第3课时 平方根PPT教学课件

合集下载

最新初中数学平方根(公开课)PPT课件精品课件

最新初中数学平方根(公开课)PPT课件精品课件

开心
(kāixīn) 课堂
C组
判断(pànduàn)下列说法是否正确:
(1)1 的平方根是 1 ;
( ×)
(2)-1 是 1的平方根;
( √)
第十七页,共24页。
开心 (kāixīn)课 堂
C组
6
2
_6___,
62 _6____,
6 2 _6____ .
a a 2 a和
2
中 的取值有何
1
(3)4
(4)1
7 9
一个正数有
正、负两个平 方根,它们互 为相反数;零 的平方根是零; 负数(fùshù)没 有平方根.
求一个数的平
方根的运算(yùn suàn)叫做开平 方.
开平方和平方运 算是什么关系?
练习:求下列各数的平方根
(l)64 (2)0.01 (3)1
9
16
第五页,共24页。
这是一个地面面积(miàn jī)为49 平方米的正方形展厅,谁知道这个正方 形展厅地面的边长是多少吗?
的平方根
第十页,共24页。
开心 (kāixīn)课 堂
A组
你确吗?
判断正误,并且改错:
(l)100的平方根是10; ( × ) (2)非负数(正数和零统称非负数)
一定有2个平方根;( × )
(3)2的平方根是± 2 . ( √ )
第十一页,共24页。
开心 (kāixīn)课 堂
A组
16的平方根是 ±2
正数的正平方根 和零的平方根统称 算术平方根.
记做 “ a ”
第六页,共24页。
变式:这是一个(yī ɡè)面积为49平方米的正 方形展厅,若地面恰由100块相同的正方形地 砖铺成,谁知道每块地砖的边长是多少吗?

平方根(优质课展示课件)

平方根(优质课展示课件)

请你区别:( ɑ ≥0 )
α , α , α分别表示什么意义?
ɑ的平方根
ɑ的负平方根
ɑ的算术平方根
说一说:下列式子表示什么意思?
0 . 8 1= 0.9
1 2 1= ±11
93 16 4
你知道它们的值吗?
练习二:算
1 64
2 0.36
3
1- 3 4
4 - 52
3x-14,求这个数.
如果小正方形的边长是1,那么大正 方形的边长是多少呢?
以上问题实际上是: 已知平方的结果, 求底数的值.
即: ( ? )2=2
想一想:如果一个数的平方等于9,这个数是
多少? ( ? )2=9
3
一般地,如果一个数的平方等于ɑ,那
么这个数叫做ɑ的平方根(或二次方根)
根据定义,就能求一个数的平方根
例如: 32 9 3是9的平方根
(1)7的平方根是____7;
(2)下列计算正确的是( B )
A、 4 2 B、 9 3
C、 32 3 D、 81 9
(3)计算: 0.0004 =±0.02
※(4) 16 的算术平方根是__2_.
作 必做题:作业本(2)第14页 业 兴趣题:已知某数的平方根是x+2和
(1)一思个考正数: 有(1)两个一平个方正根数,它有们几互个为平相方反根数?.
(2) 0的平方根(是2)0 有.几个平方根? (3)负数没有(平3)方负根数.呢?
练习一:判断正误,若错误请说明理由
(1)-4的平方根是-2
(2) 4没有平方根
(3)1 的平方根是 1
(×) ( ×) (× )
(4)-1 是 1的平方根 ( √ )

《平方根》PPT教学课文课件

《平方根》PPT教学课文课件
2. 性质:(1)正数的算术平方根是一个正数; (2)0 的算术平方根是0; (3)负数没有算术平方根; (4)被开方数越大,对应的算术平方根也越大.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.

99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,

99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.

