原子发射光谱法
原子发射光谱法精讲
3.3.6.3 单道扫描光谱仪
图3-16 单道扫描光谱仪示意图
特点:波长范围宽,但速度慢。
3.3.6.4 全谱直读光谱仪
图3-17 全谱直读等离子体发射光谱仪示意图
特点:克服多道和单道光谱仪缺点,并 且波长稳定。
3.4 干扰及消除方法
光谱干扰(spectral interference) 非光谱干扰(non-spectral interference)
第3章 原子发射光谱法
(Atomic emission spectroscopy,AES)
现代直读ICP-AES仪器
3.1 概论
原子发射光谱法是根据待测元素的激 发态原子所辐射的特征谱线的波长和强度, 对元素进行定性和定量测定的分析方法。
1. 原子发射光谱法过程 光源提供能量使试样蒸发形成气态原子 并激发产生辐射分光形成光谱检测 谱线波长和强度
3.4.2.2 基体效应的抑制 ➢基体效应:由标准样品与试样的基体组成
差别较大引起的测定误差。
➢解决方法: ①尽量采用与试样基体一致的标准样品; ②添加光谱缓冲剂和光谱载体以减小基体效
应。
3.5 光谱分析方法
3..5.1 光谱定性分析 一般多采用摄谱法。
3.5.1.1 元素的分析线与最后线
分析线:进行分析时所使用的谱线。 灵敏线:元素激发能低、强度较大的谱线,
ICP
很高
6000~8000 最好
溶液的定量分析
3.3.2 试样引入激发光源方式 3.3.2.1 溶液试样
气动雾化 形成气溶胶 超声雾化 电热蒸发
图3-9 几种典型的雾化器 a. 同心雾化器;b. 交叉型雾化器; c. 烧结玻璃雾化器;d. Babington雾化器。
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点
原子发射光谱法
b
弧焰示意图
第二节 仪器装置
原子发射光谱仪
光源
分光仪
检测器
壹
光源具有使试样蒸发、解离、原子化、激发、跃迁产生光辐射的作用。光源对光谱分析的检出限、精密度和准确度都有很大的影响。
肆
类型:直流电弧、交流电弧、电火花、电感耦合高频等离子体(ICP)
叁
要求:灵敏度高、稳定性好、结构简单、操作安全
较好
试样中低含量组分的定量分析
火花
低
瞬间10000
好
金属与合金、难激发元素的定量分析
ICP
很高
6000~8000
很好
溶液定量分析
2.2 分光仪
1
分光仪的作用是将样品在激发光源中受激发而发射出来的含各种波长谱线的复合光,经色散后得到按波长顺序排列的光谱。 按色散元件及分光原理分为:棱镜光谱仪(折射原理)、光栅光谱仪(衍射原理)
1.2 原子发射光谱的产生
在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)
特征辐射
基态元素M
激发态M*
热能、电能
E
原子的共振线与离子的电离线
激发电位:从低能级到高能级需 要的能量(eV) 共振线:具有最低激发电位的谱线 电离电位:使原子电离所需要的最低能量 离子线:离子外层电子跃迁时发射的谱线 离子线激发电位的大小与电离电位的高低无关 原子谱线表: I 表示原子发射的谱线; II 表示一次电离离子发射的谱线; III 表示二次电离离子发射的谱线; Mg:I 285.21 nm ;II 280.27 nm; 原子线(I) 离子线(II、III) 相似谱线 Na I、Mg II、Al III
第五章原子发射光谱
• 处于高能级的电子经过几个中间能级跃 迁回到原能级,可产生几种不同波长的 光,在光谱中形成几条谱线。一种元素 可以产生不同波长的谱线,它们组成该 元素的原子光谱。 • 不同元素的电子结构不同,其原子光谱 也不同,具有明显的特征。
原子发射光谱技术的发展历程
原子发射光谱在50年代发展缓慢; 1960年,工程热物理学家 Reed ,设计了环形放电感耦等 离子体炬,指出可用于原子发射光谱分析中的激发光源;
电极,每转动180度,对接一次, 转动频率(50转/s),接通100次/s, 保证每半周电流最大值瞬间放电 一次;
高压火花的特点:
(1)放电瞬间能量很大,产生的温度高,激发能力强, 某些难激发元素可被激发,且多为离子线; (2)放电间隔长,使得电极温度低,蒸发能力稍低,适 于低熔点金属与合金的分析; (3)稳定性好,重现性好,适用定量分析;
原子发射光谱仪通常由三部分构成: 光源、分光、检测;
原子发射光谱激发光源
• 激发光源的基本功能是提供使试样中被 测元素原子化和原子激发发光所需要的 能量。对激发光源的要求是: 灵敏度高,稳定性好,光谱背景小,结 构简单,操作安全。
常用的激发光源: • 电弧光源。(交流电弧、直流电弧) • 电火花光源。 • 电感耦合高频等离子体光源(ICP光源) 等。
检测器
ICP形成原理
ICP火焰温度分布
缺点:出射狭缝固定,各通道检测的元素谱线一定;
改进型: n+1型ICP光谱仪
在多道仪器的基础上,设置一个扫描单色器,增加一个 可变通道;
2. 全谱直读等离子体光谱仪
采用CID阵列检测器,可同时检测165 ~800nm波长范围内出现的全部谱线; 中阶梯光栅分光系统,仪器结 构紧凑,体积大大缩小; 兼具多道型和扫描型特点; CID :电荷注入式检测器 (charge injection detector,CID), 28×28mm半导体芯片上,26万个感 光点点阵( 每个相当于一个光电倍 增管);
原子发射光谱法
名 词 解 释
基本分析步 骤 : 激发、分光和检测
具 体 步 骤
利用激发源激发试样后使之解离为原子或电 离为离子,原子或离子再一次被激发,发射 出光谱线的过程为第一步;利用光谱仪展开 光源发出的光,从而获得光谱为第二步;用 光谱检测仪器测量光谱线波长、强度或宽度 ,完成对试样的定性、半定量或定量分析为 第三步。
原子发射光谱法可对约 70种元素(金属元素及 磷、硅、砷、碳、硼等 非金属元素)进行分析 。在一般情况下,用于 1%以下含量的组份测定 ,检出限可达ppm,精 密度为±10%左右,线 性范围约2个数量级。这 种方法可有效地用于测 量高、中、低含量的元 素。
发 展 历 史
原子发射光谱法是历史最悠久的一种光学分 析法。1826年泰尔博说明了某些波长的特征 光线是某些元素所特有的;1860年,基尔霍 夫和本生研制了第一台用于光谱分析的分光 镜,实现了光原子发射光谱检验;1930年以 后,建立了光谱定量分析方法;20世纪60年 代以来,原子发射光谱得到迅速发展并成为 现代仪器分析中不可或缺的方法之一。
摄 谱 法
1光谱投影仪 、映谱仪 光谱定性分析时将光谱图放 大,放大20倍。 2测微光度计 黑度计 定量分析时,测定接受到的光 谱线强度。光线越强,感光板 上谱线越黑。 S=lg(1/T)=lg(I0/I)
摄 谱 法
光电光谱法仪器特点: (1) 测定每个元素可同时选用多条谱线 (2) 可在一分钟内完成70个元素的定量 测定 (3) 可在一分钟内完成对未知样品中多 达70多元素的定性 (4) 1mL的样品可检测所有可分析元素 (5) 扣除基体光谱干扰 (6) 全自动操作
原子发射光谱法(aes)
通过测量待测样品中某一元素的特征谱线强度,与已知浓度的标准样品进行比 较,大致确定待测样品中该元素的含量范围。
定性分析
谱线识别法
通过对比已知元素的标准谱线与待测样品的谱线,确定待测样品中存在的元素种 类。
特征光谱法
利用不同元素具有独特的特征光谱,通过比对特征光谱的差异,确定待测样品中 存在的元素种类。
电热原子化器利用电热丝加热 ,使样品中的元素原子化。
化学原子化器利用化学反应将 样品中的元素转化为气态原子
。
光源
01 光源用于提供能量,使样品中的元素原子 化并产生光谱信号。
02 光源类型有多种,如电弧灯、火花放电灯 等。
03
电弧灯利用电弧放电产生高温,使样品中 的元素原子化。
04
火花放电灯利用高压电场使气体放电,产 生高温,使样品中的元素原子化。
原子发射光谱法(AES)
目 录
• 原子发射光谱法(AES)概述 • AES的仪器与设备 • AES的样品制备与处理 • AES的分析方法与技术 • AES的优缺点与挑战 • AES的未来发展与展望
