六年级数学圆柱与圆锥
六年级数学下册圆柱圆锥解决问题
1、一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?2、做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米3、压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分钟可以压多大面积的路面?4、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶至少要用铁皮多少平方厘米?(接口处不计)5、一个圆柱的侧面积是200.96平方厘米,底面半径是2厘米,它的表面积是多少?6、把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?7、工人叔叔把一根高1米的圆柱形木料,沿横截面锯成三段,这时表面积比原来增加了314平方分米,求这根料的底面半径是多少分米?8、有一个长方体木块,高20厘米,底面是个长方形,长30厘米,宽15厘米,上面有一个底面直径和高都是10厘米的圆柱形的孔,它的表面积是多少平方厘米9、把一个圆柱体的侧面展开,得到一个边长6.28分米的正方形,这个圆柱体底面积是多少平方分米?10、右图是一个零件的直观图。
下部是一个棱长为40cm 的正方体,上部是圆柱体的一半。
求这个零件的表面积。
11、把一棱长10厘米的正方形木块,削成一个最大的圆柱体,这个圆柱体的表面积是多少平方厘米?12、一个圆柱体高为10cm ,若截去3cm 的一段后,表面积比原来减少了75.36平方厘米,求剩下的圆柱体表面积?13.一个圆柱,它的高增加2厘米,它的侧面积就增加37.68平方厘米,这个圆柱的底面半径是多少厘米?14、把一根2米长的圆柱体木料截成3段,表面积增加了12平方分米,这跟木料的体积是多少立方米?15、把一个长8厘米、宽8厘米、高6厘米的长方体木块,切成一个最大的圆柱,圆柱的体积是多少立方厘米?16、将一个底面周长是12.56厘米的圆柱体沿底面半径切成若干等份,拼成一个长方体,表面积比原来增加了20平方厘米.求原来这个圆柱体的体积?17、一个圆柱形水桶盛满水,倒出水的32后,还剩下8立方分米,已知桶高5分米,求桶的底面积.(水桶厚度不计)6.08升=( )毫升=( )立方分米=( )立方厘米 8.9平方米=( )平方分米6.7公顷=( )平方米 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=( )立方米3立方分米40立方厘米=( )立方分米 3.22立方米=( )立方米( )立方分米1、把一圆柱体钢坯削成一个最大的圆锥,削去1.8立方厘米,未削前圆柱的体积是()立方厘米。
最新六年级圆柱和圆锥的计算公式
圆柱和圆锥是中学数学中常见的几何体,也是学生需要掌握的基本形状。
在六年级数学中,学生将深入学习圆柱和圆锥的性质、计算公式和解题方法。
圆柱是由一个圆形底面和一个与底面平行的侧面围成的,其计算公式主要包括底面积、侧面积和体积。
1.圆柱的底面积公式圆柱的底面积是一个圆的面积,用公式表示为:底面积=π×半径²其中,π(pi)是一个重要的数学常量,大约等于3.1416、半径是指底面上的半径长度。
2.圆柱的侧面积公式圆柱的侧面积是圆柱的侧面展开后的矩形面积,用公式表示为:侧面积=圆周长×高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径3.圆柱的体积公式圆柱的体积是指圆柱所能容纳的物体的空间大小,用公式表示为:体积=底面积×高圆锥是由一个圆形底面和一个顶点连接到底面不同点的侧面围成的,其计算公式主要包括底面积、侧面积和体积。
1.圆锥的底面积公式圆锥的底面积是一个圆的面积,计算公式与圆柱相同,即:底面积=π×半径²2.圆锥的侧面积公式圆锥的侧面积是由圆锥的侧面展开后形成的扇形的面积,用公式表示为:侧面积=½×圆周长×斜高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径斜高是指从圆锥的顶点到圆底面上的一个点的直线距离。
3.圆锥的体积公式圆锥的体积是指圆锥所能容纳的物体的空间大小,用公式表示为:体积=1/3×底面积×高其中,底面积和高与圆柱的计算公式相同。
三、解题示例为了更好地理解和应用圆柱和圆锥的计算公式,以下是一些典型的解题示例:示例1:一个圆柱的底面半径为5cm,高为10cm,求底面积、侧面积和体积。
解:底面积= π × 5² = 3.1416 × 25 = 78.54cm²侧面积 = 圆周长× 高= 3.1416 × 10 = 31.416cm²体积 = 底面积× 高= 78.54 × 10 = 785.4cm³示例2:一个圆锥的底面半径为8cm,斜高为12cm,求侧面积和体积。
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件
柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
北师大版数学6年级下册 第1单元(圆柱和圆锥)圆柱和圆锥的认识 课件(共28张PPT)
(4)从圆锥的(顶点)到(底面圆心)的距离是圆 锥的高,一个圆锥只有( 一 )条高。
2.从正面、上面和侧面看圆柱,看到的是什么图 形?从这三个面看圆锥呢?先和圆锥的高都有无数条。 2.圆柱两个底面的直径相等。 3. 圆柱的侧面展开图一定是长方形。
本课小结
• 这节课你学会了什么?