平方根ppt课件

平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。

10.1 平方根(第3课时)--

10.1 平方根(第3课时)--
11 2 121 (3)因为 ) ( )= 14 196
121 11 =± 所以 ± 196 14
练习、 练习、 比一比 看谁学 的好
x x
1、填表: 、填表: 8 -8 3
5
3 5
11 -11 0.6 -0.6 121 0.36
64
9 2 5
2、、下列各式是否有意义,为什么? 、、下列各式是否有意义,为什么? 下列各式是否有意义
平 1、正数有(两 )个平方根, 个平方根, 、正数有( 方 它们( 互为相反数 )。 根 2、0的平方根是( 0 ) 02=0 的平方根是( 、 的平方根是 特 3、负数( 没有平方根 ) 点 、负数(
因为任何一个数的都不会是负数
符号 只有 当 a ≥ 0 时有意 义,a<0时无意 义,你知道为什 么吗?
第十章
实数
第3课时
平方根
一个数的平方是9,那么这个数是多少? 的平方是9 那么这个数是多少? 这个数是多少 因为3 因为 2=9 (-3)2=9 ) 所以这个数 所以这个数是3或-3. 或
填表 x x
1 16 36 49
4 25
± 1
± 4
± 62 ± ± 57 Nhomakorabea方根的定义
一般地, 一般地,如果一个数的平方等于a,这个数 的平方根(或二次方根) 就叫做 a的平方根(或二次方根).
我们看到, 等于9, 的平方根是 我们看到,±3的平方等于 ,9的平方根是 的平方等于 平方与 互为逆运算 ±3,所以平方与开平方互为逆运算,根据 ,所以平方 开平方互为逆运算, 这种运算关系,可以求一个数的平方根 这种运算关系,可以求一个数的平方根 平方
+1 -1 +2 -2 +3 -3 1 4 9

22_《平方根》ppt课件

22_《平方根》ppt课件

)2 =0.0001,
∴ 0.0001的平方根为±0.01.
练习:求下列各数的平方根:
(1) 1.69
15
16
小结 & 归纳
1.本节课引入了新的运算——开方运算,开方和乘方 互为逆运算,从而完备了初等代数中六种基本代数 运算(加、减、乘、除、乘方、开方),这对代数 内容学习有着重要的意义。
2.本节主要学习了: ①平方根的概念 ②平方根的性质:一个正数有两个平方根,它们互为
没有,说明为什么 ? (1)-9的平方根是-3 (
)
3 有没有平方根 ?
∴ 0.
注意:开平方运算的结果往往不是唯一的
当这个数为0时,它有一个平方根0;
1、我们已经学习过哪些运算?它们中互为逆运算的是?
判断一个数有没有平方根,只要看这个数的符号。
(1)- 4
()
当这个数为正数时,它有两个平方根;
1、我们已经学习过哪些运算?它们中互为逆运算的是?

× (4)1 的平方根是 1 (

√ (5)-1 是 1的平方根 (

× (6)7的平方根是±49 (
)
× (7)若X2 = 16, 则X = 4 (

11
3 有没有平方根 ?
若有 ,怎样表示? 当这个数为0时,它有一个平方根0;
一个数的平方根的表示方法:
(6)7的平方根是±49 (
)
求一个数a的平方根的运算,叫做开平方。
6
“底数
指数 幂
2
X =a

a是x的2次幂 x是a的平方根
7
学以致用 判断下列各数有没有平方根,若有,求其平方 根。若没有,说明为什么。
(1) 0.81 (2) (3)2 (4)(-2 )2

人教版《平方根》上课课件PPT

人教版《平方根》上课课件PPT
方形图片,他还想设计一个面积与其相等的圆,请你帮助 他求出该圆的半径.
解:设圆的半径为r,则有 πr2140π35π, 解得 r 70 .
21. 把二次根式 2 3 a 与 8 分别化简后,被开方数相同. (1)如果a是正整数,那么符合条件的a的值有哪些? (2)如果a是整数,那么符合条件的a的值有多少个?最大 值是什么?有没有最小值?
9. (例4)计算:
(1)3 6 2 8; 解:原式=3 2 6 8
=6 42 3 =64 3 =24 3
(2) 18 32;
解:原式= 1 8 3 2 = 32 42 22 =3 4 2 =24
(3) 3x
(23) ==________________=_=________;_;
7. (例3)化简:
(1) 5 1 0 =_____5_2___2_______=___5 __2___; (2) 9 a 2 =______3_2__a_2______=____3 _a ___; (3) 4 a b 2 =_____2_2__b_2__a_____=__2_b__a___; (4) 1 2 a 2 b =_____2_2_a__2 _3_b_____=__2_a__3_b__.
(解4):设=圆__的_半__径__为__r,__则__有___=______,__;
(D3.) =________;
(,7) ,=____,____;,
(4) =________;
(正4)方形的=面__积__为__5_0_,_则__它__的__边_=长_为________. _.
积,的算术,平方根,
积的算术平方根
1. 填空:1 2 = 1 ,2 2 = 4 ,3 2 = 9 ,4 2 = 16 ,5 2 = 25 , 1 = 1 ,4 = 2 ,9 = 3 ,1 6 = 4 ,2 5 = 5 , 6 2 = 36 ,7 2 = 49 ,8 2 = 64 ,9 2 = 81 ,