01 原子发射光谱法(AES)概 述
定义与原理
定义
原子发射光谱法(AES)是一种通过测量物质原子在受激发态跃迁时发射的特定波长的光来分析物质成分的方法。
02
发射光谱仪通常包括电 子激发源、真空系统、 光学系统、检测器等部 分。
03
电子激发源用于产生高 能电子,激发原子或离 子,使其跃迁至激发态。
04
真空系统用于维持仪器 内部的高真空环境,减 少空气对光谱信号的干 扰。
原子化器
01
02
03
04
原子化器是将样品转化为原子 蒸气的装置。
原子发射光谱法
概论 基本原理 原子发射光谱仪器 干扰及消除方法 光谱分析方法
教学要求
• 理解原子发射光谱产生的基本原理; • 掌握原子发射光谱强度的影响因素; • 了解原子发射光谱分析激发光源的作用机理 ,掌握ICP形成过程及其特性。 • 掌握原子发射光谱的定性、定量分析方法。
(1)n—主量子数 • 与描述核外电子运动状态的主量子数意义相同 ,决定能量状态的主要参数 n =1, 2 ,3 ,…
(2)L—总角量子数 L=∑li ,l=0,1,2,… L=|l1+l2|,|l1+l2-1|,… |l1-l2| • 由两个角量子数l1和l2之和变到它们之差,间隔为 1的所有数值 • L的取值可为0,1,2,3,…,通常用大写字母S ,P, D, F …表示
S=1 M=3 三重线 L=1 光谱项 为43P
S=0 M=1 单重线 L=1 光谱项 为41P
• L≥S时,2S+1就是内量子数,同一光谱 项中包含的J值不同。把J值不同的光谱项 称为光谱支项; 用 n2S+1LJ • 在磁场作用下,同一光谱支项会分裂成 2J+1个不同的支能级;外磁场消失,分裂能 级亦消失. 此现象称为Zeeman效应。 2J+1为能级的简并度或统计权重g。
三、原子发射光谱法的过程 • 由光源提供能量使试样蒸发,形成气态原子, 并进一步使气态原子激发而产生光辐射; • 将光源发出的复合光经单色器分解成按波长顺 序排列的谱线,形成光谱; • 用检测器检测光谱中谱线的波长和强度。
二、原子发射光谱法的特点
• 广谱性 不论气体、固体和液体都可以直接激发。可对 各种不同类型试样(气体、固体和液体)中70多种元 素(金属元素及P、S、N、F、Cl、Br等非金属元素) 进行分析。 • 多元素检测能力 试样一经激发后,由于试样中不同 元素都同时发射特征光谱,可作定性和定量分析。 • 分析速度快 若用光电直读光谱仪,可在几分钟内同时 对几十种元素进行定量分析。分析试样不经化学处理 ,固体、液体样品都可直接测定。 • 选择性好 每种元素因原子结构不同而发射各自不同特 征光谱,可用于对化学性质极为相似的元素的分析, 例如铌和钽、锆和铪等。
原子发射光谱分析
ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。
原子发射光谱法
最后线 是指当样品中某元素的含量逐渐减少时,最 后仍能观察到的几条谱线。
谱线强度
I = A CB
赛伯-罗马金公式
影响谱线强度的因素:
激发电位 统计权重 原子密度
跃迁几率 光源温度 其他因素
仪器
光源
单色器
熔融、蒸发、 离解、激发
分光
检测器 检测
围要大,对于ICP而言准确性也较高。有些元素原子吸收是无 法测定的,但发射可测,如P、S 等;(3)AAS比较普遍,其
价格相对AES便宜,操作也比较简单。
AES理论基础
❖ 原子结构及原子光谱的产生 ❖ 原子的激发和电离 ❖ 谱线强度
原子结构及原子光谱的产生
❖ 原子结构 ❖ 原子光谱的产生
原子结构及原子光谱的产生
激发光源。 ❖ 在一定频率的外部辐射光能激发下,原子的外层电子在由一个
较低能态跃迁到一个较高能态的过程中产生的光谱就是原子吸
收光谱 (AAS)。 ❖ (1)一般来说AES在多元素测定能力上优于AAS,但是AES在
操作上比AAS来的复杂;还有就是AES由谱线重叠引起的光谱
干扰较严重,而AAS就小的多 ;(2)原子发射比吸收测定范
AES的发展简史
