 = 12270 × 10 4 mm 4
试计算组合截面的I 例5-7 试计算组合截面的 xc.
y 20 140 xc x 100
解:(1)求截面形心位置:
140 × 20 × 80 + 100 × 20 × 0 y= = 46.67 mm 140 × 20 + 100 × 20
I x1+ I y1= I x + I y
(上式表明,截面对于通过同一点的任意一对 上式表明, 相互垂直的坐标轴的两惯性矩之和为一常数, 相互垂直的坐标轴的两惯性矩之和为一常数, 并等于截面对该坐标原点的极惯性矩 )
cos 2α I xy sin 2α cos 2α + I xy sin 2α
I x1 y1 =
2 Ix Iy 2
sin 2α + I xy cos 2α
注: 上式中的α 的符号为:从旧轴 至新轴 1逆时 上式中的 的符号为:从旧轴x至新轴 至新轴x 针为正,顺时针为负。 针为正,顺时针为负。 将前两式相加得 将前两式相加得
(3)求整个截面的惯性矩:

《工程力学》课件第6章 截面图形的几何性质

《工程力学》课件第6章 截面图形的几何性质

Ip
r2dA A
D 2
r2
2
rdr
D4
0
32
Ip Iy Iz
Iy
பைடு நூலகம்
Iz
Ip 2
D4
64
四、组合截面的惯性矩与惯性积
z
I
例如工字型截面 A AI AII AIII
II
y
III
Iy
z 2 dA
A
z2dA z2dA z2dA
AI
AII
AIII
m
I yI I yII I yIII I yi
包括:形心、静矩、极惯性矩、惯性矩、惯性半径、惯 性积、主轴和形心主轴、主矩和形心主矩等
6.1 静矩和形心
一、静矩
截面对z轴的静矩
z
Sz
ydA
A
截面对y轴的静矩
y
dA
A
z
Sy
zdA
A
o
单位: m3
y
静矩的数值可大于零、等于零或小于零。
二、形心
如图所示均质薄板,重心与形心C重合,
由静力学可知形心坐标在yoz:
何关系, y R sin , dy R cosd ,
dA 2R cosdy 2R2 cos2 d
Sz
A
(2)形心
ydA yC
2 0
Sz A
R sin 2R2 cos2 d
2 R3 3
4R
1 R2 3
zC
2 3
0
R3
2
三、组合截面的静矩和形心 z
D d
y
整个图形对某一轴的静矩等于各个分图形对同一轴的静矩之和。
z1
y1 z

第三章 截面的几何性质

第三章 截面的几何性质

[例3-4] 计算图示箱式截面对水平形心轴z的惯性矩Iz。 500
C
·
z
(mm)
50
50
500
yC
y C外 400
z’
解:选参考系 yz 确定形心位置:
· C ·1 C ·
z
yC
y C内 425
C2
500 800 400 400 550 425 500 800 400 550 369.44 mm
I yc、I zc、I yczc
tan 2 0
2
2 I yczc I yc I zc
I yc I zc I yc 0 I yc I zc 2 I yczc I zc0 2 2
[例3-5] 在矩形内挖去一与上边内切的圆,求图形的 形心主轴。(b=1.5d)
I y0 I y I z I y Iz 主惯性矩: 2 2 I z0 I2 yz
2
I y0z0
I y Iz 2
sin 2 0 I yz cos 2 0 0
tan 2 0
2 I yz I y Iz
i 1
n
i 1
Ai
zc
Sy A

i 1 n
Ai z i
i 1
n
Ai
[例3-1]
试确定左图的形心。
zc
C2
C yc , zc
C1
y
A1 z1 A2 z2 A1 A2 10 80 5 10 110 65 39.74 mm 10 80 10 110 A1 y1 A2 y2 yc A1 A2 10 80 40 10 110 5 19.74 mm 10 80 10 110

截面几何特性

截面几何特性

截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积,定义它对任意轴的一次矩为它对该轴的静矩,即dA ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ∫∫==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为 则 0 C C z y ,A S y x= , AS x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。

推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ……321,,的简单图形组成,且一直各族图形的形心坐标分别为……332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2) 静矩有的单位为。

3m (3) 静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

(4) 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。

组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。

(二).惯性矩 惯性积 惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为∫=Ap dA I 2ρ (I-5)图形对y 轴和x 轴的光性矩分别定义为∫=Ay dA x I 2 , (I-6)dA y I Ax ∫=2惯性矩的特征(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。

