变频调速技术在风机、泵类的应用
变频器在风机水泵中的应用

薹 萎
目
O 5Oo I OO I . C 15o o 2O ∞ 25o o
电 动 机 转 速
(单 位 一 RP吣
图 1 变频 器驱 动 电机 机械 曲线 图
8 8
李
东 :变频 器 在风机 水泵 中的应 用
第6 期
3风机水泵变频调速节能原理
依据风机和水泵流体机械来说 明转速与节能 的 曲 关系, 流体机械 的转速变化与其流量 、压力和功率之 。
速系统中的应用, 变频调速 已逐渐取代传统的磁极对 恒压控制, 节能效率将进一步提高 。由于变频器可实 数调速、转差率调速 、串电阻调速等, 变频调速在工 现大的电动机的软停、软起, 了启动时的电压冲 避免
业 生 产 中已获 得 广泛 的应 用 。 在各 种 工业 用 风 机 、 击, 减少电动机故障率, 延长使用寿命 , 同时也降低了
e 就可以改变 电动机的转速。电动机的转速变慢, 轴 功率也跟着减小, 电动机 的输入功率也相应减小。
耋
器 、绕线电机电刷等容易损坏 的缺点, 了故障和 降低
事故的发生交流变频调速是交流 电动机调速方法 中 最理想的方案, 采用变频器对风机、水泵类机械进行 调速来 调节风量 、流量 的方法 , 对节约 能源, 高经 提
用 电量 占工业 用 电的 6% 以上 , 果能 在这 个领 域充 满 负荷 状 态 。采 用 变频 器 直接 控制 风 机 、泵 类 负 载 0 如
分使用变频器进行变频无级调速 , 对我们发展加工制 是一种最科学 的控制方法, 利用变频器内置 PD调节 I 造业又严重缺电的国家, 国之策。随着电力电子 软件 , 是兴 直接调节 电动机 的转速保持恒定 的水压 、风 技术 、微电子技术、信息技术和现代控制理论 在调 压, 从而满足系统要求的压力 。同时也可以实现闭环
变频技术在工业水泵和风机应用中的研究

工 业 技 术
变频技术在工业水泵和风机应用 中的研究
柴森起
(河南省平顶山市
河南平顶山
467000)
摘 要: 本文根据作者多年的工作经验, 详尽阐述了变频技术在工业水泵和风机的调速控制中的应用及分析。 关键词: 变频技术 实例分析 中图分类号: U264. 91+3. 4 文献标识码: A 文章编号: 1672- 3791(2007)02(b卜0028- 01 能源是人类生存和社会发展的物质基 础,随着生产力的进步和工业现代化的发 展,世界能源消耗的速度越来越快. 而煤、 石油、天然气都是 “ 非再生能源” ,世男 能源的储备量只能再用二、三十年,能源短 缺的问题已经到了非常严峻的地步,节约能 源是一个十分紧迫的问题. 社会发展就要依 靠技术进步、实施依靠科学管理,把节约能 源以及解决能源问 题作为我国重要的技术经
n,一 表 机 泵 在 转 行 代 风 水 额定 速运 时的
特性 。
以上。 的特 性 , 根据本人长期从事火电工作的经验,电 R,一 表 机 泵 路 力 小 的 代 风 水 管 阻 最 时 阻 厂燃煤锅炉的送、引风机的风量裕度分别为 力特 性 , 5% 和 5% 一10%,风压裕度分别为 10% 和 R厂代 机 泵管 表风 水 路阻力 大到 增 某一 10%一15%。因为设计过程中很难计算管网 数组时的阻力特性。 的阻力、并考虑到长期运行过程中发生的各 风 水 在 路 性曲R, 作 工 机 泵 管 特 工 时, 况 种问题,通常总是把系统的最大风量和风压 点 为A, 量压 分别 其流 力 为Qi" H,, 时风 此 裕度作为选型的依据,但风机的型号和系列 机水泵所需的功率正比 于H1与Q1的乘积, 即 是有限的,往往选取不到合适的风机型号时 正比 于AH,OQ, 面 由 工 要 需 的 积。 于 艺 求 减 就往上靠, 裕度大于209 30%比较常见。因 小风量 量)到Q2, /0一 (流 实际 通 加管网 上 过增 管 此这些风机运行时,只有靠调节风门或风道 阻, 风 水 的 作 移 使 机 泵 工 点 到R: 上 的B点, 挡板的开度来满足生产工艺对风量的要求。 风 (水压 大到HZ 这 压 )增 , 时风 泵 需的 机水 所 风机和水泵的机械特性均为平方转矩特性, 功 正 率 比H2 面 即 比 Q2的 积, 近 广BHZ Z OQ 的 水泵运行时,靠阀门的开度调节流量来满足 面积。 显然风机水泵所需的功率增大了。 这种 供水要求, 工况与风机相似, 靠调节风门、 风 调节方式控制虽然简单、 但功率消耗大, 不利 道档板或阀门的开度来调节风机风量,水泵 于节能,是以高运行成本换取简单控制方式。 流量的方法、 称为节流调节, 在节流调节过程 若采 频 速, 机水 转 用变 调 风 泵 速由n1下
