二次根式的乘除混合运算优秀课件

合集下载

《二次根式的乘除》课件

《二次根式的乘除》课件
《二次根式的乘除》ppt课 件
目录
• 二次根式的乘法规则 • 二次根式的除法规则 • 二次根式的混合运算 • 二次根式的乘除在实际问题中的应用 • 总结与回顾
01
二次根式的乘法规则
定义与性质
定义
二次根式是指形如√a(a≥0)的代数式。
性质
二次根式具有非负性,即√a≥0。
乘法运算规则
规则
对于任意实数a、b(a≥0,b≥0),有√a×√b=√(a×b)。
在此添加您的文本16字
根据除法规则,$frac{sqrt{5}}{sqrt{2}} = sqrt{frac{5}{2}} = frac{sqrt{10}}{2}$。
在此添加您的文本16字
例3:计算$sqrt{3} + sqrt{2} - frac{sqrt{5}}{2}$。
在此添加您的文本16字
先进行乘除运算,再进行加减运算,$sqrt{3} + sqrt{2} frac{sqrt{5}}{2} = sqrt{3} + sqrt{2} - frac{sqrt{5}}{2}$ 。
02
二次根式的除法规则
定义与性质
定义
二次根式是指形如√a(a≥0)的代数式。
性质
二次根式具有非负性,即√a≥0。
除法运算规则
规则
对于任意实数a和b(b≠0),有√a/√b=√(a/b)。
注意事项
在进行二次根式的除法运算时,需要保证分母不为0,即b>0。
除法运算实例
实例1
计算√10/√2的结果。
金融领域的应用
假设某项投资的年化收益率为10%,要求计算投 资回报。可以使用二次根式乘除运算,即年化收 益率 = (投资回报 / 本金)^(1/年数) = (1.1 / 1)^(1/2) = 10%√(2) = 14.42%。

关于二次根式的乘除混合运算课件

关于二次根式的乘除混合运算课件
(3)最后结果必须化成最简二次根式或有理式。
【复习回顾】
a 0, a 0(. 双重非负性)
2 a a(a 0) a (a≥ 0) a2 =∣a∣ -a (a≤0)
a b ab(a≥0,b≥0) ab a b (a≥0,b≥0)
a = a (a≥0,b>0) bb
aa
b=
(a≥0,b>0)
3
3
《金典35页 合作探究第一题》
12 21 12 3 35
《金典35页 知识运用A组 第3题(1)(2)》
13 7 1 4 42
《金典36页 知识运用A组 第3题(1)(2)》
3 31(1 14)1 51 2 87 4 2
《金典36页 知识运用B组 第4题 》
2 ab5 •(3 a3b)3 b (a0,b0)
b
2
a
【分母有理化的应用】
化1 简 1 1 1 1 2 23 3 2 9 9100
《金典35页 典型例题》
《金典35页 知识运用A组第2题(2)》
《金典34页 视野拓展》
《金典34页 知识运用B组第5题》
比较 2008 2007与 2006 2005的大小
【根号的数外移至根号内的化简】(金典第32页视野拓展)
B.2
7
7
C. 2
(2) 化简 3 2 的结果是
27
()
A. 2 3
B. 2 3
C. 6 3
D. 2 7
D. 2
2、计算:
(1) 2 48
(2) 2x3 8x
(3)金典35页)
【二次根式乘除混合运算】 (除法作业单例题)
4 18(2 81 54)
关于二次根式的乘 除混合运算

《二次根式的乘除》二次根式PPT课件4 (共25张PPT)

《二次根式的乘除》二次根式PPT课件4 (共25张PPT)
(4) 18 x y 2 x 2 xy ( x y 0)


自主展示
2.化简
1
72
2
3

9x y
19 17 4 4
2
2 4
2
4
54a b
自主展示
3.判断下列各式是否正确,不正确的 请予以改正:
1
(4) (9) 4 9
2
结果是
.
1 x
自主拓展
4.探究过程:观察下列各式及其验证过程.
12
45
2 2 2 3 3
5 5 5 24 24
23
3 3 3 8 8
34
4 4 4 15 15