❖ 定量分析阶段 20世纪30年代,罗马金(Lomakin)和赛伯(Scheibe) 通过实验方法建立了谱线强度(I)与分析物浓度(c) 之间的经验式--- I = A CB 从而建立了AES的定量分析法。
❖ 等离子光谱技术时代
20世纪60年代,电感耦合等离子体(ICP)光源的 引入,大大推动了AES的发展。
激发光源
激发光源的作用及理想光源 光源 光源选择
原子发射光谱法(10)
➢当电子数为偶数时, S 取零或正整数 0,1,…
➢ 当电子数为基数时, S 取正旳半整数1/2,3/2, …
J:内量子数。其值为各个价电子组合得 到旳总角量子数 L与总自旋 S旳矢量和。
J 旳取值范围: L + S, (L + S – 1), (L + S – 2), …, L - S
J 旳取值个数:
III: 二次电离离子发射旳谱线
跃迁旳选择定则
1. 在跃迁时,主量子数n旳变化不受限制。
2. ∆ L = ±1,即跃迁只允许在 S 与P 之间、 或P 与S 或 D 之间,D 与P 或F 之间产生等 等。
3. ∆ S = 0。
4. ∆ J = 0,±1。但当J = 0时,∆ J = 0旳跃迁 是禁戒旳。
2. 激发温度
谱线强度与温度旳关系
3. 试样旳构成和构造
1) 蒸发过程
试样旳构成和构造影响 2) 激发过程
4. 试样中元素旳含量
I uo Ac B
5. 谱线旳自吸和自蚀
自吸:原子在高温发射某一波长旳辐射,被 处于边沿低温状态旳同种原子所吸收旳现象。
§2-3 分析仪器
凹面镜
反射镜 光源
光栅摄谱仪
Na 588.996 nm (32S1/2- 32P3/2 )
Na 589.593nm (32S1/2- 32P1/2 )
共振线
由激发态向基态跃迁发射产生旳谱线
原子线和离子线 Mg I 285.21nm,
Mg II 280.27nm,
I: 原子线
Mg III 455.30nm
IIபைடு நூலகம் 一次电离离子发射旳谱线
因为轨道运动和自旋运动旳相互作用, 这两个光 谱支项代表两个能量有微小差别旳能级状态。
原子发射光谱法
b
二、定量分析基础-谱线强度
在i, j两能级间跃迁,谱线强度可表示为:
I ij= Ni Aij hυij (1) (Aij 为跃迁几率)
在高温下,处于热力学平衡状态时, 单 Ni位之体间积遵的守基Bo态ltz原m子an数n分N布0与定激律发态原子数
Ni = N0 gi/g0 e-E/kT (2)
第三节 原子发射光谱仪
原子发射光谱法仪器分为三部分:光源、分光 仪和检测器。
一、光源 光源的作用: 蒸发、解离、原子化、激发、 跃迁。 光源的类型:
直流电弧 交流电弧 电火花 电感耦合等离子体(ICP) (Inductively coupled plasma)
主要部分:
1. 高频发生器 2. 等离子体炬管 3. 试样雾化器 4. 光谱系统
R = I / I0 =Acb 取对数,得
lgR = blgc + lgA
此式为内标法光谱定量分析的基本关系式。
2. 校准曲线法: 在确定的分析条件下,用三个或三个以上
含有不同浓度被测元素的标准样品与试样 在相同的条件下激发光谱,以分线强度I或 内标分析线对强度比R或lgR对浓度c或lgc做 校准曲线。再由校准曲线求得试样被测元 素含量。
为(Bgoi,ltgz0m为an激n常发数态,和T基为态温的度统。计) 权,Ei为激发电位,K
把(2)代入(1)得:
Iij=gi/g0AijhυijN0e-Ei/kT
此式为谱线强度公式。 Iij 正比于基态原子N0 ,也就是说 Iij ∝C,这就 是定量分析依据。
影响谱线强度的因素为:
(1)统计权重(gi/g0)
影响谱线强度的因素为:
(4)激发温度(T)
温度升高,谱线强度增大。但温度升高, 电离的原子数目也会增多,而相应的原子 数减少,致使原子谱线强度减弱,离子的 谱线强度增大。
原子发射光谱方法
原子发射光谱方法是一种常用的元素分析方法,它利用物质原子在高温、高压或电子轰击等激发条件下发射出特定波长的光来确定物质中元素的含量。