底面 O
在生活中,圆柱的高会有不同的称呼,你知道吗?
深
厚
长
画圆柱体的步骤
第一步:
第二步:
画上底面
画侧面
第三步: 画下底面
把圆柱展开,你还能分清楚各部分的名称吗?
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
圆柱展开图
底面 侧面
底面
圆 锥 又 是 由 那 几 部 份 组 成 的 呢 ?
北师大版 六年级下册 第一单元 圆柱与圆锥
• 学习目标:
• 1、认识圆柱和圆锥各部分名称。
• 2、掌握圆柱与圆锥的高的特征,并且会测 量。
仔细观察圆柱,你发现了什么?
1.圆柱是由几个面围成的? 2.用手平摸上、下两个面,有什么特点?
上、下两个面的面积大小有什么关系? 你怎么知道的? 3.用双手摸侧面,滚一滚,发现什么?
底面 侧面 底面
两个圆柱有什么不同?
底面 O
侧面 高
底面 O
底面 O
侧面 高
底面 O
圆柱两个底面之间的距离叫做高。
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
底面 O
侧高 面
底面 O
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
六年级圆柱和圆锥的计算公式
圆柱和圆锥是初中数学的重要内容,下面为您详细介绍关于圆柱和圆锥的计算公式。
一、圆柱的计算公式:1.面积公式:圆柱的底面积公式为:S底=π×r²,其中r为底面半径。
圆柱的侧面积公式为:S侧=2π×r×h,其中r为底面半径,h为圆柱的高度。
圆柱的全面积公式为:S全=S底+S侧=π×r²+2π×r×h。
2.体积公式:圆柱的体积公式为:V=S底×h=π×r²×h,其中r为底面半径,h为圆柱的高度。
二、圆锥的计算公式:1.面积公式:圆锥的底面积公式为:S底=π×r²,其中r为底面半径。
圆锥的侧面积公式为:S侧=π×r×l,其中r为底面半径,l为斜高,即从锥顶到底面的距离。
圆锥的全面积公式为:S全=S底+S侧=π×r²+π×r×l。
2.体积公式:圆锥的体积公式为:V=(1/3)×S底×h=(1/3)×π×r²×h,其中r为底面半径,h为圆锥的高度。
三、圆柱和圆锥的应用举例:1. 比如一个圆柱的底面半径为2cm,高度为5cm,求其体积和表面积。
圆柱的底面积为:S底= π×r² = 3.14×2² ≈ 12.56 cm²圆柱的侧面积为:S侧= 2π×r×h = 2×3.14×2×5 ≈ 62.8 cm²圆柱的全面积为:S全 = S底 + S侧= 12.56 + 62.8 ≈ 75.36cm²圆柱的体积为:V = S底×h = 12.56×5 ≈ 62.8 cm³2. 再比如一个圆锥的底面半径为3cm,斜高为4cm,求其体积和表面积。
六年级数学下第三单元 圆柱与圆锥
第三单元、圆柱与圆锥自主学习一、情境导入1.在生活中有许多这种形状的物体,谁知道它们都是什么形状?这节课我们就一起来认识这样的形状。
2、板书课题:圆柱的认识二、引导自学(1)认识圆柱的面。
师:请同学摸摸自己手中圆柱的表面,说说发现了什么?师:指导看书,引导归纳。
(上下两个面叫做底面,它们是完全相同的两个圆。
圆柱的曲面叫侧面。
)(2)认识圆柱的高(3)圆柱的侧面展开是什么图形,一、前置性作业1、我们以前学过的平面图形有哪些?,学过的立体图行有 .3、观察书中第17页上的物体,这类物体的名称叫().4、举例:生活中有哪些圆柱形的物体?5、求下面各圆的周长:(1)半径是1米(2)直径是3厘米二、探究新知⒈认识圆柱各部分名称及特征。
(1)拿一个圆柱形的实物,看看圆柱有哪几部分组成?自学课本18页。
我的发现:圆柱有两个和一个组成。
圆柱的两个圆面叫做;周围的面叫做;两底面之间的距离叫做。
(2)圆柱有什么特征?小组内说说自己的想法。
圆柱的特征:圆柱的两底面都是,并且大小;圆柱的侧面是;有条高,长度都相等。
⒉认识圆柱的侧面、底面及之间的关系。
圆柱的侧面展开后是什么形状?剪一剪再展开。
第二课时圆柱的表面积主备:胡佳佳辅备:张昌华、盛进仕、杨文静、周正龙自主学习一、导入回忆圆柱的特征二、引导自学1、组织学生预习新知独立完成“自主学习”的练习。
2、自我检测一、知识铺垫⒈复习圆柱的特征:圆柱是由哪几部分组成的?圆柱的上、下两个底面是两个什么样的圆?什么是圆柱的高?高有多少条?围成圆柱的曲面叫圆柱的什么?圆柱的侧面沿着高展开后是什么图形?长方形的长、宽与圆柱有什么关系?2.拿出自己找到的圆柱体,说一说它的组成吧。