通过上述探究你能猜测出: 并验证你的结论.
自主评价
一路下来,我们结识了很多新知识, 你能谈谈自己的收获吗?说一说,让大 家一起来分享。
自主展示
答案:
1x 0
2 1 x 2 3 1 x 1
自主拓展
1. 已知 12 n是正整数,则实数 n的最大值为
11
.
2.如果 a 3 2a 2 a a 2则实数a的取值范围是
2 x 0
.
1 3.把二次根式 ( x 1) 中根号外的因式移到根 号内, 1 x
10 12
2 5
16 9
2 3 3 5
2 2
2.归纳猜想:
文字语言叙述:
乘法法则: a b ab(a 0, b 0)
二次根式相乘,实际上就是把被开方 数相乘,而根号不变.
自主合作
例1:计算
1
2
2 32
1 8 2

《二次根式乘除》课件

《二次根式乘除》课件
除法运算
在进行二次根式的除法运算时,可以 先将除法转化为乘法,再进行根式的 乘法运算。例如: $frac{sqrt{2}}{sqrt{3}} = sqrt{frac{2}{3}}$。
与有理数混合运算
有理数与二次根式相乘
有理数与二次根式相乘时,可以直接将有理数与根号内的数相乘,再开相同的根号得出结果。例如: $2 times sqrt{3} = 2sqrt{3}$。
乘法运算规则
规则
两个二次根式相乘,其结果是被乘数 和乘数的乘积的平方根,即$sqrt{a} times sqrt{b} = sqrt{a times b}$( $a, b geq 0$)。
举例
$sqrt{2} times sqrt{3} = sqrt{2 times 3} = sqrt{6}$。
特殊情况处理
计算 $(sqrt{5} + sqrt{3})(sqrt{5} - sqrt{3}) + (sqrt{2} + 1)^{2} - (sqrt{2} 1)^{2}$
计算 $frac{sqrt{3}}{sqrt{2}} times frac{sqrt{2}}{sqrt{3}} div (frac{sqrt{6}}{sqrt{2}} times frac{sqrt{2}}{sqrt{6}})$
性质
二次根式具有非负性,即$sqrt{a} geq 0$(当$a geq 0$) 。
除法运算规则
运算法则
二次根式的除法运算可以转化为乘法运算,即$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$(当$a geq 0$,$b > 0$)。
运算顺序
在进行二次根式的除法运算时,应先化简根式,再进行乘法运算。

《二次根式的乘除》课件

《二次根式的乘除》课件
1 除法中的除数
除数中不能含有二次次方根式(分母不能含有根号)。
2 分式的表达问题
如何将二次根式分式化为规定形式的分式是化简过程中的重要问题。
3 注意符号
化简过程中务必注意正负号的符号问题。
总结
1
知识点回顾
二次根式的定义、乘法和除法、化简,及注意事项。
2
实例演示
勾股定理、身高测量、网页搜索。
3
提高思维
例子
√2 × √3 = √(2×3) = √6
二次根式的除法
方法
将除数与被除数都化简成含有单个二次次方根号的形式,然后将它们相除。
例子
√ 10 ÷ √ 2 = √ (10/ 2) = √ 5
注意
除数中不能含有根式。
二次根式的化简
基本法则
可利用有理化分式法则将分母中含有二次次方根式的分式化成规定形式的分 式。
化简二次根式的方法能够锻炼我们的逻辑思维和空间思维。
例子
1 / (√6 + √3) = (√6 - √3) / (6 - 3)
实例演示
勾股定理
身高测量
勾股定理指出,对直角三角形, a²+ b²= c²。
身高测量中,常用毫米线测量 身高,可以根据身高信息判断 健康状况。
网页搜索
网页搜索是日常学习生活中必 不可少的工具,可以快速获取 丰富的信息。
注意事项
《二次根式的乘除》PPT 课件
本课程将为大家详细讲解二次根式的乘除,帮助您轻松掌握这个数学难点。数与一个含有不超过二次次方根式(或有理数)的代数式相乘或相除所得到的 式子称为二次根式。
特点
有理数和二次根式可以相加、相减、相乘、相除。
二次根式的乘法