变频技术在风机、泵类负载节能中的应用

变频技术在风机、泵类负载节能中的应用摘要:本文通过变频调速在风机、水泵类设备上的应用,阐述了风机、水泵变频调速的节能原理。
介绍了风机、水泵负载对变频器的性能要求。
关键词:变频器;风机、水泵;节能;0.前言我国的电动机用电量占全国发电量的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。
造成这种状况的主要原因是:风机、水泵等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输出功率大量的能源消耗在挡板、阀门地截流过程中。
由于风机、水泵类大多为平方转矩负载,轴功率与转速成立方关系,所以当风机、水泵转速下降时,消耗的功率也大大下降,因此节能潜力非常大,最有效的节能措施就是采用变频调速器来调节流量、风量,应用变频器节电率为20%~50%,而且通常在设计中,用户水泵电机设计的容量比实际需要高出很多,存在“大马拉小车”的现象,效率低下,造成电能的大量浪费。
因此推广交流变频调速装置效益显著。
1.变频调速节能原理1.1变频节能由流体力学可知,P(功率)=Q(流量)×H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果风机、水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%。
2.2 功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S×COSФ,Q=S×SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。
浅谈变频调速技术在风机、泵类中的节能应用

频器 )易操 作 、免 维护 、控制精 度 高 ,并 可 以实 现高 功能化 等特点 ,采用 变频 器驱动 的方案 开始 逐 步取代风 门、挡板 、阀 门的控制方 案。 变频调 速技 术的 基本原 理是根 据 电机转速 与 工作 电源输人频 率成正 比的关 系 : = O ( - )p n6 f 1s /,
(- ) OU ( -) Q ’ H
:
. 二 /
I
(4O 0
H
负荷 ,1 h 运行 在5 %负荷 ;运 行时 间在3 0 。 3 0 0 d
l —
图 l 阀 门调 节 功 耗
图 2 变速 调 节 功 耗
图1 为水 泵用 阀 门控 制 时 ,当流 量 要求 从 Q1 减 小 到Q2 ,必须 关小 阀门 。这时 阀 门的磨擦 阻力 变 大 ,管路 曲线 从R移 到R ,扬 程 则从 Ha , 上升 到
删 蟪 I ' t
新疆 化 工
4 3
配 备 电机功 率 :7 K ,额 定 电流 :1 8 5W 3 A, 额定 电压 :3 0 8 V,转速 :17 r n 4 7/ ,为上 海 江宁 mi
电机厂制 造 。
=
● 酗
I h
水 泵连 续2 h 行 ,其 中每天 1h 行在 9 % 4运 运 l 0
下 降 到H 。 。 根 据离 心泵 的特 性 f 线公式 : H 1
N=R QH/12 0q
例3
根据 图3 计算 ,则 每年 的节 电量 为 :
W17 x ×(10 -7 % )x 3 0 720 W h
W2 7 x 3 ( 5 - 2 % )x 0 = 1 3 5 W ’ = 5 1x 9 % 0 30 29 7k h
变频调速技术在风机、带类改造中的应用及节能分析

变频调速技术在风机、带类改造中的应用及节能分析摘要:皮带、风机类设施在加工生产业以及制造业被广泛的推广应用。
皮带、风机类设施不仅消耗的电量多,而且在检修以及养护所花费的也很多,其一共费用就占了总费用的百分之七到百分之二十五。
新兴起来的变频调速工艺不仅具有优秀的调速技术、超越的省电成果,对设施的工作情况能够有所帮助提高。
提升设施工作效率以及成套设备的安全稳定性。
设施能够使用更久的时间。
关键词:变频调速技术;变频器;电动机;风机、带类设备1 主要设备类型分析1.1 速度和频率计算皮带在正常运转时属于恒转矩负载。