《平方根》ppt课件

《平方根》ppt课件
例1 求下列各数的平方根:
(1) 49 (2) 0.64 (3) 3 (4)91
分析 问:解题思想方法是?
答:根据平方根的定义,把求平方根转化为求平方。即求出平方等于49的所有数。
说出下列各式的意义,并计算:
(1)114的平方根是-12与12;
(2)256的平方根是16;
±4
0
±0.7
∵ (±1.2)2=1.44 ∴ ±1.2叫做1.44的平方根∵ (±2)2=4 ∴ ±2叫做4的平方根∵ x² = a ∴ x叫做a的平方根
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
解:∵(±7)2=49 ∴ ±7叫做49的平方根
(1)144的平方根是什么? (2)0的平方根是什么? (3) 的平方根是什么? (4)-4的平方根是什么?为什么?从上面的回答中,你发现了什么?
试一试:
±12
0
±8/11
没有平方根
平方根的性质
一个正数a有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.
(5)-5是25的一个平方根;
(6)1的平方根是1;
(7)-1的平方根是-1;
(8)-1是1的平方根;
(9)(-1)2的平方根-1。

×


×
×
×
(4)(-4)²的平方根是-4 ( )
×
(3)0的平方根与算术平方根都是0 ( )

求一个数a的平方根的运算,叫做开平方.( a叫做被开方数)
(5)若一个数的一个平方根为-7,则另一个平方根为 ,这个数是 。
7
49
(6)若一个正数的两个平方根为2a-6、3a+1,则a= ,这个正数为 ;

《平方根》课件PPT1

《平方根》课件PPT1

只有非负数才有算 术平方根
25 我们看到,±3的平方等于 9,9 的平方根是±3,
5
0.09 0.3
121 11
2
0 0 3 3
获取新知 知识点一:平方根的概念
思考 所以平方与开平方互为逆运算.
因为(±11)2=121,所以121的平方根是_____.
问 题 一个正数的两个平方根,
C.1
如 果 一 D.-3或1
解:(1)因为62=36,所以 =6;
出它们的算术平方根. 例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
(3)因为
,所以
.
所以可以借助算术平方根来
25 09 ,
, 0, 2,
.
-36 , 0.09 , , 0 , 知识点一:平方根的概念
(3)因为(±0.
121
2,
32 .
“± ”的意义是( )
(3)因为( 7 )2 49 ,所以 49 7 .
39
93
例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
题目改为:2a+1和a-4是 一个正数的两个平方根, 是否答案照旧呢?
记作 a
a﹙a≥0﹚的平方根表示为 a
例题讲解
例2 求下列各式的值:
(1) 36; (2) 0.81; (3) 49 . 9
解:(1)因为62=36,所以 36 =6;
算术平方根是平方根中正的那个, 同时正数平方根两个互为相反数,
所以可以借助算术平方根来 解决平方根问题

《平方根》第3课时参考PPT课件

《平方根》第3课时参考PPT课件
6.1 3)
思考
如果一个正数的平方等于9,
这个正数是多少? 3
3叫做9的算术平方根或9的算术平方根是3
如果一个数的平方等于 9,这 个数是多少?
3 或 -3
x2
1
16 36
49 4
25
x
+1 -1
+4 -4
+6 -6
+7
-7
2 +5
2 -
5
一般的,如果一个数的平方等于 a ,那
么这个数叫做 a 的 平方根 或 二次方根。
即如果 x2 = a,那么x 叫做 a 的平方根。
如:3和-3是9的平方根,简记为±3 是9
的平方根。
求一个数a的平方根的运算,叫做开平方。
平方
开平方
+1
1
-1
+1
1
-1
+2
4
-2
+2
4
-2
+3
9
-3
9
+3
-3ห้องสมุดไป่ตู้
开平方与平方互为逆运算。
练习
1.填表
x
8
-8
3 5
3 5
11 -11 0.6 -0.6
解: (1) 因为122 = 144,所以 144 = 12
(2) 因为0.92 知=0道.81一,所个以数的算0.术81 0.9
(3)
因为平出什方它么1141根的?2 ,负119就的261 平可,所方以以根立。即 为写119261
11 14
2.计算下列各式的值: 13
-0.07
8 9
练习
3.平方根概念的起源与几何中的正 方形有关。如果一个正方形的面 积为A,那么这个正方形的边长是 多少?