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)

人教版八年级数学下册第十六章16.2二次根的乘除课件(3课时,共61张PPT)
求证: a b a b a 0,b 0.
证明:根据积的乘方法则,有 ( a b)2 ( a)2 ( b)2 ab.
∴ a b 就是ab算术平方根.
又∵ ab 表示ab算术平方根, ∴ a b ab (a 0,b 0.)
知识归纳
二次根式乘法法则:
例8 设长方形的面积为S,相邻两边长分别为a,b.
反之: ab = a b (a≥0,b≥0 ). (a≥0,b≥0 ).
我们可以运用它来进行二次根式的解题和化简.
解:(2)∵

(1)
___×___=____;
(a≥0,b≥0 ).
当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得
2 7= ?
精典例题
例1 计算:
(1) 16 81 ;(2) 12 ;(3) 4a2b3 . 解:(1) 16 81=36;
(3) 3x 1 xy = 3x 1 xy =x y.
3
3
目标导学三:二次根式的除法
我们知道,两个二次根式可以进行乘法运算,那 么,两个二次根式能否进行除法运算呢?
24 = _____ ; 3 1 = _____ .
3
2 18
合作探究
问题 计算下列各式,观察计算结果,你能发现 什么规律?
(1) 4 = 9
特殊化,从能开得尽方的 二次根式乘法运算开始思考!
2 7= ?
目标导学一:二次根式的乘法 计算下列各式:
(1) 4 9= __2_×_3__=__6__; 4 9 =___3_6___6__;
(2) 16 25 __4_×_5__=__2_0_; 16 25 =__4_0_0___2_0_; (3) 25 36=__5_×_6__=__3_0_; 25 36 =__9_0_0___3_0_.

《二次根式的乘除运算》PPT课件

《二次根式的乘除运算》PPT课件

这个等腰三角形的周长为( B )
A. 4 3 5 2
B. 2 3 10 2
C. 4 3 10 2
D. 4 3 10 2 或 2 3 10 2
5.计算:
( 1 ) 5 2 18= __8__2__; ( 2 ) 4 18 -9 2 ___3__2____ ; ( 3 )10 2 (3 8-7 2)___9__2__;
请将你的做法和大家进行交流.
① 5 32 3
含有相同的二 次根式__3___
② 12 75
52 3 7 3
合并
2 3 5 3 25 3 7 3
含有相同的二 合并
次根式__3___
③ 6 7 1 7
6
7
7 7Βιβλιοθήκη 61 77
41 7 7
含有相同的二 合并
次根式__7___
一化简, 二判断, 三合并。
2
3 能进行合并的是 (
C)
A.
12与 3 2
B.
3与 18 2
C . 12与 27
D . 18与 27
2. 计算 3 5 2 5 的结果是( A )
A.5
2B.5 3C.5 D.6
3.已知最简二次根式 3x 4 与 5 能合并成一项,则x的值为(C )
A.5
B.2
C.3
D.4
4.已知等腰三角形的两边长分别为 2 3 和 5 2 ,则
4 9 7 35
5 7 35.
(2) 24
1 6
5 6
0.96 .
(2)
24
1 6
5 6
0.96
24 1 5 96 6 6 100
2 6 6 30 2 6 6 65

15.2 二次根式的乘除运算课件(共18张PPT)