工艺要求在转速范围为5-10.5转,分钟,我们试选择减速箱变比k1为29.8:l,链条传动的变速比k2为4:l。
通过计算得:电动机的最高工作转速:10.5×(k1×k2)=10.5×29.8×4=1251.6转,分钟电动机的最低工作转速:5×(ki×k2)=5×29.8×4=596转,分钟;电动机的最高工作转速对应的变频器输出电压频率:50×1251.64+1440=43.5(hz);电动机的最低工作转速对应的变频器输出电压频率:50×596÷1440=20.7(hz)。
以上选择基本满足生产工艺及电动机散热的要求。
1.2 变频改造主要设备的规格参数齿轮减速箱:型号为r103ybl32s4,输出额定转速为48转/分钟,输出最大转矩为1100(nm)。
电动机:型号为ybl32s-4,额定电压为380v,额定电流为11.6(a)绝缘等级为f级,额定功率为5.5(kw),接法a,额定转速为1440r/min。
变频器:型号为frn5.5g11s-4cx,标准适配电动机5.5kw,调频范围0.1-40hz,频率精度(模拟设定)正负0.2%的最高频率。
额定容量9.9kva,额定输出容量为13a,输出电压为380v(三相,50/60hz),逆变器igbt。
使用变频调速技术对一台37KW的水泵进行调速运行

• 尤其需要注意旳是,因为矢量控制需要提供电机参数(阻 抗),变频器提供电机参数自整定功能P103,选择 P103=2,经过面板运营键,变频器会自动运营。自动运 营过程中,除了计算出电机参数以外,还能够检测出空载 电流,这几种参数可使矢量控制体现出较高旳性能,其这 个过程会连续十几秒钟时间。
10.1.3. 测试与运营 系统实际测试成果如表1和表2所示
、调试环境以及接线、调试措施 客户选配电机为3.0KW/50Hz/380V,选用变频器型号 为VFD037M43,制动电阻400W/150ohm。如图
变频器AVI/GND端子提供与数控系统速度模拟量,AVI 接数控系统模拟量接口正信号,ห้องสมุดไป่ตู้ND接负信号,信号为 0-10V模拟电压信号,控制主轴转速。M0/M1/GND为 变频器旳正转/反转信号端子,一般由数控系统发出正转 信号FWD或者反转REV,来驱动中间继电器,中间继电 器旳常开接点接入变频器M0/GND或者M1/GND,从而 控制变频器旳正反转。
使用变频调速技术对一台37KW 旳水泵进行调速运营
使用变频调速技术对一台 37KW旳水泵进行调速运营
zhangshaojun
10.1 使用变频调速技术对一台37KW旳水泵进行调速运营
10.1.1.节省电耗举例
使用变频调速技术对一台37kw旳水泵进行调速运营, 经过调速转速为1250r/m。而水泵消耗功率与转速旳三 次方成正比,即:
尤其需要注意,因为矢量控制需要提供电机参数(阻 抗),变频器提供电机参数自整定功能P103,选择 P103=2,经过面板运营键,变频器会自动运营。自动运 营过程中,除了计算出电机参数以外,还能够检测出空载 电流,这几种参数对于矢量控制能够体现出较高旳性能非 常主要,这个过程会连续十几秒钟时间。在执行自整定功 能前,一定要确认电机侧是否没有任何连接,涉及减速皮 带。
变频调速技术在风机及泵类中的节能应用

和 变 速 调 节 各 自所 消耗 的 功 率
假定 水
往 往 采 用 调 整 阀 回 流 阀 截 止 阀等节 流
、 、
泵 效率
1 1=
0 6
.
。
设 备进行流量
、
压力
、
水位 等 信 号 的 控
,
在工 业 生 产和产 品加工 制造业 中
、
,
制
腔
。
这 样 不 仅 造 成 大量 的 能源 浪 费 管
,
风 机 泵 类 设 备应 用 范 围广 泛 其 电能 消
H = 15
m
代 风 门 挡板 阀 门 的 控制方案
、 、
为 :N
。
0 9 8 1 0 x 1 5 x 6 6/ 6 x 3 6 0 0 x 1 0 0 0 = 0 5 k W
.
综述
通 常在 工 业 生 产
、
变频 调 速 技术 的 基 本 原 理 是 根 据 电 产 品加工 制造 业
、
可 见 变速 调 节 比节 流 调 节 经 济 因
越 的调 速性 能 显 著 的节 电效 果 改 善 现
、
时 常 出现 泵 损 坏 同 时 电机 也 被烧 毁 的 现
1000
一
』醣 W
,
象 近 年来 出 于 节 能 的 迫 切需 要 和 对 产
。
,
( 1 )节 流 调 节 由 上 图 知 :流 量 为 6
,
.