平方根ppt课件

平方根ppt课件

1.下列说法正确的是( C ) A.16的算术平方根是±4 C.-1是1的一个平方根
B.任何数都有两个平方根 D.0.01的平方根是0.1
2.若一个数的平方是81,则这个数为( D )
A.3
B.-9
C.9
D.±9
3.填空:
(1)- 121 =__-__1_1___;
(2)± 1-34 =___±_12____;
例 2 填空:
(1)± 16 =__±__4____;
(2)
4 25
2 =____5____;
(3)- 62 =__-__6____;
(4) 81 的平方根是___±__3___.
训练 2.填空: (1)± 36 =__±__6____; (2)- 0.01 =__-__0_._1__; (3)± (-3)2 =__±__3____; (4) 100 的平方根是__±__1_0___.
6.【分类讨论】已知一个正数m的平方根是3a-4和2a-1. 推理探究:(1)当3a-4与2a-1相等时,求m的值;
解:由题意,得3a-4=2a-1. 解得a=3. 所以3a-4=5. 所以m=(3a-4)2=52=25.
(2)当3a-4与2a-1互为相反数时,求m的值; 归纳总结:(3)m的值为__2_5_或__1__.
±1.2
9 100
±130
11 (-7)2
± 11
±7
算术平方根
0
5 1.2
3 10 11
7
1.正数有____两____个平方根,它们互为__相__反__数__;0的平方根 是____0____;负数__没__有____平方根. 2.平方根与算术平方根的区别与联系:(1)区别:正数有两个平方根, 但只有一个算术平方根.(2)联系:正数的两个平方根中正的平方根就 是它的算术平方根,0的算术平方根和平方根都是0;只有非负数才有 平方根和算术平方根.

平方根(第3课时)教学课件全

平方根(第3课时)教学课件全

(3) ∵(±0.5)2=0.25,
∴100的平方根是±10; ∴0.25的平方根是±0.5.
(2)
∵(±
3 4
)2= 9
16

∴ 9 的平方根是±3 ;
16
4
巩固练习
列说法是否正确:
(1)0的平方根是0;
(√ )
(2)1的平方根是1;
(× )
(3)-1的平方根是-1;
(×)
(4)0.01是0.1的一个平方根.( × )
( )2 9
9平方分米
显然,括号里应是±3,但-3不符 题意. ∴方桌面的边长应是3分米.
你还能得到什么问题呢?
?分米
探究新知
问题: 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 ,
所以这个数是3或-3.
想一想:3和-3有什么特征? 3和-3互为相反 数,会不会是 巧合呢?
探究新知
做一做,想一想:
探究新知
1. 121的平方根是什么? 11
2. 0的平方根是什么? 0
16
3. 49
的平方根是什么?
4 7
4. -9有没有平方根?为什么?
没有,因为一个数的平方不可能是负数.
探究新知
通过这些题目的解答,你能发现什么?
问题:(1)正数有几个平方根?
(2)0有几个平方根?
(3)负数呢?
有没有一个数的 平方是负数?
(1) 4的平方等于16,那么16的算术平方根就是__4___.
(2)
2 5
的平方等于
4 25
,那么
4 25
的算术平方根就是__52__.
(3) 展厅地面为正方形,其面积是49 m2,则其边长为_7__m.

平方根ppt课件

平方根ppt课件
81
与 - 79 ,6.25的平方根是2.5与-2.5.
感谢聆听
112=121
122=144
162=256
132=169
172=289
142=196 152=225
182=324 192=361
=
的算术平方根是
=
=3
=
=
=
=
=
=
1
算术平方根——算术平方根的定义
例题1 填空
=
2
①④⑤
1.下列说法正确的是_________
① -3是9的平方根; ②25的平方根是5; ③ -36
的平方根是-6; ④平方根等于0的数是0;
⑤64
的算术平方根是8.
B
2.下列说法不正确的是______
A.0的平方根是0
B. 22 的平方根是2
C.非负数的平方根互为相反数
D.一个正数的算术平方根一定大于这个数的相反数


= −
Cc
负数没有算术平方根
1
算术平方根——算术平方根的定义

. = .