15.2 二次根式的乘除运算课件(共18张PPT)
1.二次根式的乘法和除法
2.分母有理化(1)分母有理化时,分子和分母要同时乘有理化因式;(2)若分母可化简,则先化简,再有理化;(3)最后结果若含二次根式,必须是最简二次根式.
同学们再见!
授课老师:
时间:2024年9月15日
请就小明和大刚分别计算的做法给予评价,并谈谈你的想法.
谈一谈
随堂练习
1.计算下列各式:
2.已知一个长方形的面积是,宽是,则它的长是( ).A.3 B.4C.2 D.4
C
拓展提升
归纳小结
法则
二次根式的乘法和除法
公式拓展:
例题解析
例1 计算下列各式:
二次根式运算的结果,应化为最简二次根式.
例2 计算下列各式:
定义
在例2的解答过程中,将分母中含二次根式的式子化为分母中不含二次根式的式子. 像这样,把分母中的二次根式化去,叫做分母有理化.
知识点2 分母有理化
注意:1.分母有理化时,分子和分母要同时乘有理化因式;2.若分母可化简,则先化简,再有理化;3.最后结果若含二次根式,必须是最简二次根式.
15.2 二次根式的乘除运算
第十五章 二次根式
学习目标1.掌握二次根式乘除法则.2.掌握分母有理化的方法.
学习重难点
熟练掌握二次根式乘除法法则.
难点
重点
熟练进行二次根式的乘除混合运算.
复习巩固
二次根式的性质
反向利用,就可以进行二次根式的乘除运算了.
新知引入
知识点1 二次根式的乘除运算

二次根式的乘除ppt课件

二次根式的乘除ppt课件
(3)几个二次根式相乘,可利用乘法交换律、结合律简
化运算 .
感悟新知
知1-讲
特别提醒
1. 法则中被开方数a,b既可以是数,也可以是式子,但都
必须是非负的 .
2. 二次根式相乘,被开方数的积中有开得尽方的因数或因
式时一定要开方 .
3. 二次根式相乘的结果是一个二次根式或一个整式 .
感悟新知
知1-练
10
8
10
=-
9×8=-20 2.
3
10
3
27÷ =-1× 3 ×
8

8
27×
3
感悟新知
知3-练

(5)


(a>0,b>0);
a3b6
解:∵a>0,b>0,∴

ab
(6)8 ÷3 ÷6 .
a3b6
= a2b5=ab2 b.
ab
4
8 6÷3 3÷6 2=(8÷3÷6)× 6÷3÷2= .
学习目标
第21章 二次根式
21.2 二次根式的乘除
感悟新知
知1-讲
知识点 1 二次根式的乘法
1. 二次根式的乘法法则
一般地,有 · = (a ≥ 0,b ≥ 0). 这就
是说,两个算术平方根的积,等于它们被开方数的
积的算术平方根 .
感悟新知
知1-讲
2. 二次根式的乘法法则的推广
(1)当二次根式根号外有因数(式)时,可类比单项式乘单
方根代替,移到根号外,其中把根号内的分母中的因
式移到根号外时,要注意应写在分母的位置上;
C. 0 ≤ x<1
D. x ≥ 0 且x ≠ 1

《二次根式的乘除》二次根式PPT课件4 (共25张PPT)

《二次根式的乘除》二次根式PPT课件4 (共25张PPT)

自主合作
例2:化简
1
12
3
2 a a0
34 a b a 0 , b 0
23
自主合作
解: 1 12 4 3 4 3 2 3
2a a a a a
3 2
34 a b 2 ab b 2 ab b
23 2
1
x
2 ( x 1 )( 2 x ) x 1 2 x
2 3x 1 x 1 x 1
自主展示
答案:
x0 1
2 1 x 2 3 1 x 1
自主拓展
11 1 . 已知 12 n 是正整数,则实数 n 的最大值为
5 5 5 24 24
23
3 3 3 8 8
34
4 4 4 15 15

通过上述探究你能猜测出: 并验证你的结论.
自主评价
硕果累累 一路下来,我们结识了很多新知识, 你能谈谈自己的收获吗?说一说,让大 家一起来分享。
课堂小结
二次根式的乘法法则:
a b ab ( a 0 , b 0 )
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。

二次根式的乘除(课件)八年级数学下册(苏科版)

二次根式的乘除(课件)八年级数学下册(苏科版)
足公式 t
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2

t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10


5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.