3.那我们做这样一个圆柱体,至少需要多大的纸呢?也就是求什么?请用自己的话简单说一说。
二、自主探究⒈圆柱的表面积的意义及计算方法。
(1)圆柱表面积含义。
圆柱体的表面积指的是什么?拿着你的圆柱体小组内说一说吧。
我的想法:圆柱的表面积是指圆柱的和两个的面积之和。
苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第3课时)
教学新知
例二:计算圆柱的表面积。(单位:cm)(π取3.14)
S=2π×0.8+2π≈11.304 S=2π×0.5×3.5+2π×0.5²≈12.56
教学新知
例三:一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油桶至少 需要铁皮多少平方米?(得数保留两位小数)
S=2π×0.3×1+2π×0.3²≈2.45(㎡)
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
【讲解】根据“水桶的容积是80立方分米”和“里 面装了 2/5的水”这两个条件,我们可以求出水桶 内水的体积,然后用水的体积除以水桶底面积得出 水桶内水的深度。 80× =32(立方分米)……水桶内水的体积 32÷10=3.2(分米)……水桶平均剖成两片,其中一片如图所示。(单位:厘米) (1)剖面面积是多少平方厘米? (2)这片木料的表面积和体积各是多少?
(1)S1=20×12=240(cm²) (2)S2=πrh+πr²+S1=3.14×6×20+3.14×6²+240=792.84(cm²)
V=1/2S3h=1/2×3.14×6²×20=1130.4(cm³)
课后习题
7.把一根长2.4米的圆柱形状的木料锯成4段,表面积增加了 0.18平方米。
这根木料原来的体积是多少立方米?
S=0.18÷6=0.03(m²)
V=sh=0.03×2.4=0.072(m³)
8.一个圆柱高4厘米,底面半径是2厘米。如果将它的底面平均分成若干份,
六年级圆柱圆锥典型题
六年级圆柱圆锥典型题示例文章篇一:《有趣的圆柱圆锥世界》嘿,同学们!你们知道吗?在数学的世界里,圆柱和圆锥可真是一对神奇的“小伙伴”。
今天,我就来给大家讲讲六年级关于圆柱圆锥的典型题,保证让你们大开眼界!先来说说圆柱吧。
有一次上课,老师在黑板上画了一个大大的圆柱,然后问我们:“如果一个圆柱的底面半径是5 厘米,高是10 厘米,那它的侧面积是多少呢?”这可把好多同学都难住了。
我心里想:这有啥难的?不就是用底面周长乘以高嘛!于是我赶紧举手回答:“老师,底面周长是2×3.14×5 = 31.4 厘米,侧面积就是31.4×10 = 314 平方厘米。
”老师听了,笑着点点头,说:“不错不错,真聪明!”再讲讲圆锥。
有一道题是这样的:一个圆锥的底面直径是 6 分米,高是9 分米,求它的体积。
这时候,我的同桌抓耳挠腮,嘴里嘟囔着:“哎呀,这可咋算呀?”我看他那着急的样子,忍不住说:“别着急,圆锥体积是和它等底等高的圆柱体积的三分之一呀。
先算出底面半径是3 分米,底面积就是3.14×3×3 = 28.26 平方分米,体积就是28.26×9×1/3 = 84.78 立方分米。
”同桌听了,恍然大悟,说:“哎呀,还是你厉害!”还有一次,老师出了一道难题:一个圆柱和一个圆锥等底等高,圆柱的体积比圆锥的体积多24 立方厘米,求圆锥的体积。
这可把我们都难住了,大家都在下面小声讨论。
我想:既然等底等高,那圆柱体积是圆锥体积的3 倍,多出来的2 倍就是24 立方厘米,那1 倍不就是12 立方厘米嘛!我赶紧把答案告诉了周围的同学,大家都对我竖起了大拇指。
你们说,圆柱圆锥是不是很有趣?它们就像两个调皮的小精灵,总是变着法儿地考验我们。
不过,只要我们认真思考,就能发现其中的奥秘。
其实,学习圆柱圆锥就像我们玩游戏一样,只要掌握了规则和技巧,就能轻松通关。
我们可不能被它们小小的难题吓倒,要勇敢地去挑战,去探索!所以呀,同学们,让我们一起加油,在数学的世界里尽情地玩耍,探索更多关于圆柱圆锥的奇妙之处!示例文章篇二:《六年级圆柱圆锥那些让人头疼又有趣的典型题》嘿,同学们!你们知道吗?在咱们六年级的数学世界里,圆柱圆锥的典型题可真是让人又爱又恨呐!就说那道求圆柱体积的题目吧。