没有


=


=




=

= =
非平方数的算术平方根
只能用根号表示
笔记区
算术平方根判断:
正数的算术平方根为正数
Cc
0的算术平方根是0
负数没有算术平方根
当堂练习
16
(1)已知4 =16,则_______叫做_______的算术平方根,记做_________________.
4
25的算数平方根

6.1.3.第3课时 平方根

6.1.3.第3课时 平方根
5 625 25 25 2 ± = ,因为 = 16 4 4, 2

625 5 的平方根是 ± 16 2.
课件目录


末 页
第3课时
平方根
【点悟】 (1)任何一个正数的平方根都是一对相反数, 不能漏掉其中的一个; (2)对于求 a(a≥0)的平方根,先要对 a进行化简,再求它的平方根,即要正确 区分 a的平方根与 a 的平方根的差别.
课件目录


末 页
第3课时
平方根
12.王老师给同学们布置了这样一道习题:一个数的算术平方根为 2m-6, 它的平方根为± (m-2).求这个数. 小张的解法如下: 依题意可知,2m-6 是 m-2 或者是-(m-2)两数中的一个.① 当 2m-6=m-2 时,解得 m=4,② 2m-6=2×4-6=2,③ 这个数为 4;
第3课时
平方根
2019年春人教版数学七年级下册课件
6.1 平方根
课件目录


末 页
第3课时
平方根
第六章
实数
6.1 平方根 第3课时 平方根
学习指南 知识管理
归类探究
当堂测评
分层作业
课件目录 首 页 末 页
第3课时
平方根
学习指南
教学目标
[教用专有]
1.理解平方根的概念,会求一个非负数的平方根. 2.能运用平方根进行计算求值.
所以±
13 136=±
49 7 = ± 36 6.
课件目录


末 页
第3课时
平方根
9.[2018· 广东]一个正数的平方根分别是 x+1 和 x-5,则 x= ____ 2 .

平方根ppt课件

平方根ppt课件
平方根ppt课件
目 录
• 引言 • 平方根的基本概念 • 平方根的运算规则 • 平方根的应用 • 练习与思考 • 总结与回顾
01
引言
什么是平方根
01
平方根是一个数学术语,它指的 是一个数的二次方根。
02பைடு நூலகம்
平方根通常用符号“√”表示,例 如,4的平方根是2。
平方根的重要性
平方根在数学中有着重要的应用,例 如在解决几何问题、计算面积和体积 等方面。
平方根的概念也是进一步学习数学的 基础。
02
平方根的基本概念
平方的概念
定义
一个数乘以其自身所得的结果称 为这个数的平方。
例子
4的平方是16,因为4乘以其自身 等于16。
应用
平方的概念在生活和科学计算中都 有广泛的应用,如计算面积和体积 等。
平方根的符号和读法
01
02
03
符号
一个数的平方根可以用符 号“√”表示,读作“根 号”。
算术根是平方根中的一个特例,它只取非负的那 一根;而平方根则包含正负两个方向。
平方根与指数幂的关系
平方根和指数幂是互为逆运算。一个数的平方根 等于该数的指数幂的倒数。
3
平方根的应用
平方根在现实生活中有着广泛的应用,如测量、 工程设计、物理学等领域。
THANKS FOR WATCHING
感谢您的观看
例子
√16表示16的平方根,读 作“根号16”。
注意
平方根的符号和算术平方 根的符号不同,算术平方 根的符号是“√( )”。
平方根与算术平方根
定义
一个非负数a的平方根有两个, 它们是互为相反数的数,分别 称为a的平方根和负平方根。
例子