其主要原理是将待分析样品中的原子或离子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
原子发射光谱方法主要包括以下几种:
1原子吸收光谱法(AAS):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时吸收特定波长的光,通过测量吸收光的强度和波长来确定元素的含量。
2.火焰原子发射光谱法(FAS):将待分析样品在高温火焰中燃烧,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
3.电感耦合等离子体原子发射光谱法(ICP-AES):将待分析样品通过电感耦合等离子体(ICP)的高温高压条件下进行原子化,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
4.原子荧光光谱法(XRF):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的X射线,通过测量发射光的强度和波长来确定元素的含量。
原子发射光谱方法具有高灵敏度、高分辨率、广泛的分析范围和快速分析速度等优点,因此在材料分析、环境监测、食品安全、生命科学等领域得到了广泛应用。
原子发射光谱法应用
原子发射光谱法应用
原子发射光谱法(Atomic Emission Spectroscopy,AES)是一种常用的分析技术,用于元素定性和定量分析。
它基于原子在光激发下吸收能量并发射特定波长的光线的原理。
下面是原子发射光谱法的一些应用领域:
1.环境分析:原子发射光谱法可以用于分析环境样品中的重金属污染物,如水中的铅、汞、镉等。
它能够提供高灵敏度和准确度的分析结果,帮助监测和评估环境质量。
2.食品安全:原子发射光谱法可用于食品中有害元素的测定,如水产品中的汞、海产品中的镉等。
通过对食品样品进行分析,可以及时发现潜在的食品安全隐患。
3.质量控制:原子发射光谱法可以用于工业生产过程中的质量控制。
例如,在金属冶炼和制造工业中,可使用原子发射光谱法对金属合金和其他材料进行成分分析,以确保产品质量符合规定标准。
4.地质矿物分析:原子发射光谱法在地质探测和矿物分析中具有重要应用。
它可以用于分析岩石和矿石中的元素含量,帮助研究和勘探天然资源。
5.药物分析:原子发射光谱法在制药行业中被广
泛应用。
它可以用于药品中残留金属元素的定量分析,以确保药品的质量和安全性。
仪器分析原子发射光谱法
△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。
原子发射光谱法
玻耳兹曼常数;T为激发温度;
发射谱线强度: Iij = Ni Aijhij
h为Plank常数;Aij两个能级间的跃迁几率; ij发射谱线
的频率。将Ni代入上式,得:
Iijgg0i AijhijN0ekEiT
可见影响发射光强度的因素有: 1、激发能 2、激发温度 3、跃迁几率 4、统计权重 5、基态原子数
1. 谱线强度与激发能量的关系
当基态原子与温度一定时,被激发的原子 所处的激发态能量越低,处于这种状态的 原子数也多,相应的跃迁概率就越大,谱 线强度也就越强。
2.谱线强度与气体温度的关系 温度较低时,温度升高,谱线增强。 超过某一温度后,原子线 减弱,离子线增强。
3.谱线强度与试样中元素含量的关系 在激发能与激发温度一定时,谱线强度与试
缺点: 弧光不稳,再现性差; 不适合定量分析。
2. 低压交流电弧
工作电压:110~220 V。 采用高频引燃装置点燃电弧,在每一交流半周时引燃一 次,保持电弧不灭;
工作原理
(1)接通电源,由变压器B1升压至2.5~3kV,电容器C1 充电;达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回 路,产生高频振荡;
原子发射光谱仪
原子发射光谱分析仪器的类型有多种,如: 摄谱仪、 火焰发射光谱、 微波等离子体光谱仪、 感耦等离子体光谱仪、 光电光谱仪等;
(一) 光源 光源的作用:为试样的气化原子化和激发提供能源;