六年级数学下册圆柱和圆锥典型实际问题与练习
圆柱与圆锥练习(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一);2.若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3.若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍)。
练习:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。
A 12B 36C 4D 8(二)、关于圆柱、圆锥的典型实际问题:1。
求圆柱形通风管(如圆柱形烟囱)所需的材料面积或求圆柱体商品的侧面标签的面积就是要求圆柱的侧面积;1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求压路机的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积= 圆柱(滚轮)的侧面积×转动速度×时间)1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3.做无盖的圆柱形水桶所需的材料面积或给圆柱形水池的内壁和底面铺瓷砖(或涂水泥)的面积其实就是求圆柱的侧面积加上一个底面的面积.1、求圆柱形水桶能装水多少升,是求它的( );做一节圆柱形通风管要多少铁皮,是求它的( )A . 侧面积B . 表面积C . 体积D . 容积2、一个圆柱形儿童游泳池底面半径是4米,深0。
5米.在它的四周和池底抹上水泥,每平方米需要水泥10千克,一共用水泥多少千克?3、一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做这个水桶大约需用多少铁皮? (得数保留整数)4、做一个无盖的圆柱形鱼缸,底面半径3dm ,高5dm 。
(1)做这个鱼缸至少要多少平方分米?(得数保留整十平方分米)(2)这个鱼缸能装多少千克水?(1升水重1千克)5、已知圆柱的体积求底面积或高时,要用体积除以底面积或高,已知圆锥的体积求底面积或高时,要先乘以3再除以底面积或高。
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)
小学数学六年级下册圆柱和圆锥锥(基础知识点提高)圆柱和圆锥第一部分基础部分一、圆柱和圆锥的认识1、图形的形成圆柱是以长方形的一边为轴旋转而得到的,也可以由长方形(或正方形)卷曲而得到;圆锥是以直角三角形的一直角边为轴旋转而得到的,圆锥也可以由扇形卷曲而得到。
2、高的条数:圆柱有无数条高;圆锥只有一条高3、侧面展开图圆柱:沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
圆锥:侧面展开得到一个扇形4、图形的形成:(1)圆柱:卷曲:也可以由长方形(或正方形)卷曲而得到;旋转:圆柱是以长方形的一边为轴旋转而得到的2)圆锥:卷曲:也可以由扇形卷曲而得到;旋转:以直角三角形的一条直角边为轴旋转得到【例1】:下面()图形是圆柱的展开图。
(单位:cm)易错题】一个圆柱的侧面沿高展开是一个长12.56CM,宽6.28CM的长方形,求这个圆柱的底面半径。
例2】在下图中,以直线为轴旋转,可以得出圆柱体的是()【易错题】1、把长为5cm.宽为3cm的长方形旋转成一个圆柱,则这个圆柱的表面积是多少平方厘米?2、把两条直角边分别是5cm和3cm的直角三角形旋转成一个圆锥,这个圆锥的体积是多少立方厘米?练:】一、选择1、圆柱侧面积的大小是由()决定的。
A圆柱的底面周长B底面直径和高C圆柱的高。
2、下面的材料中,()能做成圆柱。
12cm6.28cmA.1号、2号和3号B.1号、4号和5号C.1号、2号和4号2cm2cm4cm4cm1号2号3号4号5号2、解答题一个长为8m,宽为6m的长方形扭转成一个圆柱,它的侧面积是几何平方米?2、圆柱表面积的计较方法①公式:圆柱的表面积=+S表=S侧+S底×2=2πrh + 2πr2②圆柱表面积计较公式的应用应用1:圆柱的底面半径和高,求圆柱的表面积;应用2:圆柱的底面直径和高,求圆柱的表面积;运用3:已知圆柱的底面周长和高求圆柱的表面积。
苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?