人教版七年级数学下册《平方根》实数PPT优质课件

人教版七年级数学下册《平方根》实数PPT优质课件
第六章 实数
平方根
第1课时
学习目标
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平
方根的非负性;
2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根;
新课导入
学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为
25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正
是0.002,即 0.000004 0.002.
随堂练习
6.用大小完全相同的240块正方形地板砖,铺一间面积为60 m2的会
议室的地面,每块地板砖的边长是多少?
解:设每块地板砖的边长为x m.由题意得
1
240 x 2 60, x 2 .
4
1 1
x
0.5
4 2
故每块地板砖的边长是0.5 m.
方形画布的边长应取多少?你能帮小明算一算吗?
5 dm
因为 52=25
合作探究
新知一
什么是算术平方根
完成表1:
正方形的边长/dm
正方形的面积/dm2
1
1
3
9
6
2
5
36
4
25
4
16
你能从表1中各运算发现什么共同点吗
已知一个正数,求这个正数的平方
合作探究
完成表2:
正方形的面积/dm2
正方形的边长/dm
➢ 用计算器求解:
一般情况下按键顺序:
a
=
课堂总结
例1 估算 19 的值 ( D )
A.在1和2之间
B.在2和3之间
C.在3和4之间
D.在4和5之间
解析:因为42<19<52,所以4< 19 <5.

平方根ppt课件

平方根ppt课件


取值范
正数的算术平方根
正数的平方根是一
围不同
一定是正数
正一负
感悟新知
知3-讲
续表:
算术平方根
具有包
联 含关系
平方根
平方根包含算术平方根,算术平方根是
平方根中正的那个(0除外)
系 存在条 平方根和算术平方根都只有非负数才有,
件相同
0的平方根与算术平方根都是0
感悟新知
知3-讲
特别提醒
1. 任何一个数的平方都是非负数,所以求算术平方根时,被开
C. ±6是36的平方根: =±6
D. -2是4的负的平方根: =-2
感悟新知
知3-练
6-2. 求下列各式的值:
(1) ;
(2)-



解: 1 600=40.

14
2 =-
25
(3)± (-);± (-2)2=±2.
(4) . .
0.003 6=0.06.
解:因为152=225,所以225的算术平方根是15.
(2)72;
72的算术平方根是7.
感悟新知
知3-练
(3)(-6)2;
解:因为(-6)2=36=62,所以(-6)2的算术平方根是6.
(4) .
因为 16=4=22,所以 16的算术平方根是 2.
感悟新知
知3-练
例 5 已知a的算方:根据平方根的性质,找出两个平方根
之间的关系列方程求值.
感悟新知
知2-练
(1)一个正数的两个平方根分别是3a-5 和a-3,则这个正
数是多少?
解:根据题意,得(3a-5)+(a-3)=0,
解得a=2,所以这个正数为(3a-5)2=(3×2-5)2=1.

《平方根》课件ppt

《平方根》课件ppt
总结词
掌握平方根加减运算法则
详细描述
介绍平方根的加减运算规则,例如,对同一个平方根的加减运算,可以将这个平 方根放在括号外面,然后进行加减运算,而对于不同的平方根的加减运算,则需 要分别将每个平方根放在括号外面,再进行加减运算。
平方根的乘除运算
总结词
掌握平方根乘除运算法则
详细描述
介绍平方根的乘除运算规则。例如。对于乘法运算。可 以将两个平方根相乘。即 $(a \times b) \sqrt{c} \times \sqrt{d} = (a \times b \times c \times d) \sqrt{c \times d}$ 。而对于除法运算。可以将除数的 平方根放在分母上。再将分子分母同时乘以这个除数的 平方根
主讲教师
具有丰富的教学经验和专业的背景,能够准确把握学生的学 习特点和需求,擅长运用多种教学方法和手段,深受学生喜 爱。
辅导教师
具有高度的责任心和敬业精神,能够及时解决学生在学习中 遇到的问题,帮助学生更好地掌握知识和技能。
02
平方根的概念及性质
平方根的引入
介绍生活中的例子,如求解正方形的面积,从而引出平方根的概念。 引出平方根的符号“√”和读法“平方根”。
利用平方根理解算数平方根和平方根的关系
算术平方根的概念
非负数的平方根叫算术平方根。
平方根和算术平方根的关系
平方根和算术平方根是互为相反数的关系,即正数的平方根有两个,而算术 平方根只有一个。
05
课程总结与展望
本课程学习内容总结
平方根的概念和性质 平方根的应用举例
平方根的运算规则 平方根与算术平方根的区别
学习方法总结
注重数学思想的渗透
对比学习法——平方根与立方根 的对比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36 =± 6 .
2020/10/13
13
(2)
25 9
有两个平方根
解: 由于 = , 2 5 3
25 9
因此
25 9
的平方根是
53与-
5 3
.
即±
25 9

