竖向荷载计算--分层法例题详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:如图1所示一个二层框架,忽略其在竖向荷载作用下的框架侧移,用分层法计算框架的弯矩图,括号的数字,表示各梁、柱杆件的线
刚度值(
EI
i
l )。

图1
解:1、图1所示的二层框架,可简化为两个如图2、图3所示的,只带一层横梁的框架进行分析。

图2 二层计算简图
图3 底层计算简图
2、计算修正后的梁、柱线刚度与弯矩传递系数
采用分层法计算时,假定上、下柱的远端为固定,则与实际情况有出入。

因此,除底层外,其余各层柱的线刚度应乘以0.9的修正系数。


层柱的弯矩传递系数为1
2
,其余各层柱的弯矩传递系数为
1
3。

各层梁的弯
矩传递系数,均为1
2。

图4 修正后的梁柱线刚度
图5 各梁柱弯矩传递系数
3、计算各节点处的力矩分配系数
计算各节点处的力矩分配系数时,梁、柱的线刚度值均采用修正后的结果进行计算,如:
G节点处:
7.63
0.668
7.63 3.79
GH GH
GH
GH GD
Gj
G
i i
i i
i
μ====
++

GD
3.79
0.332
7.63 3.79
GD GD
GH GD
Gj
G
i i
i i
i
μ====
++

H节点处:
7.63
0.353
7.63 3.7910.21
HG HG
HG
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

3.79
0.175
7.63 3.7910.21
HI HI
HI
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

10.21
0.472
7.63 3.7910.21
HE HE
HE
HG HE HI
Hj
H
i i
i i i
i
μ====
++++

同理,可计算其余各节点的力矩分配系数,计算结果见图6、图7。

图6 二层节点处力矩分配系数
图7 底层节点处力矩分配系数
4、采用力矩分配法计算各梁、柱杆端弯矩
(1)第二层:
①计算各梁杆端弯矩。

先在G、H、I节点上加上约束,详见图8
图8 二层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方,见图9:
213.13kN m 12F
GH
ql M =-=-⋅
213.13kN m 12
F HG
ql M ==⋅ 27.32kN m 12
F HI
ql M
=-=-⋅
27.32kN m 12
F IH
ql M
==⋅ 在节点G 处,各梁杆端弯矩总和为:
13.13kN m F
G GH M M ==-⋅
在节点H 处,各梁杆端弯矩总和为:
13.137.32 5.81kN m F F H HG HI M M M =+=-=⋅
在节点I 处,各梁杆端弯矩总和为:
7.32kN m F I IH M M ==⋅
②各梁端节点进行弯矩分配,各两次,详见图9 第一次弯矩分配过程:
放松节点G ,即节点G 处施加力矩13.13kN m ⋅,乘以相应分配系数0.668和0.332,得到梁端+8.76kN m ⋅和柱端+4.37kN m ⋅,+8.76kN m ⋅按1
2
传到GH 梁H 端;
放松节点I ,即在节点I 处施加力矩7.32kN m -⋅,乘以相应分配系数0.935和0.065,得到梁端 6.32kN m -⋅和柱端+1.00kN m ⋅, 6.32kN m -⋅按12
传到IH 梁H 端;
放松节点H ,相应的在节点H 处新加一个外力偶矩,其中包括GH 梁右端弯矩、IH 梁左端弯矩、GH 梁和IH 梁传来的弯矩。

其值为
(13.13+4.387.32 3.16)kN m=7.03kN m ---⋅-⋅,乘以分配系数,HI 梁分配
3.56kN m -⋅、HG 梁分配 2.73kN m -⋅、HE 柱分配 1.32kN m -⋅, 3.56kN m -⋅按12
传到I 端, 2.73kN m -⋅按
1
2
传到G 端。

第一次分配过程完成。

第二次弯矩分配过程:
重复第一次弯矩分配过程,叠加两次结果,得到杆端最终弯矩值。

③计算各柱的杆端弯矩。

二层柱的远端弯矩为各柱的近端弯矩的13
(即传递系数为13
),带*号的数值是各梁的固端弯矩,各杆分配系数写在图中的长方框
图9 二层弯矩分配传递过程
(2)第一层:
①计算各梁杆端弯矩。

先在D 、E 、F 节点上加上约束,详见图10
图10 底层计算简图
计算由荷载产生的、各梁的固端弯矩(顺时针转向为正号),写在各梁杆端下方:
217.81kN m 12F
DE
ql M =-=-⋅
217.81kN m 12
F ED
ql M ==⋅ 28.89kN m 12
F EF ql M
=-=-⋅
28.89kN m 12
F FE
ql M
==⋅ 在节点D 处,各梁杆端弯矩总和为:
17.81kN m F
D D
E M M ==-⋅
在节点E 处,各梁杆端弯矩总和为:
17.818.898.92kN m F F E ED EF M M M =+=-=⋅
在节点I 处,各梁杆端弯矩总和为:
8.89kN m F F FE M M ==⋅
②各梁端节点进行弯矩分配,各两次,分配以及传递过程同第二层,但弯矩传递时要注意传递系数的差别。

③计算各柱的杆端弯矩。

二层柱的远端弯矩为各柱的近端弯矩的1 3
(即传递系数为1
3
),底层柱的远端弯矩为近端弯矩的
1
2
(即传递系数为
1
2
),带*号的数值是各梁的固端弯矩,各杆分配系数写在图中的长方框。

图11 底层弯矩分配传递过程
5、将二层与底层各梁、柱杆端弯矩的计算结果叠加,就得到各梁、柱的最后弯矩图,详见图12。


6、力矩再分配
由以上各梁、柱的杆端弯矩图可知,节点处有不平衡力矩,可以将不平衡力矩再在节点处进行一次分配,此次分配只在节点处进行,并且在各杆件上不再传递。

在本题中,由于不平衡力矩相对较小,力矩可不
再分配。

相关文档
最新文档