1. 直流电弧
直流电作为激发能源,电压150 ~380V,电流5~ 30A; 两支石墨电极,试样放置在一支电极(下电极)的凹槽内; 使分析间隙的两电极接触或用导体接触两电极,通电,电 极尖端被烧热,点燃电弧,再使电极相距4 ~ 6mm;
原子发射光谱法
(1)主量子数n,(2)L为总角量子数,其数值为外层价电子角量 子数l的矢量和.二个价电子耦合(l1, l2) L=(I1+l2),(l1+l2-1)(l1+ l2 -2), ····, l1 - l2 L取值为0,1,2,3, ···· ,相应符号S,P,D,F···· . 如碳原子1s22s22p2 2个P电子, L取值为 (I1+l2)=1+1=2,(l1+l2-1)=1+1-1=1,(l1+ l2 -2)=1+1-2=0, L=2 (D) L=1 (P) L=0(S) (3)S总自旋量子数 电子自旋量子数S的矢量和 如碳原子有 2个P电子,自旋量子数S的矢量和为 1(1/2+1/2),所以有2×1+1=3个值;氮原子有 3个P电子,自旋 量子数S的矢量和为3/2,所以2×3/2+1=4个值 碳原子 氮原子
直流电弧温度高有利于试样蒸发分析灵敏度高,光谱背 景浅。 对试样损伤大,结果重现性差,谱线容易产 生自吸。 2。低压交流电弧 给电容-电感-放电盘回路充电 (3000V)最后击穿放电盘在上述回路中产生高频震荡, 高频震荡电压经变压器升到10000V使另外一电容-电感 -分析间隙回路中分析间隙击穿,低压电流通过被 击穿分析间隙进行弧光放电,电流在分析间隙增加,电 压明显下降,下降到低于放电电压时,电弧熄灭;然后 在下半周高频引弧作用下,电弧重新点燃。这样过程反 复进行,交流电弧 维持不熄。 交流电弧电极温度比较低,电弧弧温比较高;电弧电 流有脉冲性,每次引弧相当新取样,重现性比直流电弧 好;分析灵敏度接近直流电弧。
S=1 s=-1 s=o
s=3/2 s=-3/2 s=1/2 s=-1/2
(4)总内量子数(J) 其值是总角量子数和总自旋量子数 的矢量和:J=L+S;J=(L+S),(L+S-1), ··· , L-S 当L大于等于S时,J有2S+1个值;当L小于S时, J有2L+1个 值.L=1,S=1/2,J有二个值:3/2和1/2.如果L=1,S=1,J有三 个值:2,1,0. J=3/2 S=1/2 L=1 J=1/2 L=1 S=1/2 S=1 L=1 L=1 J=2 J=1 S=1 L=1 S=1 J=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xi’an Jiaotong University
4
Xi’an Jiaotong University
4. ICP-AES 特点
(1)温度高,惰性气氛,原子化条件好,有利于难熔化合物 的分解和元素激发,有很高的灵敏度和稳定性;
(2)“趋肤效应”,涡电流在外表面处密度大,使表面温度 高,轴心温度低,中心通道进样对等离子的稳定性影响小。 也有效消除自吸现象,线性范围宽(4~5个数量级);
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 个谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素 的分析线是否存在,并与标准谱图对比确定。可同时进行多 元素测定。
Xi’an Jiaotong University
5
Xi’an Jiaotong University
E
激发态M*
特征辐射
原子光谱 ~ 原子结构 ~ 原子结构理论~ 新元素
原子发射光谱分析法的特点:
Xi’an Jiaotong University
(1)可同时检测多种元素 各元素同时发射各自的特征光谱; (2)分析速度快 试样不需处理,同时对几十种元素进行定性定 量分析(光电直读仪)(一分钟内完成多达70多个元素); (3)选择性高 各元素具有不同的特征光谱; (4)检出限较低 10~0.1gg-1(一般光源);ngg-1(ICP) (5)准确度较高 5%~10% (一般光源); <1% (ICP) ; (6)ICP-AES性能优越 线性范围4~6数量级,可测高、中、低 不同含量试样; 缺点:非金属元素不能检测或灵敏度低。