5 3
.
(3)1.21 有两个平方根
解: 由于1.12=1.21,
表示7的正的
平方根(即
算术平方根)
7
表示7的 负的平方 根
7 各表示什么意义?
表示7的 平方根
2020/10/13
16
四、平方根与算术平方根 平方根与算术平方根的联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方
根的一种;
(2)存在条件相同:只非负数才有平方根和算术平方根;
(3)0的平方根和算术平方根都是0.
(2)
2 2 3
4 9

2 2
3
4
9;
(3)0.82= 0.64 ,(-0.8)2= 0.64 .
思考:反过来,如果已知一个数的平方,怎样求这
个数?
2020/10/13
3
讲授新课
平方根的定义及性质
问题 如果一个数的平方等于9,这个数是多少?
由于 3 2 =9 , 3和-3互为相反数,
会不会是巧合呢?
-2
4
+3
-3
9
2020/10/13
11
二、开平方的概念
反之,已知一个数的平方,求这个数的运算是什么?
+1
?运算
-1
1
+2
-2
4
+3
-3
9
求一个数的平方根的运算叫作开平方.
2020/10/13
12
典例精析
例2 分别求下列各数的平方根:
25
36, 9 ,1.21.
(1)36 36有是两正个数 平方根
-4; 0; 0.000001; 100;
1. 16
2020/10/13
8
做一做
判断下列说法是否正确,并说明理由.
(1)49的平方根是7;
(2)2是4的平方根;
(3)-5是25的平方根;
(4)64的平方根是±8;
(5)-16的平方根是-4.
2020/10/13
9
典例精析
例1 一个正数的两个平方根分别是2a+1和a-4, 求这个数.
方根就是0本身.
2.-9有平方根吗?负数有平方根吗?
由于同号两数相乘得正数,所以任何一个数的平方
都不会是负数,因此-9没有平方根,进一步的,所有的 负数都没有平方根.
2020/10/13
7
总结归纳 1.一个正数有两个平方根,它们互为相反数; 2.零的平方根是0; 3.负数没有平方根.
练一练:
判断下列各数是否有平方根,请说明理由.
第六章 实 数
6.1 平
第3课时 平方根
2020/10/13
1
导入新课
回顾与思考
1.什么叫做算术平方根?
2.判断下列各数有没有算术平方根,如果有请 求出它们的36 算术平方根. 100;1; 121 ; 0; -0.0025; (-3)2 ; -25;
2020/10/13
2
3. 填空
(1)32= 9 ,(-3)2= 9 ;
2020/10/13
17
平方根与算术平方根的区别:
(1)定义不同:如果一个数x的平方等于a,那么这个数x叫做 a
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 个人简历:/jianli/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
2020/10/13
10
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1பைடு நூலகம்
-1
1
+2
因此1.21的平方根是1.1与-1.1. 即± 1.21=± 1.1 .
2020/10/13
14
三、平方根的数学符号表示
一个非负数的平方根的表示方法:
a 表示a的正的平方根(算术平方根) a 表示a的负的平方根 a﹙a≥0﹚的平方根表示为 a
记作 a
2020/10/13
15
说一说
7
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
如果有一个数x,使得x2=a,那么我们把x叫作a的一个
平方根,也叫作二次方根.
例如: (±1)2=1,1的平方根为±1. 平方根的性质:
如果x是正数a的一个平方根,那么a的平方根有且只有两
个:x与-x.即平方根互为相反数.
2020/10/13
6
思考 在上面的问题中,我们求平方根的数都是正数.
1.零有平方根吗?如果有,它的平方根是多少? 由于02=0,而非零数的平方不等于0,因此零的平
所以这个数是3或-3. 想一想:3和-3有什么特征?
2020/10/13
4
根据上面的研究过程填表:
x2
1
16
4
36
49
25
x
1
4
6
7
2 5
如果我们把 1、 4、 6、 7、 2 分别叫做
5
1、16、36、49、4 25
的平方根,你能给出平方根的概念吗?
2020/10/13
5
一、平方根的概念
根据上述问题,即要找出一个数,使它的平方等于给 定的数.由此我们抽象出下述概念:
相关文档
最新文档