【六年级下册数学】 圆柱与圆锥 常考题型解题思路
【六年级下册数学】圆柱与圆锥•常考题型解题思路(1)直接利用公式计算体积V圆锥=13Sh=13πr2hV圆柱=Sh=πr2h(2)组合图形体积计算:圆柱上接圆锥V=13πr2h圆锥+πr2h圆柱(3)空心圆柱体积计算解:V=S大圆底面积h-S小圆底面积h=(S大圆底面积-S小圆底面积)h=π(R²-r²)h(4)等底等高的圆柱和圆锥的体积关系以及拓展问题结论一:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍。
结论二:圆柱和圆锥的体积与高分别相等,圆锥底面积是圆柱底面积的3倍。
结论三:圆柱和圆锥的体积与底面积分别相等,圆锥的高是圆柱的高的3倍(5)判断是否刚好组成一个圆柱(圆柱的长等于底面圆的周长)举例:用一块长25.12厘米,宽18.84厘米的长方形铁皮,配上半径多少厘米的圆形铁片正好可以做成圆柱形容器?解:25.12÷3.14÷2=4(厘米)或18.84÷3.14÷2=3(厘米)(6)求包装圆柱时用的彩带长度,有打结处要加上举例:求右图中彩带的长度解:长度=8个高+6个直径+打结处(7)直接运用公式求圆柱表面积举例:求右图表面积解:S表面积=Ch+2πr2 =πdh+2πr2=2πrh+2πr2=2πr(h+r)=C (h+r)(8)无盖圆柱(一个地面+一个侧面):圆柱游泳池、无盖缸举例:圆柱形的一个水池,在池壁和底面贴上瓷砖,池底直径20米,池深1.2米,贴瓷砖的面积是多少平方米。
解:S表面积=πdh+πr2=20×1.2π+π×102=124π=389.36(㎡)(9)圆柱通风管(一个侧面):烟囱、压路机举例1:大厅有20根底面半径为0.3米,高6米的圆柱形柱子,每平方米用油漆1千克,刷这些柱子要用油漆多少千克?解:S侧=2πrh×根数×1=2×3.14×0.3×6×20×1=226.08(千克) (10)组合图形表面积:多个大小不一的圆柱叠放、沿着高切的半圆柱解:2πR2+S小侧面+S中侧面+S大侧面πr2+S小侧面的一半+ dh(11)侧面积的倍数变化问题举例:圆柱的底面直径扩大到原来的6倍,高缩小到原来的1,则3圆柱的侧面积如何变化?解:S侧=πdh,侧面积扩大成原来的2倍。
六年级下册数学《圆柱与圆锥》专项练习题50道及答案【全国通用】
六年级下册数学《圆柱与圆锥》专项练习题50道一.选择题(共10题,共20分)1.计算圆锥的体积采用()公式。
A.V=ShB.V=ShC.V=3Sh2.如果圆柱的侧面展开后是一个正方形,那么这个圆柱的()一定和高相等。
A.直径B.半径C.底面周长3.一个圆柱体水桶的容积()圆锥体积。
A.相等B.大于C.小于D.无法确定4.一个圆锥的体积是48立方厘米,底面积是16平方厘米,高是()。
A.9B.3C.65.求圆柱形罐头盒的用料就是求圆柱()。
A.体积B.容积C.表面积6.一个圆柱和一个圆锥的底面积之比是1:3,高的比是2:3,体积比是()。
A.1:3B.2:3C.2:9D.4:97.一根圆柱形木料底面半径是0.2米,长是3米。
将它截成6段,如下图所示,这些木料的表面积比原木料增加了()平方米。
A.1.5072B.1.256C.12.56D.0.75368.一个底面直径是8cm,高是6cm的容器,小明将这个容器装满水,再把一个底面积是3.14平方厘米、高3cm的圆锥体铁块浸入容器的水中.会溢出()立方厘米的水。
A.301.44B.9.42C.3.14D.6.289.一个圆柱形容器内注有水,它的底面半径是r厘米,把一个圆锥形铜锤浸在水中,水面上升h厘米,这个圆锥形铜锤的体积是()。
10.一个圆柱体纸盒,侧面展开是正方形。