截面的几何性质课件

截面的几何性质课件
截面的几何性质课件
目录
• 截面的基本概念 • 截面的形状分类 • 截面的力学性质 • 截面的设计原则 • 截面的优化设计 • 截面的实验研究 • 截面的工程实例
01
截面的基本概念
截面的定义
二维图形
截面是指用一个平面去截一个三 维图形(如长方体、正方体、球 体等),得到的二维图形。
几何形状
根据所用的平面和三维图形的相 对位置不同,截面可以是圆、椭 圆、矩形、三角形等不同的几何 形状。
01
进行实验
按照实验方案进行实验操作,并详细记录实验数据。
02
数据清洗与预处理
对采集到的实验数据进行清洗和预处理,以消除异常值和缺失值,确保
数据质量。
03
数据转换与统计分析
对预处理后的数据进行转换和统计分析,以挖掘截面几何性质的特征和
规律。
结果评估与应用
结果评估
根据统计分析结果,对截面几何性质的特征和规律进行评估 ,验证实验设计的合理性和结果的可靠性。
截面的形状、尺寸、材料、截面系数等。
计算公式
最大剪力 = 截面系数 x 剪力系数 x 跨度 x 集中荷载。
截面的抗扭强度
定义
截面的抗扭强度是指截面在承受扭矩作用下的最大抗扭能力。
影响因素
截面的形状、尺寸、材料、截面系数等。
计算公式
最大扭矩 = 截面系数 x 扭矩系数 x 跨度 x 集中荷载。
04
截面的设计原则
安全性原则
确保截面结构强度
在设计截面时,需要考虑结构强度和 稳定性,以避免在承载重量或受到外 力作用时发生变形或损坏。
保障截面安全使用
设计时应考虑到使用者的安全,避免 出现尖锐边角或易滑倒的表面,确保 使用过程中不会发生意外伤害。

截面图形的几何性质-材料力学

截面图形的几何性质-材料力学

yC
Sz A
558000 9000
62
Sz Sz1 Sz2 120 40 20 140 30110 558000
A A1 A2 120 40 140 30 9000
120
I
CI
C
CII
II
y 30
参考轴
z 40
yC
zC 140
注意
① 由两块组成组合图形,其复合图形形心一定位于两个子图的形心连线上。 ② 组合图形形心计算公式也适用于负面积情况, 但要记住面积为负号。
z
I
C1 C
s
C2
II
b
y1 h
y
y2
t
典型例题
例3 已知组合截面尺寸t=20mm,h=140mm,b=100mm。试求截面图
形对形心轴 y 的惯性矩。
t
解: 由平行移轴定理
矩形1对y轴的惯性矩:
I (1) y
I y1
b12 A1
矩形2对y轴的惯性矩:
I (2) y
I y2
b22 A2
整个截面的惯性矩:
Iz
y 2 dA
A
h y2bdy 0
b
y3 3
/
h 0
bh3 3
y
h b
dy y
z
典型例题
例2 试求图示截面对形心轴zC轴的惯性矩。
IzC
y 2 dA
A
h
2 h
y2bdy
2
b
y3 3
h
/
2
h
2
bh3
12
I yC
z 2dA
A
y
yC
hb3 =

截面几何性质

截面几何性质
b b A Iy ≻ Iy, x ≺ Ix; . a Ia a b b B. Iy ≻ Iy, x ≻ Ix; Ia
a b b C. Iy ≺ Iy, x ≻ Ix; Ia y
b b D Iy ≺ Iy, x ≺ Ix。 . a Ia y
o
x
o
x
(a)
(b)
C
课堂练习
I.
图示半圆形,若圆心位于坐标原点,则(
y
2R
R
O
C. Iy ≻ Ix;
B
R
x
课堂练习
I.
图示任意形状截面,若Oxy轴为一对主形心轴,则 ( )不是一对主轴。
A O ; . xy
y1
y
B. O xy; 1 1
C. O x1y1 ; 2
D O x1y。 . 3
O1 O2
O
O3
x
x1
C
课堂练习
I.
任意图形,若对某一对正交坐标轴的惯性积为零, 则这一对坐标轴一定是该图形的( )。
xy

A

A
5、组合图形对某一点的极惯性矩或对某一轴的惯性矩、惯性积 、组合图形对某一点的极惯性矩或对某一轴的惯性矩、 dA x x n n n n
y
y
2
∫ (− xy )dA = 0
A 2
dA
I P = ∑ I Pi
i =1
I x = ∑ I xi
i =1
I y = ∑ I yi
i =1
I xy = ∑ I xyi
D
课堂练习
I. 图示任意形状截面,它的一个形心轴zc把截面分成 Ⅰ和Ⅱ两部分,在以下各式中,( )一定成立。
A I +I .

材料力学-截面几何特性

材料力学-截面几何特性
IxC1 (70mm)3 10mm/12 28.58104 mm4 I yC1 70mm(10mm)3 /12 0.58104 mm4
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档