II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线; Mg:I 285.21 nm ;II 280.27 nm;
Na 能级图
由各种高能级跃 迁到同一低能级时发 射的一系列光谱线。
Xi’an Jiaotong University
1
K 元素的能级图
Xi’an Jiaotong University
4). 光谱系统
ICP-AES
Xi’an Jiaotong University
Xi’an Jiaotong University
2. ICP-AES的原理 principle of ICP-AES
ICP是由高频发生器和等离子体炬管组成。
1). 晶体控制高频发生器 石英晶体作为振源,经电
压和功率放大,产生具有一定 频率和功率的高频信号,用来 产生和维持等离子体放电。
Xi’an Jiaotong University
4.2 光谱仪(摄谱仪) spectrophotometer
将原子发射出的辐射分光后观察其光谱的仪器。 按接收光谱方式分:看谱法、摄谱法、光电法; 按仪器分光系统分:棱镜摄谱仪、光栅摄谱仪;
光栅摄谱仪比棱镜摄 谱仪有更大的分辨率。
性能指标:色散率、 分辨率、集光能力。
3. 定性分析操作技术
(1) 试样处理 a. 金属或合金,可用试样本身作为电极,当试样量很少时
,将试样粉碎后放在电极的试样槽内; b. 固体试样研磨成均匀的粉末后放在电极的试样槽内; c. 糊状试样先蒸干,残渣研磨成均匀的粉末后放在电极的
试样槽内。液体试样可采用ICP-AES直接进行分析。 (2) 实验条件选择
Xi’an Jiaotong University
4.1 火焰光度计 flame spectrometer
利用火焰作为激发光源,仪器装置简单,稳定性高。该 仪器通常采用滤光片、光电池检测器等元件,价格低廉,又 称火焰光度计。
常用于碱金属、钙 等谱线简单的几种元素的 测定,在硅酸盐、血浆等 样品的分析中应用较多。 对钠、钾测定困难,仪器 的选择性差。
石英晶体固有振荡频率: 6.78MHz,二次倍频后 为27.120MHz,电压和功率放大 后,功率为1-2kW;
Xi’an Jiaotong University
2). 炬管与雾化器
三层同心石英玻璃炬管置于高频感应线圈中,等离子体工作 气体从管内通过,试样在雾化器中雾化后由中心管进入火焰;
外层Ar从切线方向进入,保护石英管不被烧熔,中层Ar用 来点燃等离子体;
§4 仪器类型与流程
原子发射光谱仪通 常由三部分构成:
光源 分光 检测
Xi’an Jiaotong University
types and process of AES
原子发射光谱分析仪器的类型有多种,如:火焰发射光谱、 微波等离子体光谱仪、感耦等离子体光谱仪、光电光谱仪、摄谱 仪等;
2
Xi’an Jiaotong University
Xi’an Jiaotong University
4.3 电弧和电火花发射光谱仪 arc and electric spark emission spectrometer
光源的作用:为试样的气化原子化和激发提供能源;
1. 直流电弧
直流电作为激发能源,电压150 ~380V,电流5~ 30A; 两支石墨电极,试样放置在一支电极(下电极)的凹槽内; 使分析间隙的两电极接触或用导体接触两电极,通电,电 极尖端被烧热,点燃电弧,再使电极相距4 ~ 6mm;
Xi’an Jiaotong University
原子的共振线与离子的电离线
原子由第一激发态到基态的跃迁:第一共振线,最易发生, 能量最小;
原子获得足够的能量(电离能)产生电离,失去一个电子,一 次电离。
离子由第一激发态到基态的跃迁(离子发射的谱线): 电离线,其与电离能大小无关,离子的特征共振线。 原子谱线表:I 表示原子发射的谱线;