二次根式的乘除法PPT课件

二次根式的乘除法PPT课件
二次根式的乘除法PPT 课件
contents
目录
• 二次根式基本概念与性质 • 二次根式乘法运算规则 • 二次根式除法运算规则 • 乘除混合运算及简化方法 • 在实际问题中应用举例 • 错题集锦与答疑环节
二次根式基本概念与
01
性质
二次根式定义及表示方法
定义
形如$sqrt{a}$($a geq 0$)的式 子叫做二次根式。
解析
首先将二次根式化为最简形式,$sqrt{8} = 2sqrt{2}$,$sqrt{12} = 2sqrt{3}$。 然后进行乘法运算,$2sqrt{2} times 2sqrt{3} = 4sqrt{6}$。
典型例题解析
• 例题2:计算$\frac{\sqrt{20}}{\sqrt{5}}$。 • 解析:首先将二次根式化为最简形式,$\sqrt{20} = 2\sqrt{5}$。然后
注意挖掘题目中的隐含条件,避免因为忽视条件而导致错 误。
学生提问环节,老师答疑解惑
学生提问
老师,我在计算二次根式的乘法时总是出错,有什么方法可以 避免吗?
老师回答
首先,你需要熟练掌握二次根式的乘法运算法则,其次在计算 过程中要保持细心和耐心,注意每一步的计算准确性。同时, 你可以通过多做练习题来提高自己的计算能力和准确性。
进行除法运算,$\frac{2\sqrt{5}}{\sqrt{5}} = 2$。 • 例题3:计算$\frac{\sqrt{6} + \sqrt{3}}{\sqrt{3}}$。 • 解析:首先观察分子分母的特点,发现可以分母有理化。然后进行化简,
$\frac{\sqrt{6} + \sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{6} + \sqrt{3}) \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{18} + 3}{3} = \frac{3\sqrt{2} + 3}{3} = \sqrt{2} + 1$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.2
7
7
C. 2
(2) 化简 3 2 的结果是
27

()
A. 2 3
B. 2 3
C. 6 3
D. 2 7
D. 2
2、计算:
(1) 2 48
(2) 2x3 8x
(3) 1 1 4 16
(4)
9x 64 y 2
(金典35页)
【二次根式乘除混合运算】 (除法作业单例题)
4 18(2 81 54)
(3)最后结果必须化成最简二次根式或有理式。
【复习回顾】
a 0, a 0(. 双重非负性)
2 a a(a 0) a (a≥ 0) a2 =∣a∣ -a (a≤0)
a b ab(a≥0,b≥0) ab a b (a≥0,b≥0)
a = a (a≥0,b>0) bb
aa
b=
(a≥0,b>0)
b
2
a
【分母有理化的应用】
化1 简 1 1 1 1 2 23 3 2 9 9100
《金典35页 典型例题》
《金典35页 知识运用A组第2题(2)》
《金典34页 视野拓展》
《金典34页 知识运用B组第5题》
比较 2008 2007与 2006 2005的大小
【根号的数外移至根号内的化简】(金典第32页视野拓展)
3
3
《金典35页 合作探究第一题》
12 21 12 3 35
《金典35页 知识运用A组 第3题(1)(2)》
13 7 1 4 42
《金典36页 知识运用A组 第3题(1)(2)》
3 31(1 14)1 51 2 87 4 2
《金典36页 知识运用B组 第4题 》
2 ab5 •(3 a3b)3 b (a0,b0)
二次根式的乘除混合运算优秀 课件
1、计算:
(1) 2 48
(2) 2x3 8x
(3) 1 1 4 16
(4)
9x 64 y 2
被开方数不含分母,也不含能开得尽方的 因数或因式,这样的二次根式叫做最简二 次根式.
分母有理化的方法与步骤: (1)先将分子、分母化成最简二次根式;
(2)将分子、分母都乘以分母的有理化因式, 使分母中不含根式;
(1) 3 2 3
(2) 2a 1 2a
(3)2a 1 a
(金典第30页 B组第5题)
b
被开方数不含 分母
最简二次根式 被开方数中不含开方开得尽的因数或因式
分母有理化
1 a a a a a a
1
ab ab
ab ( ab)(ab) ab
最简二次根式 根式运算结果满足
分母为有理数
【知识运“用”】(金典33页) A组
1、选择题
(1) 计算11 21 12的结果是( ) 3 35
A. 2 5
相关文档
最新文档