6
有设 备 的运 行 工 况
,
提 高 系统 的安 全 可
牵变所电容选 引电蓄池量择
() 2 电压校正 结论 :
1 2 7
表1 环境温度对可用容量的影响关系
举例说明离心式风机与水泵采用变频调速节能的原理

举例说明离心式风机与水泵采用变频调速节能的原理在各种工业用风机、水泵中,如锅炉鼓、引风机、深井、离心泵等,大部分是额定功率运行,而它们的能耗都与机组的转速有关。
通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
风机流量的设计均以最大风量需求来设计,其调整方式采用调节风门、挡板开度的大小、回流、启停电机等方式控制,无法形成闭环控制,也很少考虑省电。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
同样,离心式水泵在我国当前的工业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,水泵流量的设计同样为最大流量,压力的调控方式只能通过控制阀门的大小、电机的启停等方法。
这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。
电气控制采用直接或Y-△启动,不能改变风机和水泵的转速,无法具有软启动的功能,机械冲击大,传动系统寿命短,震动及噪声大,功率因数较低等是其主要难点。
为解决这些难题,相关科研技术人员根据生产需要对风机和水泵等装置的转速进行控制和调节以适应工艺要求和运行工况,在满足生产需求的基础上又节约了能源。
所以,变频调速对生产生活具有十分重要的意义,这也就意味着我们有必要了解风机和水泵等装置采用变频调速节能的原理。
为了对变频调速节能原理有更清晰、更深入的理解,我们可以先从变频器的工作原理出发。
变频器电路(见下图)的基本工作原理为:三相交流电源经二极管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频调速技术在风机、泵类的应用发表时间:2008-11-03T15:17:59.513Z 来源:《中小企业管理与科技》供稿作者:于志平[导读] 在煤矿企业中,风机、泵类设备应用范围广泛;其电能消耗是一笔不小的生产费用开支。
随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。
摘要:在煤矿企业中,风机、泵类设备应用范围广泛;其电能消耗是一笔不小的生产费用开支。
随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。
关键词:变频调速节能风机泵一、引言在煤矿企业中,风机、泵类设备应用范围广泛;其电能消耗和诸如阀门、挡板相关设备的节流损失以及维护、维修费用占到生产成本的7%~25%,是一笔不小的生产费用开支。
随着经济改革的不断深入,市场竞争的不断加剧;节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。
而八十年代初发展起来的变频调速技术,正是顺应了发展的要求,开创了一个全新的智能电机时代。
一改普通电动机只能以定速方式运行的陈旧模式,使得电动机及其拖动负载在无须任何改动的情况下即可以按照生产工艺要求调整转速输出,从而降低电机功耗达到系统高效运行的目的。
八十年代末,该技术引入我国并得到推广。
现已在电力、冶金、石油、化工、造纸、食品、纺织等多种行业的电机传动设备中得到实际应用。
目前,变频调速技术已经成为现代电力传动技术的一个主要发展方向。
卓越的调速性能、显著的节电效果,改善现有设备的运行工况,提高系统的安全可靠性和设备利用率,延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。
二、综述通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
而最常用的控制手段则是调节风门、挡板开度的大小来调整受控对象。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
泵类设备在生产领域同样有着广阔的应用空间,提水泵站、水池储罐给排系统、工业水(油)循环系统、热交换系统均使用离心泵、轴流泵、齿轮泵、柱塞泵等设备。
而且,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。
这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。
风机、泵类设备多数采用异步电动机直接驱动的方式运行,存在启动电流大、机械冲击、电气保护特性差等缺点。
不仅影响设备使用寿命,而且当负载出现机械故障时不能瞬间动作保护设备,时常出现泵损坏同时电机也被烧毁的现象。
近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。
变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。
变频器就是基于上述原理采用交—直—交电源变换技术,电力电子、微电脑控制等技术于一身的综合性电气产品。
三、节能分析通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。