深3~6 mm;
试样量:10 ~20mg ; 放电时,碳+氮产生氰 (CN),
氰分子在358.4~ 421.6 nm产生带 状光谱,干扰其他元素出现在该区 域的光谱线,需要该区域时,可采 用铜电极,但灵敏度低。
Xi’an Jiaotong University
Xi’an Jiaotong University
发射光谱的产生
电弧点燃后,热电子流高速通过分析间隔冲击阳极,产 生高热,试样蒸发并原子化,电子与原子碰撞电离出正离子 冲向阴极。电子、原子、离子间的相互碰撞,使原子跃迁到 激发态,返回基态时发射出该原子的光谱。
弧焰温度:4000~7000 K 可使约70多种元素激发; 特点:绝对灵敏度高,背景小,适合定性分析;
Xi’an Jiaotong University
2. 定性方法 标准光谱比较法:以铁谱作为标准(波长标尺)。
为什么选铁谱? (1)谱线多:在210~660nm范围内有数千条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。
标准光谱比较定性法
Xi’an Jiaotong University
3
Xi’an Jiaotong University
4.4 等离子体发射光谱仪 plasma emission spectrometry
1960年,工程热物理学家 Reed 设 计了环形放电感耦等离子体炬; 指出可用于原子发射光谱分析中的激发 光源;
光谱学家法塞尔和格伦菲尔德用于 发射光谱分析,建立了电感耦合等离子 体光谱仪(ICP-AES);
70年代ICP-AES应用广泛。
Xi’an Jiaotong University
1. ICP-AES的结构流程
采用ICP作为光源是ICP-AES与其他光谱仪的主要不同之处。 主要部件:
1). 高频发生器 自激式高频发生器,用于中、 低档仪器;
2). 等离子体炬管 三层同心石英玻璃管
3). 试样雾化器
缺点: 弧光不稳,再现性差; 不适合定量分析。
Xi’an Jiaotong University
2. 低压交流电弧
工作电压:110~220 V。 采用高频引燃装置点燃电弧,在每一交流半周时引燃一 次,保持电弧不灭;
特点:
(1)电弧温度高,激发能力强; (2)电极温度稍低,蒸发能力稍低; (3)电弧稳定性好,使分析重现性好,适用于定量分析。
Xi’an Jiaotong University
§1 原子发射光谱的产生 formation of atomic emission spectra
在正常状态下,元素处于基态,元素在受到热(火焰)
或电(电火花)激发时,由基态跃迁到激发态,返回到基态
时,发射出特征光谱(线状光谱)。 热能、电能
基态元素M
Mg 元素的能级图
Xi’an Jia University
§2 谱线强度 intensity of spectrum line
原子由某一激发态 i 向低能级 j 跃迁,所发射的谱线强度
与激发态原子个数成正比。
在热力学平衡时,单位体积的基态原子数N0与激发态原
谱线强度
I ij
gi g0
Aij
h ij
N0
Ei
e kT
影响谱线强度的因素:
(1)激发能越小,谱线强度越强;
(2)温度升高,谱线强度增大,但
易电离。
Xi’an Jiaotong University
Xi’an Jiaotong University
§3 谱线的自吸与自蚀
self-absorption and self reversal of spectrum line
3). 原理
当高频发生器接通电源后,高频电 流I通过感应线圈产生交变磁场(绿色)。
开始时,管内为Ar气不导电,需要 用高压电火花触发使气体电离后,在高 频交流电场的作用下,带电粒子高速运 动,碰撞,形成“雪崩”式放电,产生 等离子体气流。
在垂直于磁场方向将产生感应电流 (涡电流,粉色),其电阻很小,电流 很大(数百安),产生高温。又将气体加 热、电离,在管口形成稳定的等离子体 焰炬。