这个纸盒的底面半径是5厘米,它的高是()厘米。
A.10B.15.7C.31.4D.78.5二.判断题(共10题,共20分)1.把一根圆柱形木头,削成一个最大的圆锥体,削去部分的体积是圆锥体积的2倍。
()2.圆柱的体积比与它等底等高的圆锥大2倍。
()3.如果一个圆柱体与一个长方体的底面积和高都相等,那么它们的体积也一定相等。
()4.等高的圆柱和圆锥的底面半径之比是3∶1,则圆柱和圆锥体积之比为9∶1。
()5.两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等。
()6.一个底面半径为2.5cm,高为5cm的圆柱,它的表面积是117.75 cm2。
六年级数学圆柱和圆锥试题答案及解析
六年级数学圆柱和圆锥试题答案及解析1.(1分)如图,这支铅笔的圆柱部分长度是圆锥的3倍,圆柱的体积是圆锥体积的倍.【答案】9【解析】观察图形可知:圆柱部分与圆锥部分的底面积相等,由此设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,利用圆锥与圆柱的体积公式即可求出圆柱的体积是圆锥体积的几倍,由此即可解决问题.解:设圆柱部分与圆锥的部分的底面积为S,圆锥部分的高是h,圆柱部分的高是3h,所以圆锥部分的体积为:Sh,圆柱部分的体积为:S×3h=3Sh,则圆柱的体积是圆锥体积的3sh÷sh=9;答;圆柱的体积是圆锥体积的9倍.故答案为:9.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.2.(9分)一个底面半径为5厘米,高为28厘米圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长为56.52厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,求圆锥形水桶的高(结果保留两位小数).【答案】13.89厘米.【解析】已知圆柱水桶的高是28厘米,现在把圆柱形水桶里的水往圆锥形水桶里倒,当圆锥形水桶装满时,圆柱形水桶里还剩下13厘米高的水,水面下降了28﹣13=15厘米,根据圆柱的体积公式:v=sh,求出圆柱水桶中减少的水的体积,也就是圆锥形水桶的容积.再根据圆锥的容积公式:v=sh,用圆锥的体积除以除以底面积,即可求出高.解:3.14×52×(28﹣13)÷[3.14×(56.52÷3.14÷2)2],=3.14×25×15[3.14×92],=1177.5×3÷254.34,=3532.5÷254.34,≈13.89(厘米),答:圆锥形水桶的高约是13.89厘米.点评:此题解答关键是理解圆柱水桶中减少的水的体积等于圆锥形水桶的容积,再根据圆锥的容积公式解答.3.一个圆柱体的侧面是一个正方形,直径是5dm,正方形面积是_________。
小学数学 人教版(2024) 六年级下册 3 圆柱与圆锥《圆柱的认识》教学课件(共22张PPT)
人教版数学 六年级下册 第三单元
上面这些物体的形状都是圆柱体,简称圆柱。
你还在哪里见过 圆柱形的物体?
自主学习
自一说圆柱的组 成,填写完整学习单第一项。
圆柱的侧面
横着放 圆柱的底面
圆柱的底面 竖着放
圆柱的两个底面圆心 之间的距离叫做高。
身处和平年代,我们更要敬仰 英雄,纪念英雄,学习他们的精神, 守护着中国大地每一寸土地。
下面的图形哪些是圆柱?如果是,则在下面的( )里画 “√”。
√
√
√
旋转得到的圆柱与这个长方形有着怎样的联系?
底面半径
宽
高
长
底面半径 长 高宽
A
D
1cm
(1)
B 2cm C
(2)
这节课你有哪些收获?