以一台水泵为例,它的出口压头为H0(出口压头即泵入口和管路出口的静压力差),额定转速为n0,阀门全开时的管阻特性为r0,额定工况下与之对应的压力为H1,出口流量为Q1。
在现场控制中,通常采用水泵定速运行出口阀门控制流量。
当流量从Q1减小50%至Q2时,阀门开度减小使管网阻力特性由r0变为r1,系统工作点沿方向I由原来的A点移至B点;受其节流作用压力H1变为H2.水泵轴功率实际值(kW)可由公式:P=Q.H/(ηc.ηb)×10-3得出。
其中,P、Q、H、ηc、ηb分别表示功率、流量、压力、水泵效率、传动装置效率,直接传动为1.假设总效率(ηc.ηb)为1,则水泵由A点移至B点工作时,电机节省的功耗为AQ1OH1和BQ2OH2的面积差。
如果采用调速手段改变水泵的转速n,当流量从Q1减小50%至Q2时,那么管网阻力特性为同一曲线r0,系统工作点将沿方向II由原来的A点移至C点,水泵的运行也更趋合理。
在阀门全开,只有管网阻力的情况下,系统满足现场的流量要求,能耗势必降低。
此时,电机节省的功耗为AQ1OH1和CQ2OH3的面积差。
比较采用阀门开度调节和水泵转速控制,显然使用水泵转速控制更为有效合理,具有显著的节能效果。
另外,阀门调节时将使系统压力H升高,这将对管路和阀门的密封性能形成威胁和破坏;而转速调节时,系统压力H将随泵转速n的降低而降低,因此不会对系统产生不良影响。
从上面的比较不难得出:当现场对水泵流量的需求从100%降至50%时,采用转速调节将比原来的阀门调节节省BCH3H2所对应的功率大小,节能率在75%以上。
与此相类似的,如果采用变频调速技术改变泵类、风机类设备转速来控制现场压力、温度、水位等其它过程控制参量,同样可以依据系统控制特性绘制出关系曲线得出上述的比较结果。
亦即,采用变频调速技术改变电机转速的方法,要比采用阀门、挡板调节更为节能经济,设备运行工况也将得到明显改善。
四、节能计算对于风机、泵类设备采用变频调速后的节能效果,通常采用以下两种方式进行计算:1、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。
以一台IS150-125-400型离心泵为例,额定流量200.16m3/h,扬程50m;配备Y225M-4型电动机,额定功率45kW.泵在阀门调节和转速调节时的流量-负载曲线如下图示。
根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷,13小时运行在50%负荷;全年运行时间在300天。
则每年的节电量为:W1=45×11×(100%-69%)×300=46035kW.hW2=45×13×(95%-20%)×300=131625kW.hW=W1+W2=46035+131625=177660kW.h每度电按0.5元计算,则每年可节约电费8.883万元。
2、根据风机、泵类平方转矩负载关系式:P/P0=(n/n0)3计算,式中为P0额定转速n0时的功率;P为转速n时的功率。
以一台工业锅炉使用的22kW鼓风机为例。
运行工况仍以24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz计算,挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。
则变频调速时每年的节电量为:W1=22×11×[1-(46/50)3]×300=16067kW.hW2=22×13×[1-(20/50)3]×300=80309kW.hWb=W1+W2=16067+80309=96376kW.h挡板开度时的节电量为:W1=22×(1-98%)×11×300=1452kW.hW2=22×(1-70%)×11×300=21780kW.h Wd=W1+W2=1452+21780=23232kW.h相比较节电量为:W=Wb-Wd=96376-23232=73144kW.h每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。
某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53.5L/s,扬程50m;所配电机Y200L2-2型37kW.对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下:流量L/s时间(h)消耗电网输出的电能(kW.h)阀门节流调节电机变频调速47233.2×2=66.428.39×2=56.840830×8=24021.16×8=169.330427×4=10813.88×4=55.5201023.9×10=2399.67×10=96.7合计24653.4378.3相比之下,在一天内变频调速可比阀门节流控制节省275.1kW.h的电量,节电率达42.1%.五、结束语风机、泵类等设备采用变频调速技术实现节能运行是我国节能的一项重点推广技术,受到国家政府的普遍重视,《中华人民共和国节约能源法》第39条就把它列为通用技术加以推广。
实践证明,变频器用于风机、泵类设备驱动控制场合取得了显著的节电效果,是一种理想的调速控制方式。
既提高了设备效率,又满足了生产工艺要求,并且因此而大大减少了设备维护、维修费用,还降低了停产周期。
直接和间接经济效益十分明显,设备一次性投资通常可以在9个月到16个月的生产中全部收回。
作者:于志平,(1966-),男,河北邯郸人,工程师,河北冀中能源邯矿集团亨健矿业公司副总经理。