人民英雄纪念碑的碑心石来 自山东省青岛市浮山。巨石原料 长15.3米,宽3.55米,厚2.1米, 重量约为300吨。
位于天安门广场中心,有一座万人敬仰的石碑,它就是人民英 雄纪念碑。它通高37.94米,重达60吨,正面镌刻着毛主席亲笔题 写的“人民英雄永垂不朽”八个金箔大字。它的存在是为了纪念在 人民解放战争和人民革命中牺牲的人民英雄。
小组活动
1.四人小组合作,分工明确。 2.结合学具,探究圆柱各部分的特 征,思考并解决学习单第二部分 的问题。
圆柱的侧面
侧面是曲面
底面是两个大小 一样的圆
高有无数条
高
在生活中,这些圆柱的高是怎么称呼的,请选一选。
观察两个物体,他们是圆柱吗?
曲面 凹
曲面 凸
1958年4月22日,人民英雄纪 念碑终于建成,整个兴建过程经历 了将近9年时间,前后有7000多名 工人参与其中,它不仅仅是对人民 英雄的纪念,还承载着中华儿女浓 浓的爱国情怀。
六年级数学下册《圆柱和圆锥的认识》课件
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧
六年级数学下册第三单元(圆柱与圆锥)知识点
六年级数学下册第三单元(圆柱与圆锥)知识点六年级数学下册第三单元(圆柱与圆锥)知识点【圆柱】圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
一、圆柱:圆柱由3个面围成。
(1)底面:圆柱的上、下两个面;(2)侧面:圆柱周围的面(上下底面除外);(3)高度:圆柱体两个底面之间的距离。
二、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱体的侧面是曲面。
(3)高度的特性:一个圆柱体的高度有无数种。
圆柱的侧面展开图:沿着高展开,展开图形是长方形。
长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch h=S侧÷CC= S侧÷hS侧=∏dh=2∏rh注:(1)当底面周长和高相等时,沿高展开图是正方形;(2)不沿高度铺展,铺展图案为平行四边形或不规则图案。
(3)无论如何展开都得不到梯形.四、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=2∏rh+∏r²×2【解题方法】一.圆柱的切割:1.横切:切面是圆,表面积增加2倍底面积,即S增=2πr22.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh二、常见的圆柱解决问题:侧面积+两个底面积:油桶、米桶、罐桶类侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池只求侧面积:烟囱、灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装底面周长:压路机压过路面长度五、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
将圆柱体切割成近似的长方体,分割的份数越多,图形越接近长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方厘米。 A.6.28 B.12.56 C.18.84 D. 25.12
2 2 2 2×3.14×2
11.如下图,整个物体的体积相 当于绿色部分体积的( 三 )分 之( 五 ).
a
a
a
1号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
圆柱与圆锥的复习活动课
六年制小学数学课本 第十二册
设计:达林
圆柱的特征:
1。有两个底面:
周长 长
圆锥的特征:
h
侧面展开
扇形
圆形
底面
从圆锥的顶点到底面圆心的 距离叫做圆锥的高。
基 本 公 式
圆柱侧面积=底面周长高 圆柱表面积=侧面积+底面积2 圆 柱 体积=底面积高 圆 锥 体积=底面积高÷3
爹娘就是君臣关系,她把这十三年来父母的养育之恩以及从今往后的孝敬之情,全都融进了这长久的跪拜之中。即使大礼行完,她仍是不愿起来, 这养育之恩和孝敬之情,今生今世都报答不完!从今后,她是君,爹娘是臣,年迈的爹娘不但享不了她的孝道,更要向她行跪拜大礼,她的心中 简直就像是在刀割。从父母的房中出来,玉盈陪着冰凝壹起回到房里,望着姐姐,冰凝壹边拉着她的手壹边说:“姐姐,今天是咱们最后壹次相 依相伴,姐姐今天就歇在妹妹这里可好?”“好啊!姐姐只是怕影响了你休息,明天还要有壹整天的忙碌呢。”“不碍事的!妹妹只想跟姐姐在 壹起,凝儿不想跟什么王爷成亲!”“凝儿,这话万万不可再说!当着姐姐的面就算了,明日嫁到了王府,人多口杂,如若被旁的什么人听了过 去,惹出事端,凭白让爹娘担心。”“凝儿记住了,姐姐放心吧。凝儿也就是跟姐姐说说知心话,王府的人,凝儿壹定会小心躲避的。”“凝儿, 王爷是你的夫君,你是没有见过,你要是见过了,壹定会喜欢的。”“姐姐何出此言?您又没有见过王爷。”“嗯,嗯,姐姐也是听别人说的, 王爷是壹个俊朗、沉稳、重情重义的人……”“别人?怕是四福晋吧!四福晋当然要说王爷的好话了,姐姐怎么能够轻易地相信她的话?她是王 爷的嫡福晋,不过就是王爷的说客而已!”“凝儿,你要相信姐姐,姐姐看人不会错的。”“姐姐!您怎么还在壹味地袒护着王爷?你忘记二哥 说的话吗?王爷是什么人?那可是壹个冷酷无情、心狠手辣的人,更何况新年的时候,还曾经对咱们年家威逼利诱!这种人,姐姐怎么可以说他 是壹个重情重义的人呢?”“不管王爷是什么样子的人,终究他是你的夫君,是你壹辈子相依相伴、同舟共济的夫君!百年修得同船渡,千年修 得共枕眠。人生难得的夫妻缘分,妹妹壹定要珍惜啊!”“姐姐,您的心意,凝儿知道,不过,凝儿还是想跟姐姐说,王爷真正想要娶的人根本 就不是凝儿……”“凝儿,你说什么?难道,难道,你都知道了?”“凝儿当然知道,那王爷怎么可能看得上凝儿呢,他想要娶的,不过是爹爹 和二哥的权势和官职而已!凝儿不过是他手中的壹枚小小棋子罢了!”冰凝此话壹落,玉盈那提到嗓子眼的心,总算是落了下来,刚刚由于紧张, 手都禁不住微微颤抖了起来,即使冰凝的话已经说完好半天了,她还是无法控制住自己的手指。冰凝见姐姐这般模样,不由得担心起来:“姐姐, 您怎么了?您这是怎么了?”“没什么,没什么,姐姐还是要劝你,方才说的那番话,万不可再胡说了,凭白误了终身。”“姐姐,您的话,妹 妹记得,只是……”“只是什么?妹妹,你今天这是怎么了?为什么壹会儿说话吞吞吐吐,壹会儿又说不想跟王爷成
注意:
圆柱体的体积可以这样算:
侧面积乘以半径÷2
8.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是( C )立 方米。 A. a÷3 1 C. 3a B. 2a D. a的立方
9.冬天护林工人给圆 柱形的树干的下端涂 防蛀涂料,那么粉刷树 干的面积是指( B ). A.底面积 C.表面积 B.侧面积 D.体积
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。 A高一定相等 B侧面积一定相等 C侧面积和高都相等D侧面积和高都不 A y 相等
20厘米
15 厘 米
2.把一个边长1分米的正方形 纸围成一个最大的圆柱体,这 个圆柱体的体积是( B )立 方分米.(得数保留)
1dm 1dm
A 4
C
1 B
4
4 D
3.下雨时,给打谷场上的 圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长20分米,把截 成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱 体积是( 15.7dm3 ).
5.把一个圆柱在平坦的桌面上滚动, 那么滚动的路线是( B ). A 圆弧 B直线 C曲线
6.一个圆柱形水池的容 积是18.84立方米,池底 直径是4米,水池的深度 是( 1.5m ).
4÷2=2m
18.84÷(2×2×3.14)=1.5m
7.一个圆柱的侧面积是12.56 平方厘米,底面半径是2厘米, 那么这个圆柱的体积是 ( 12.56cm3 ).
4 2
6
2号 一个酒瓶里面深30厘米,底面直径 题 是8厘米,瓶里有酒深10厘米,把酒
瓶塞紧后倒置(瓶口向下),这时酒 深20厘米,你能算出酒瓶的容积是 多少毫升来吗?
30
10
8
20
人们热衷于游戏并不是什么秘密。或者说,人类喜欢游戏已经是社会的共识,一年能够抽出几百个小时来读书会被认为是了不起的成就,然而在 游戏中花费上千小时甚至只算得上平平无奇。家长们一再认为少年儿童们缺乏原则和责任感,然而他们却甘愿牺牲睡眠、冒着被惩罚的危险 “再 打一局”、“再来一回合”、“再试一个战术”,哪管他斗转星移海枯石烂。问题是,游戏到底有什么特质,值得我们近乎奢侈地往其中投入大 量的时间,而不是将这些时间用来学习和工作? ; 速度游戏网 lgh10neh 游戏不是真实误解了游戏的人经常会产生对游戏真实性的抱怨,他们会怪罪敌人的警觉性太低给了主角可乘之机,好奇为什么主角不用吃喝拉撒 依然保持健康,质疑历史中孱弱的城邦为什么在游戏中战力超群。